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ABSTRACT 
 
Data assimilation (DA) for the non-differentiable parameterized moist physical processes is a 

complicated and difficult problem, which may result in the discontinuity of the cost function 

(CF) and the emergence of multiple extreme values. To solve the problem, this paper proposes 

an inner/outer loop ensemble-variational algorithm (I/OLEnVar) to DA. It uses several 

continuous sequences of local linear quadratic functions with single extreme values to 

approximate the actual nonlinear CF so as to have extreme point sequences of these functions 
converge to the global minimum of the nonlinear CF. This algorithm requires no adjoint model 

and no modification of the original nonlinear numerical model, so it is convenient and easy to 

design in assimilating the observational data during the non-differentiable process. Numerical 

experimental results of DA for the non-differentiable problem in moist physical processes 

indicate that the I/OLEnVar algorithm is feasible and effective. It can increase the assimilation 

accuracy and thus obtain satisfactory results. This algorithm lays the foundation for the 

application of I/OLEnVar method to the precipitation observational data assimilation in the 

numerical weather prediction (NWP) model. 
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1. INTRODUCTION 
 

NWP is an initial/boundary value problem. The more accurate initial condition is, the better the 
quality of prediction will be [1,2]. DA is a method by which initial values for NWP can be 

yielded from observation data and short-term numerical prediction results. Due to large 

uncertainty in convective and stratiform condensation processes relating to clouds and 
precipitation, great importance has been attached to parameterized methods. Generally, these 

parameterized moist physical processes of cloud and precipitation in the NWP mode often 

contain non-differentiable processes, thus causing the discontinuity of DA cost function and the 

appearance of multiple extreme values [3,4]. 
 

The conventional variational adjoint method (ADJ) to DA is based upon the differentiability of 

the system; therefore, how to tackle the non-differentiable parameterized moist physical 
processes becomes a significant and difficult problem in the study of DA. To solve it, many 

researchers have carried out a lot of meaningful work, including ADJ improvement [5] and the 

application of many other methods, such as the smoothing and regularization method [6], the 
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generalized tangent and adjoint method [7,8], the cluster method [9,10], the non-linear 
perturbation equation [2,11-14], the particle fliter and the genetic algorithm [15,16], etc. 

Nevertheless, these methods are more or less unsatisfactory, unable to find the global optimal 

solution or requiring huge efforts to modify the original nonlinear model and the corresponding 

adjoint model or to reconstruct the generalized tangent and adjoint model. Meanwhile, the 
particle filter method needs lots of particles and the genetic algorithm has to deal with the setting 

of parameters  and other proplems (e.g. the population size or the probability of crossover and 

mutation) and the selection of genetic operators[17]. Therefore, the non-differentiable prblem in 
parameterized cloud and precipitation physical processes brings much trouble to the assimilation 

of actual observational data. 

 
In recent years, the ensemble-variational data assimilation (EnVar) that absorbs the merits of the 

variational filter and ensemble filter has become the focus of the field. Qiu et al. proposed the 

four dimensional variational (4D-Var) method based on ensembles, using the technology of 

singular value decomposition (SVD-En4Dvar) [18]. Liu et al. applied the background error 
covariance estimated from forecast ensembles to variational data assimilation (VDA) and formed 

the ensemble-based variational method (En4DVar) [19]. Zupanski et al. put forward the 

maximum likelihood ensemble filter [20]. Wu Zhuhui et al. suggested a method based on 
regional successive analysis scheme [21]. Numerical results illustrated that the EnVar data 

assimilation can generate better assimilating effects than the ensemble Kalman filter and the 4D-

Var method. Such a method can realize the flow-dependent evolution of the background error 
covariance matrix and improve the analytical quality of the dramatic element field of temporal 

spatial variation without much energy to complete and maintain the adjoint model [22, 23]. 

 

However, when the EnVar is used to deal with the non-differentiable parameterized moist 
physical processes, the discontinuity of CF still happens and multiple extreme values keep 

showing up. Using inner/outer loop thought and iterative method for reference [24-27], this paper 

combines the EnVar algorithm with the inner/outer loop algorithm and uses multiple linear 
quadratic function values to fit the cost function value of the original non-differentiable process. 

