keyboard_arrow_up
Enhancing Frame Detection with Retrieval Augmented Generation

Authors

Papa Abdou Karim Karou Diallo and Amal Zouaq, LAMA-WeST Lab, Canada

Abstract

Recent advancements in Natural Language Processing have significantly improved the extraction of structured semantic representations from unstructured text, especially through Frame Semantic Role Labeling (FSRL). Despite this progress, the potential of Retrieval-Augmented Generation (RAG) models for frame detection remains under-explored. In this paper, we present the first RAG-based approach for frame detection called RCIF (Retrieve Candidates and Identify Frames). RCIF is also the first approach to operate without the need for explicit target span and comprises three main stages: (1) generation of frame embeddings from various representations ; (2) retrieval of candidate frames given an input text; and (3) identification of the most suitable frames. We conducted extensive experiments across multiple configurations, including zero-shot, few-shot, and fine-tuning settings. Our results show that our retrieval component reduces the complexity of the task by narrowing the search space thus allowing the frame identifier to refine and complete the set of candidates. Our approach achieves state-of-the-art performance on FrameNet 1.5 and 1.7, demonstrating its robustness in scenarios where only raw text is provided.

Keywords

Frame semantic parsing, RAG, LLMs.

Full Text  Volume 15, Number 12