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ABSTRACT 
 
Proposed derivation and measurement of self-loop function for a low-pass Tow Thomas 
biquadratic filter are introduced. The self-loop function of this filter is derived and analyzed 
based on the widened superposition principle. The alternating current conservation technique 
is proposed to measure the self-loop function. Research results show that the selected passive 
components (resistors, capacitors) of the frequency compensation of Miller’s capacitors in the 
operational amplifier and the Tow Thomas filter can cause a damped oscillation noise when the 
stable conditions for the transfer functions of these networks are not satisfied.  
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1. INTRODUCTION 
 
An important function of microelectronics vastly used in electronic systems is “filtering”[1]. One 
of the most famous active filter circuits is the Tow–Thomas bi-quadratic circuit. Although the 
circuit was introduced many years ago, it is still receiving interest of researchers in modifying it 
to fit the new CMOS technology [2]. Moreover, feedback control theories are widely applied in 
the processing of analogue signals [3]. In conventional analysis of a feedback system, the term of 
“Aβ(s)” is called loop gain when the denominator of the transfer function is simplified as 

1+Aβ(s). The stability of a feedback network is determined by the magnitude and phase plots of 
the loop gain. However, the passive filter is not a closed loop system. Furthermore, the 
denominator of the transfer function of the analog filter, regardless of active or passive is also 
simplified as 1+L(s), where L(s) is called “self-loop function”. Therefore, the term of “self-loop 
function” is proposed to define L(s) for both cases with and without feedback filters. This paper 
provides an introduction to the derivation of the transfer function, the measurement of self-loop 
function and stability test for a low-pass Tow-Thomas biquadratic filter based on the alternating 
current-voltage injection technique and the widened superposition principle.  
 
The main contribution of this paper comes from the stability test for a low-pass Two Thomas 
biquadratic filter based on the widened superposition and the voltage injection technique. Section 
2 of the paper mathematically analyzes an illustrative second-order denominator complex 
function considered in details. Section 3 presents the stability test for a mathematical model of 
two-stage operational amplifier which is used in the Tow Thomas circuit. SPICE simulation 
results and the stability test for the Tow Thomas filter are described in Section 4. A brief 
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discussion of the research results is given in Section 5. The main points of this work are 
summarized in Section 6. We have collected a few important notions and results from analysis in 
an Appendix for easy references like A.1, A.2, etc. 
 
2. ANALYSIS OF SECOND ORDER DENOMINATOR COMPLEX FUNCTIONS  
 
2.1. Widened Superposition Principle 
 
In this section, we propose a new concept of the superposition principle which is useful when we 
derive the transfer function of a network. The conventional superposition theorem is used to find 
the solution to linear networks consisting of two or more sources (independent sources, linear 
dependent sources) that are not in series or parallel. To consider the effects of each source 
independently requires that sources be removed and replaced without affecting the final result. To 
remove a voltage source when applying this theorem, the difference in potential between the 
terminals of the voltage source must be set to zero (short circuit); removing a current source 
requires that its terminals be opened (open circuit). This procedure is followed for each source in 
turn, and then the resultant responses are added to determine the true operation of the circuit. 
There are some limitations of conventional superposition theorem. Superposition cannot be 
applied to power effects because the power is related to the square of the voltage across a resistor 
or the current through a resistor. Superposition theorem cannot be applied for non linear circuit 
(diodes or transistors). In order to calculate load current or the load voltage for the several 
choices of load resistance of the resistive network, one needs to solve for every source voltage 
and current, perhaps several times. With the simple circuit, this is fairly easy but in a large circuit 
this method becomes a painful experience. 
 
In the paper, the nodal analysis on circuits is used to obtain multiple Kirchhoff current law 
equations. The term of "widened superposition" is proposed to define a general superposition 
principle which is the standard nodal analysis equation, and simplified for the case when 
impedance from node A to ground is infinity and current injection into node A is 0. In a circuit 
having more than one independent source, we can consider the effects of all the sources at a time. 
The widened superposition principle is used to derive the transfer function of a network [4,5]. 
Energy at one place is proportional with their input sources and the resistance distances of 
transmission spaces. Let EA(t) be energy at one place of multi-sources Ei(t) which are transmitted 
on the different resistance distances di (R, ZL, and ZC in electronic circuits) of the transmission 
spaces as shown in Figure 1. Widened superposition principle can be defined as  
 

n n
i

A
i=1 i=1i i

E (t)1E (t) =
d d

 (1) 