This approach can avoid the possible CF discontinuity and multiple extreme values and enable 

the function to converge to the global minimum point. As a result, it is named inner/outer loop 

ensemble-variational algorithm (I/OLEnVar). Numerical experimental results of DA for the non-
differentiable process in cloud and precipitation indicate that such an algorithm requires no 

modification for the original non-linear numerical model and can better tackle the above-

mentioned DA problems in cloud and precipitation procedures. 
 

The rest of the paper is organised as follows. In Section 2, the I/OLEnVar Algorithm to DA is 

proposed and the algorithm process is described in detail. In Section 3, we present two numerical 
experiments (referred to as OSSEs) to gauge the performance of our I/OLEnVar approach. 

Finally, the paper is concluded with a summary and a few concluding remarks given in Section 4. 

 

2. The I/OLEnVar Algorithm to DA 
 

Based on the four dimensional sequenced ensemble-variational algorithm to DA, the CF is 
defined as: 
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in this equation, xb  is the ambient field, B  is the background error covariance matrix, y
k

 is the 

observational data at the moment k , 
kH is the observational operator at the moment k , Ok

 is 

the observational error covariance matrix, the superscript T indicates the vector transition, K is 

the observation frequency in the assimilation window and  x x
k

kM  is the variable value of 

model predication at the moment k . The purpose of DA is to search for the analytical value 

x that coordinates with the numerical model so that the CF (1) can reach its minimum point. 

 
With incremental representation [28, 29], the analytical result of Eq. (1) with EnVar method can 

be presented as: 

 

x x xb   ， x X wb  ,                                                         (2)  

 

where  1 2, , ,X x x xb N
    L is N  initial ensemble perturbations, which satisfies 
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 . N represents the number of ensemble prediction members and 

 
T

1 2, , ,w L Nw w w  accounts for the weighting factor. To have the CF reach its minimum by 

using the quasi-Newton method, conjugate gradient method or other optimal iterative algorithms, 
a method similar to previous literature [19, 30] is adopted to form a CF when the control variable 

in the 4D ensemble-variational method is w  and generate the gradient equation for its control 

variables. They are as follows: 
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where  I y x
k k

k k bH M  
 

; Hk and M k are tangent operators of the observational 

operator kH and the model operator kM  respectively; and  

 

 1 2, , , .H M X H M x H M x H M xk k b k k k k k k N
    L  

 
When the ensemble membership value of the results of the numerical computation is projected 

onto the observational space, it can be obtained that 

 

     , 1, 2, , .H M x x x xk k i k k b i k k bH M H M i N       
   

L  

 

By doing so, the use of tangent operators Hk and M k is avoided and w
J is computed. 

 

The I/OLEnVar algorithm to DA (see Figure 1) adopts the computation of the above-given CF 
for the gradient of the control variable. The inner loop needn’t consider the non-linear effect of 

the observational and model operators. In process of inner loop, the Hk  and M k  are considered 

to be constant and variable perturbations are presented in a linear development, and then non-
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linear CF is replaced by a local quadratic function. As a result, the inner loop needs no numerical 

integration to get  wJ and
w

J , so a lot of computation can be saved. On the other hand, the 

outer loop contains the non-linear influence of the observational and model operators, and the 

Hk  and M k
 operators used in inner loop process are calculated. By outer loop and inner loop 

procedures’ iteration and interaction, the analytical DA results obtained from the iterative 

algorithm can converge and approximate to the minimum value of the nonlinear CF. 

