Authors
Zhiyin Zhou, Trine University, USA
Abstract
Large language models are moving beyond transactional question answering to act as companions, coaches, mediators, and curators that scaffold human growth, decision-making, and well-being. This paper proposes a role-based framework for human-centered LLM support systems, compares real deployments across domains, and identifies cross-cutting design principles: transparency, personalization, guardrails, memory with privacy, and a balance of empathy and reliability. It outlines evaluation metrics that extend beyond accuracy to trust, engagement, and longitudinal outcomes. It also analyzes risks including over-reliance, hallucination, bias, privacy exposure, and unequal access, and proposes future directions spanning unified evaluation, hybrid human-AI models, memory architectures, cross-domain benchmarking, and governance. The goal is to support responsible integration of LLMs in sensitive settings where people need accompaniment and guidance, not only answers.
Keywords
Large Language Models, Human-Centered AI, Companions, Coaching, Mediation, Knowledge Curation