 
The import of these concepts into circuit theory is relatively new with much recent progress 
regarding filter theory, analysis and implementation. 
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Figure 1. Energy at one node based on widened superposition principle. 
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2.2. Analysis of Complex Functions 
 
In this section, we describe a transfer function as the form of a complex function which the 
variable is an angular frequency. In frequency domain, the transfer function and the self-loop 
function of a filter are complex functions. Complex functions are typically represented in two 
forms: polar or rectangular. The polar form and the rectangular representation of a complex 
function H(jω) is written as  
 

Im
arctan2 2 ReRe Im Re Im

H j
j

H jH j H j j H j H j H j e  (2) 

 
where Re{H(jω)} is the real part of H(jω) and Im{H(jω)} is the imaginary part of H(jω), and j is 
the imaginary operator j2 = -1. The real quantity 2 2

Re ImH j H j  is known as the 

amplitude or magnitude, the real quantity 
Im

arctan
Re

H j
H j is called the angle H j , which is 

the angle between the real axis and H j . The angle may be expressed in either radians or 

degrees and real quantity Im
Re

H j
H j  is called the argument Arg H j  which is the ratio between 

the real part and the imaginary part of H(jω). The operations of addition, subtraction, 
multiplication, and division are applied to complex functions in the same manner as that they are 
to complex numbers. Complex functions are typically expressed in three forms: magnitude-
angular plots (Bode plots), polar charts (Nyquist charts), and magnitude-argument diagrams 
(Nichols diagrams). In the paper, the stability test is performed on the magnitude-angular charts. 
 
2.3. Second Order Denominator Complex Functions 
 
In this section, we shall analyze the frequency response of a typical second order denominator 
complex function on the magnitude-angular charts. A general transfer function of the second-
order denominator complex function is defined as in Equation (3). Assume that all constant 
variables are not equal to zero. If the constant is smaller than zero, the constant is expressed as a 
complex number ( 20 ja a a j a e ).  In the paper, the angular of the constant is not 
written in details.  

2

1( )H s j
as bs c

    (3) 

From Equation (24) in Appendix A.1, the simplified complex function is 

2

2 2 2

4

( )
2 21

2

a
bH j

a a c bj
b b a a

 
   (4) 

 
In order to plot the magnitude-angular charts, the values of magnitude-angular of the complex 
function, which are calculated in Appendix A.1, are summarized on Table 1.   
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In overdamped case, the magnitude of the complex function is so high from the first cut-off 

angular frequency 
2

1
21

2 2cut
b a c b
a b a a

to the second cut-off angular frequency 

2

2
21

2 2cut
b a c b
a b a a

. Therefore, this gain will amplify the high order harmonics from 

ωcut1 to ωcut2 of an input signal which includes many harmonics. 
 

Table 1. Summary of magnitude-angular values of second order denominator complex function. 
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2.4. Damped Oscillation Noise 
 
In this section, we describe the response of a typical second-order denominator complex function 
to a step input or a square wave. Based on the Fourier series expansion of the square wave, 
the waveforms of the pulse wave are expressed in many functions of time with many 
different frequencies as shown in Figure 2.  
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Fig. 2. Square wave: (a) waveform, spectrum, and (b) partial sums of Fourier series. 

The waveform function of a square wave is 
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 In under-damped case, the high-order harmonics of the step signal are significantly reduced 
from the first cut-off angular frequency. Therefore, the rising time and falling time is rather 
low. In this case, the system is absolutely stable.  

 In case of critically damped, the rising time and falling time are longer than the 
underdamped case. Now, the system is marginally stable. The energy propagation is also 
maximal because this condition is equal to the balanced charge-discharge time condition 
[6]. 

 In over-damped case of the complex function, the gain at the cut-off angular frequency will 
amplify the high-order harmonics of the step signal that causes the peaking or ringing. 
Ringing is an unwanted oscillation of a voltage or current. The term of “damped oscillation 

noise” is proposed to define this unwanted oscillation which fades away with time, 
particularly in the step response (the response to a sudden change in input). Damped 
oscillation noise is undesirable because it causes extra current to flow, thereby wasting 
energy and causing extra heating of the components. It can cause unwanted 
electromagnetic radiation to be emitted. Therefore, the system is unstable.  