 

During the DA for the non-differentiable process in moist physical processes, the non-
differentiable, nonlinear process will lead to the discontinuity of the CF and the appearance of 

multiple extreme values (see Figure 2). The conventional variational adjoint gradient algorithm 

will cause the divergence of the assimilation or limited convergence to the local minimum. By 
adopting the I/OLEnVar algorithm (see Figure 2), we use several favorable (with continuous and 

single extreme values) sequences of local linear quadratic functions 
1 2 *, , ,J J JL  to 

approximate to the actual nonlinear CF. Since function (1) possesses the nature of a linear 

quadratic function near the global minimum, extreme points of these sequences 
0 1 2, ,x x x L will 

approximate to the global minimum 
*

x of the nonlinear CF. Since the local quadratic function is 

a linear function in the inner loop of this algorithm, we can use optimal iterative algorithms to 

find the minimum of the quadratic function instead of numerical integration, which saves a lot of 

computation. 
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Figure 1. Flowchart of the I/OLEnVar algorithm 
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Figure 2. Illustration of the I/OLEnVar algorithm when the CF for the non-differentiable process is 

discontinuous and with multiple extreme values 

 

The chosen optimal iterative algorithm in this paper is the conjugate gradient algorithm [31]. The 

following are the steps:  
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(the Polak-Ribiere scheme). 

Step 4. 1w w di i i i    and 
i satisfies the conditions that  w di i iJ   is the minimum 

and
1 1

x x X w
i i

b b

   . 

Step 5. Return to Step 2 and loop; if 
wJ   , stop the iteration. 

 

3. NUMERICAL EXPERIMENTS AND RESULTS 
 

3.1. Numerical Experiments of One-Dimensional Non-Differentiable Processes 
 
During the non-differentiable changing of the moist physical processes, the equation describing 

the evolution of specific humidity at one grid point can be simplified as: 
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                                                       (3) 

 
This model [7, 9, 14, 16] is a typical model used to test the DA algorithm for the non-

differentiable process. Where q  represents the specific humidity, a scalar greater than 0.   is a 
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constant and the source item caused by parameterization. F is the source item caused by other 

physical processes.  H   is the Heaviside function, which is defined as: 
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                                                 (4) 

 

Where 
cq denotes the saturation specific humidity (a threshold of precipitation). It can be known 

the Heaviside function that at the threshold cq it is non-differentiable. Eq. (4) mimics the change 

of specific humidity q  before and after the precipitation. 

 

To discretize Eq. (4), kq is recorded as the numerical solution of the discretization model when 

 0,1, ,kt k t k N   L . When the initial value is 0q , the discrete form is 
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The time step is 0.05 and the integral step number N is 20. CF (1) can be simplified as 
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                                                 (6) 

 

Where 
obs

kq is the numerical solution when 0 0.25obsq  and t k t   and the observation data are 

supposed to be error-free. For other parameters, 2.0F  , 1.5    and 0.46cq  . The CF is 

shown in Figure 3. We can see that it is discontinuous and has multiple extreme points. Since the 

conventional ADJ can only accurately compute the gradient of control variables when the CF is 

continuous, if this gradient is used in the iterative solution for the minimum value of the cost 
function, different initial values will lead to problems like non-convergent DA results or limited 

convergence to the local minimum. 

 

 

 

 

 

 

                    

 

 

 

 

 
 

Figure 3. CF values under the influence of one-dimensional non-differentiable process in the precipitation 
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To test the effect of the I/OLEnVar to DA during the non-differentiable parameterized moist 
physical processes, a numerical experiment is conducted when 0.07, 0.16, 0.34 and 0.43 are 

selected as initial values. The number of ensemble members for the initial perturbation is 20, the 

variance is 
32 10  and DA finally converges to a minimum value of 0.25. When the initial 

value is 0.43 and 0.07, the change of the normalized CF along with the increase of iteration 

number is given in Figure 4. In this numerical experiment, to get satisfactory results, the outer 

loop only needs 3 or 4 iterations while the inner loop 10 or 20 iterations. The experimental results 

preliminarily illustrate that the I/OLEnVar algorithm proposed by this paper is a feasible and 
effective solution to DA in the non-differentiable parameterized moist physical processes of 

cloud and precipitation. However, the experiment here targets a relatively simple and low-

dimensional issue. In the following section, a more complicated and authentic model is adopted 
to further test the effectiveness of the I/OLEnVar algorithm. 
 