2.5. Graph Signal Model for General Denominator Complex Functions 
 
In this section, we describe the graph signal model of a typical complex function which is the 
same as graph signal model of a feedback system. A negative-feedback amplifier is an electronic 
amplifier that subtracts a fraction of its output from its input, so that negative feedback opposes 
the original signal. The applied negative feedback can improve its performance (gain stability, 
linearity, frequency response, step response) and reduces sensitivity to parameter variations due 
to manufacturing or environment. Because of these advantages, many amplifiers and control 
systems use negative feedback. However, the denominator complex functions are also expressed 
in graph signal model which is the same as the negative feedback system.  A general denominator 
complex function is rewritten as 

 
( ) ( )( )
( ) 1 ( )

out

in

V s A sH s
V s L s

 
       

(6) 

This form is called the standard form of the denominator complex function. The output signal is 
calculated as

 ( )( ) ( ) ( )out in out
L sV s A s V s V s
A s

     (7) 

 
Figure 3 presents the graph signal model of a general denominator complex function. The 
feedback system is unstable if the closed-loop “gain” goes to infinity, and the circuit can amplify 

its own oscillation. The condition for oscillation is 
 

2 1( ) 1 1 ;j kL s e k Z  (8) 
 
Through the self-loop function, a second-order denominator complex function can be found that 
is stable or not. The concepts of phase margin and gain margin are used to asset the 
characteristics of the loop function at unity gain.   
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Figure 3. Graph signal model of general denominator complex function. 
 

The conventional test of the loop gain (L(s) = ( )( ) j L sL s e ), which is called “Barkhausen’s 

criteria”, is unity gain and -180o of phase in magnitude-phase plots (Bode plots) [7].  
 
2.6. Self-loop Function of Second Order Denominator Complex Functions 
 
In this section, we investigate the characteristics of the self-loop function L(s) on the magnitude-
angular charts. The general transfer function and self-loop function are rewritten as
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  (9) 

 
The magnitude of the self-loop function is calculated as
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The values of magnitude and angular of the self-loop function, which are calculated in Appendix 
A.2, are summarized in Table 2. In this work, the self-loop function is only sketched on the 
magnitude-angular charts.  
 

Table 2. Summary of magnitude-angular values of self-loop function 
 

Self-loop 
function 

( )L j  

22 2 2 2

2 2 2

4
4 2 2( ) ; ( ) arctan

2 2 2
2

a
a a c b a bL j L j

b b a a b a c b a
b a a b

 

Delta ( )  
2

2 4 0
2

c b b ac
a a

 2
2 4 0

2
c b b ac
a a

 2
2 4 0

2
c b b ac
a a

 

5 2
2
b
a
 

( ) 1L  ( ) 76.3oL  ( ) 1L  ( ) 76.3oL  ( ) 1L  ( ) 76.3oL
 

2
b
a

 ( ) 5L  ( ) 63.4oL
 

( ) 5L  ( ) 63.4oL
 

( ) 5L  ( ) 63.4oL
 



Computer Science & Information Technology (CS & IT)                                        181 

b
a

 ( ) 4 2L

 
( ) 45oL  ( ) 4 2L  ( ) 45oL  ( ) 4 2L  ( ) 45oL  

 
2.7. Comparison Measurement 
 
In this section, we describe a mathematical way to derive the self-loop function through the open 
loop function A(s) and the closed loop transfer function. In the conventional ways, such as 
voltage injection, replica measurement is used to measure the loop gain of a feedback loop [8,9]. 
However, from mathematical analysis the self-loop function can be derived by the comparison 
measurement method [10]. In other words, loop gain can be withdrawn by the open loop function 
A(s) and the closed loop transfer function without breaking the feedback loop as shown in Fig. 4. 
From Equation (6), the self-loop function is derived as 
 

( )( ) 1
( )

A sL s
H s

 (11) 

 
This approach includes three steps: (i) measure the open loop function A(s), (ii) measures the 
transfer function H(s), and (iii) derives the self-loop function. 
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Fig. 4. Derivation of self-loop function based on comparison measurement technique. 

 
Compared with the conventional ones, the proposed technique can measure the loop gain of a 
feedback network without injecting a signal into feedback loop.  
 
2.8. Alternating Current Conservation Measurements 
 
In this section, we describe a mathematical way to measure the self-loop function based on the 
alternating current conservation when we inject an alternating signal sources (alternating current 
or voltage sources) and connect the input of the network into the alternating current ground (AC 
ground). In general, the term of “alternating current conservation” is proposed to define this 
technique. The main idea of this method is that the alternating current is conserved. In other 
words, at the output node the incident alternating current is equal to the transmitted alternating 
current. If we inject a alternating current source (or alternating voltage source) at the output node, 
the self-loop function can be derived by ratio of the incident voltage (Vinc ) and the transmitted 
voltage (Vtrans) as show in Figure 5.  
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Figure 5. Derivation of self-loop function based on alternating current conservation. 
 
Compared to measurement results of the alternating current conservation with the conventional 
ones (voltage injection), they are the same. In order to break the feedback loop without disturbing 
the signal termination conditions, and ensure that the loop is opened for ac signals, a balun 
transformer inductor can be used to isolate the signal source with the original network as shown 
in Figure 6. In this case, the values of resistor and inductor are very large. Compared to the 
proposed measurement with the conventional replica measurement, they are the same 
measurement results.  
 

 
 

Figure 6. Derivation of self-loop function based on balun transformer inductor injection method. 
 
Apply the widened superposition principle at Vinc and Vtrans nodes, the self-loop function is 
derived as

  ( ) ( )
( ) ( )
inc inc

trans
trans

V VL s V L s
A s A s V

 (12) 

 
3. TWO-STAGE OPERATIONAL AMPLIFIERS  
 
3.1. Derivation of Transfer Function for Two-Stage Operational Amplifiers 
 
In this section, we investigate the effects of Miller capacitor on a two-stage op amp. The two-
stage operational amplifiers (op amp) are played important roles in active filters [11]. In order to 
define the performance parameters of the second-order low-pass Tow Thomas filter, we first take 
a brief look at the two stage op amp. Figure 7 shows two simplified models of two-stage op amp. 
As we know, frequency compensations based on Miller theory are applied in all most of two-
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stage op amp circuits. Let us investigate the transfer function of a two-stage op amp with and 
without frequency compensation.  
 

 
 

Figure 7. Circuits of two-stage op amp; (a) without and (b) with frequency compensation. 
 
The gain of this topology is limited to the product of the input pair trans-conductance and the 
output impedance. In order to do the stability test, the transfer function at second stage of the 
two-stage op amp is considered. Figure 8 and 9 present the circuit and small signal model of a 
two-stage op amp with and without Miller capacitor.  
 

  
 

Figure 8. Circuit and small signal model of second stage of op amp without Miller capacitor. 
 
In this case, the transfer function and self-loop function of this network, which are calculated in 
Appendix A.3.1, are simplified as 
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In case of without frequency compensation, the transfer function of the second stage of op amp is 
a second-order denominator complex function. Therefore, the op amp may be stable or not. 
However, the two-stage op amp may prove inevitable if the output voltage swing must be 
maximized. Thus, the stability and compensation of this op amp are of interest.  

   
 

Figure 9. Circuit and small signal model of second stage of op amp with Miller capacitor. 
 
The transfer function and the self-loop function of this network, which are calculated in 
Appendix A.3.2, are simplified as 
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The values of given variables are 
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(16) 

 
When the frequency compensation is considered, the transfer function of the second-stage of op 
amp is a fourth-order denominator complex function. It is very difficult to investigate the stable 
regions of this complex function. So, the measurement of the self-loop function is very important 
to do the stability test for the op amp. 
 
3.2. Stability Test for Two-Stage Op Amp 
 
In this section, we do a stability test for the designed two-stage op amp. The op amp circuit was 
simulated using SPICE Spectre simulator in TSMC 0.18um CMOS process. This op amp 
consumes 0.25mW power from a 1.8V voltage supply. All of the circuit parameters are 
summarized in Table 3. Figures 10(a) and 10(b) present the models of the two-stage op amp 
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which can be stable and unstable. The self-loop functions in these models are measured in 
Figures 10(a) and 10(b). In these models, the ideal capacitors and resistors are used.  
 

 
Figure 10. Models of two-stage op amp; (a) stable op amp, (b) unstable op amp; derivation of self-loop 

function: (c) stable case, (d) unstable case. 
Table 3. Device dimension. 

 
Transistor 

Size 
(W/L)1 (W/L)2 (W/L)3 (W/L)4 (W/L)5 (W/L)6 (W/L)7 (W/L)8 
18/0.3 18/0.3 1.6/0.8 1.6/0.8 10/0.5 1.7/0.3 4/0.3 1/0.3 

Capacitor 
Value 

C1 C2 
0.5uF 0.4uF 

Resistance 
Value 

R1 R2 
3 KΩ  10 Ω 

 
SPICE simulation results of the two-stage op amp are shown in Figure 11. Based on the voltage 
injection technique, the self-loop functions of two-stage op amps are measured.  
 