 

 

 

 

 

 
 

 

 

 

 
 

 

 
 

 

 
Figure 4.  Change of the normalized CF along with the increase of iteration number in the one-dimensional 

non-differentiable numerical experiments 
 

3.2. Numerical Experiments of High-Dimensional Non-Differentiable Processes 
 

For the high-dimensional model of parameterized moist physical processes of cloud and 

precipitation, the equation that describes the evolution of specific humidity at grid point can been 
defined as follows [16]: 
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Here  ,q t l  refers to the specific humidity, 
cq denotes the saturation specific humidity, and 

l represents the horizontal variables x , y or the vertical variable z ;  ,t l , the velocity in l  

direction, is a given function with first order continuous partial derivations; ,H F and  have the 

same meanings as above. 

 
Model (7) can be discretized in upwind scheme as follows: 
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where t denotes the time step, kt k t  , k is the time level, 1 k N  and /N T t  , the 

total time levels in integration; l is the space step, il i l  , i is the space grid point and 

/I L l  , denoting the total number of space discrete levels. 

 

In the numerical experiment, parameters 8F  , 7g  and 0.58cq  ; 1L  , 0.05l   and 

20I  ; 1T  , 0.01t  and 100N  ;     , 1 1t l t l    is the velocity along l  direction. 

For this model, CF (1) can be simplified as: 
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If the observation generates no errors,  
i

obs

k
q is obtained through nonlinear numerical integration 

under the circumstance that the initial observation 

     
0

0.28 0.26sin / 2 , 0,1, ,L
i

obsq i l i I    . To intuitively display the change of the CF 

with initial conditions, we fix 2I  components of the initial condition 0

obsq and change values of 

components 
5

0q and
15

0q at one grid point. The 3D contours of the corresponding CF are given in 

Figure 5. It can be seen that when the non-differentiable process occurs, the CF becomes 
discontinuous and has multiple extreme values. 
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Figure 5.  CF values under the influence of the non-differentiable process in cloud and precipitation 

 

When the initial conditions are  0 0.28 0.26sin / 2 0.06iq i l     (the experiment is referred 

to as plus 0.06) ,  0 0.28 0.26sin / 2 0.06iq i l     (the experiment is referred to as minus 

0.06), and  0,1, ,i I L , we carry out a comparative numerical experiment using the 

conventional EnVar algorithm and the I/OLEnVar algorithm. The experiment does not consider 

the influence of the observational errors. The ensemble member number of the initial perturbation 

is 40, and the variance is 
42.25 10 . The change of the normalized CF with the increase of 

iteration number is displayed in Figure 6. It can be found that via the I/OLEnVar algorithm it 

only takes 9 or 10 iterations to decrease the CF to the lowest point in these two experiments. In 
contrast, when the conventional algorithm is applied, values of the CF oscillate as the iteration 

number increases and any effective decline cannot be easily realized. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Figure 6. Change of normalized CF with the increase of iterations in the high-dimensional non-

differentiable numerical experiments 
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4. CONCLUSIONS 
 
In summary, the non-differentiable parameterized moist physical processes of cloud and 

precipitation can lead to the discontinuity of CF and the appearance of multiple extreme values 

for data assimilation. The conventional variational adjoint gradient algorithm may cause the 

divergence of assimilation or limited convergence to the local minimum. To solve these 
problems, we propose the I/OLEnVar algorithm based on the ensemble-variational method. This 

algorithm uses several favorable (with continuous and single extreme values) sequences of local 

linear quadratic functions to approximate to the actual nonlinear CF so as to let extreme point 
sequences of these local quadratic functions converge to the global minimum of the nonlinear CF. 

Apart from its simplicity and convenience, such an algorithm requires no adjoint model or 

modification of the original nonlinear numerical model, so DA can be easier. In addition, the 

nonlinear effects are considered at the outer-loop and the CF during the inner loop of the 
algorithm is a linear quadratic function, so the minimum point of the quadratic function can be 

computed by the optimal iterative algorithm instead of nonlinear numerical integration, which 

saves the computation cost. Numerical experimental results of DA for the non-differentiable 
process in cloud and precipitation indicate that the I/OLEnVar algorithm is feasible and effective. 

It can increase the assimilation accuracy and thus lead to satisfactory results.  
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