In case of stable op amp, the phase margin is 100 degree at unity gain of the self-loop function. In 
case of unstable op amp, the phase margin is 180 degrees at near the unity gain of the self-loop 
function. Therefore, the damped oscillation noise makes overshoot and undershoot. 
 

(a) (b)  
Figure 11. Transient responses of two-stage op amp and simulation results of self-loop function; (brown) 

stable, (red) unstable. 
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4. SECOND ORDER LOW-PASS TOW THOMAS QUADRATIC FILTERS  
 
4.1. Derivation of Transfer Function and Self-Loop Function 
 
In this section, the transfer function and the self-loop function of a low-pass Tow Thomas 
biquadratic filter are presented. This filter has been widely used because it is simple, versatile, 
and requires few components [12]. The Tow Thomas circuit and measurement of self-loop 
function are shown in Figure 12. The ideal operational amplifiers are used and the effect of the 
Miller’s capacitor is neglected. The transfer function and the self-loop function of this filter, 
which are calculated in Appendix A.4., are derived as 
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Figure 12. Analysis model (a) and derivation of self-loop function (b) for Tow Thomas circuit. 
 
Then, Equation (17) is rewritten as 
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(18) 

 
The stability regions of the Tow Thomas circuit are defined as 
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2
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4.2. SPICE Simulation and Stability Test for Tow Thomas Filter  
 
In this section, SPICE simulations are carried out using the ideal operational amplifier with the 
gain bandwidth (GBW) = 10MHz and DC value of open loop gain (A(s)) = 100000. The Tow 
Thomas circuit in Figure 13 (a) is designed for cut-off frequency f0 = 25kHz taking C1 =1 nF, C2 
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= 100 pF, R1= R4 = R5 = 1kΩ, R2 = 4 kΩ, R3 = 100 kΩ, and R6 = 5 kΩ. Figure 13(b) represents 
the Tow Thomas circuit designed with R2 = 10 kΩ and the same other values as the previous 
circuit. The self-loop functions of two models of the Tow Thomas circuit are shown in Figure 
13(c), (d).  
 
Figure 14(a) represents the SPICE simulation results of the magnitude and phase of the Tow 
Thomas circuit on the frequency domain. On time domain, when the pulse signals go in to these 
models, the transient responses are shown in Figure 14(b). The damped oscillation noise (red) 
occurs in case of the unstable network. The overshoot of unstable feedback system can cause 
extra current to flow, thereby wasting energy and cause extra heating of the components. The 
measurements of the self-loop functions of proposed models are shown in Figure 14(c),(d). In 
theoretical calculation at the half cut-off frequency 12.5 kHz (a half of f0 = 0.5 * 25 kHz = 12.5 
kHz) is 63.4 degrees.  
 
Our measurement results of self-loop functions show that  
 
 In stable case, phase margin is 72 degrees at 12.5 kHz. (> 63.4 degrees at 12.5 kHz )  
 In unstable case, phase margin is 51 degrees at 12.5 kHz. (< 63.4 degrees at 12.5 kHz ) 

 
The simulation results and the values of theoretical calculation are unique. 
 

 
 

Figure 13. Models of Tow Thomas filter: (a) stable circuit, and (b) unstable circuit; derivation of self-loop 
function: (c) stable case, (d) unstable case. 
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Figure 14. Simulation results of Tow Thomas circuit: (a) frequency response, (b) transient response with 
square-wave input; (brown) stable, (red) unstable; frequency response of self-loop function: (c) stable, and 

(d) unstable.  
5. DISCUSSION 
 
The performance of a second order low-pass filter, whether it has single-or multiple-loop control, 
is determined by its loop self-loop function and step input responses. These measurements show 
how good a second-order low-pass filter is. The self-loop function of a low-pass filter is only 
important if it gives some useful information about relative stability or if it helps optimize the 
closed-loop performance. The self-loop function can be directly calculated based on the widened 
superposition principle. The alternating current conservation technique (voltage injection) can 
measure the self-loop function of low-pass filters. Compared to the research results with 
mathematical analysis, the properties of self-loop functions are the same. SPICE simulation 
results are included. Moreover, Nyquist’s theorem shows that the polar plot of self-loop function 
L(s) must not encircle the point (−1, 0) clockwise as s traverses a contour around the critical 

region clockwise in polar chart [13]. However, Nyquist theorem is only used in theoretical 
analysis for feedback systems.   
 
6. CONCLUSIONS 
 
This paper describes the approach to do the stability test for a low-pass Tow Thomas biquadradic 
filter. The circuitry consisting of two integrators in a feedback loop operating as a filter realizing 
a general biquadratic function. The transfer function of Tow Thomas circuit is a second-order 
denominator complex function. The term of “self-loop function” is proposed to define L(s) in a 
general transfer function. In order to show an example of how to define the operating region of a 
Tow Thomas filter, a second-order denominator complex function is analyzed. In overdamped 
case, the filter will amplify the high order harmonics from the first cut-off angular frequency ωcut1 
to the second cut-off angular frequency ωcut2 of a step input. This causes the unwanted noise 
which is called ringing or overshoot. The term of “damped oscillation noise” is proposed to 
define the ringing.  The values of the passive components used in the Tow Thomas filter circuit 
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were chosen directly due to the stable conditions. All of the transfer functions were derived based 
on the widened superposition principle and self-loop functions were measured according to the 
alternating current conservation technique. The obtained results were acquired to simulations 
using SPICE models of the devices, including the model of a two-stage operational amplifier. In 
the paper not only the results of the mathematical model but also the results of simulation of the 
designed circuits are provided, including the stability test. The simulation results and the values 
of theoretical calculation of the self-loop function are unique. 
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APPENDIX 
 
A.1. Second order denominator complex function 
 
From Equation (1), the transfer function is rewritten as

 
2 2 2
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1
1( )
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2 2 2

aH s
as bs c b b c bs s

a a a a

 
(22) 

The simplified form of Equation (22) is
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In the form of angular frequency variable, the transfer function is
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In critically damped case: 
2

2
c b
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, Equation (24) is simplified as 
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Here, the cut-off angular frequency is 
2cut
b
a

. At the cut-off angular frequency, the 

magnitude and phase of the transfer function are  
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In underdamped case: 
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2
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 , then Equation 

(24) is rewritten as 
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Now, the transfer function is rewritten as
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The cut-off angular frequencies are 2

1
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2 2cut
b a c b
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and 2

2
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b a c b
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In overdamped case:  
2

2
c b
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, let us define 
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 , then Equation 

(24) is rewritten as 
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Now, the transfer function is rewritten as
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The cut-off angular frequencies are 2

1
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2 2cut
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and 2

2
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. 

 
A.2. Self-loop function of second order denominator complex function 
 
From Equation (7), the self-loop function is rewritten as

 2 2 24 2 2( )
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 (31) 

In critically damped case: 
2

2
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, the self-loop function is 
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bj
aa a a aL j j j e

b b b b
 (32) 

The cut-off angular frequencies of the self-loop functions are 1 0  and 2
b
a

. At unity gain 

of the self-loop function, we have  
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 (33) 

Solving Equation (33), the angular frequency u  at unity gain is calculated as
 5 2

2u
b
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The relationship between the angular frequency u and the cut-off angular frequency 
2cut
b
a

is 
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A.3. Small signal models of second stage of op amp 
 
A.3.1 Second stage of op amp without Miller’s capacitor 
 

 
 

Figure 15. Circuit of Figure 8(b). 
 

Apply the widened superposition at VA node, we get
 1 1 1 in out

A
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V VV
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 (36) 

Then, apply the widened superposition at Vout node, we get
 1 1 1 1
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 (37) 

The voltage VA is simplified as
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The transfer function of this network is
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Now, the simplified transfer function of this network is 
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A.3.2. Second stage of op amp with Miller capacitor 
 

 
Figure 16. Circuit of Figure 9(b). 

 
Apply the widened superposition at VA node, we get

 1 1 1 1 1 1in
A out

S CGS CGD C CC S CGD C CC

V
V V

R Z Z R Z R Z R Z
 (41) 
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Then, apply the widened superposition at Vout node, we get 
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The transfer function of this network is
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Now, the simplified transfer function of this network is 
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A.4. Low-pass Tow Thomas biquadratic filter 
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Figure 17. Circuit of low-pass Tow Thomas biquaratic filter. 

 
Apply the widened superposition at node VA, we get
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1 2 1 6
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Do the same work at node VB, we get
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Then at node VC, we get
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The transfer function of this filter is derived as
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