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ABSTRACT 

 

This paper presents a new technique for efficient coding of highly dimensional vectors, 

overcoming the typical drawbacks of classical approaches, both, the type of local 

representations and those of distributed codifications. The main advantages and disadvantages 
of these classical approaches are revised and a novel, fully parameterized strategy, is 

introduced to obtain representations of intermediate levels of locality and sparsity, according 

to the necessities of the particular problem to deal with. The proposed method, called 

COLOSSUS (COding with LOgistic Softmax Sparse UnitS) is based on an algorithm that 

permits a smooth transition between both extreme behaviours -local, distributed- via a 

parameter that regulates the sparsity of the representation. The activation function is of the 

logistic type. We propose an appropriate cost function and derive a learning rule which 

happens to be similar to the Oja's Hebbian learning rule. Experiments are reported showing 

the efficiency of the proposed technique. 
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1. INTRODUCTION 

 

One of the properties of simple autoencoders is to produce feature vectors in the hidden layer [1]. 

The type of response usually produced by these models is known as distributed coding, since 
activation levels are distributed more or less uniformly over all units [2, 3]. Distributed coding is 

not the only way to represent feature vectors and, in many cases, it is not the best. Alternatively, 

there is also the so-called local coding, in which, generally, only one unit is activated at a time 
[4]. On the other hand, there is the sparse coding which, in some way, works as an intermediate 

mode between local and distributed coding; since it is characterized by higher activation levels 

for only a portion of the units at a time, while the activation of the others tends to zero. In many 

cases sparse coding is considered the best option to represent feature vectors [5]. This paper 
explores the possibilities of various coding strategies and presents a novel method that has 

several advantages over other techniques commonly used, providing competitive results. 

 

2. BACKGROUND AND MOTIVATION 

 

Local coding is generally used in classification problems. In this case, the active unit indicates to 

which category the input belongs, or estimated probabilities are given for the input belonging to 

each class. For instance, in the activation function known as winner-takes-all [4, 6] a single unit 
takes the value of 1 while the others remain on 0. Alternatively, the softmax function computes a 
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probability distribution, where the unit corresponding to the class of the input is expected to 
assume the highest level of activation [7]. 

  

On the other hand, there are also several methods to produce sparse coding. A relatively simple 

method is the so-called Rectified Linear Units (ReLU), where the activation is determined by the 
rectified function f(x)=max(0, x), used in combination with the inclusion of a penalty term in the 

cost function, for example L1 norm on the activation values over the output, weighted by a 

parameter λ to regulate the level of dispersion. This makes training difficult because learning 
must be done by alternating between these two terms of the new cost function, which also does 

not guarantee good coding during testing [8, 9, 10]. 

 
A more recent variant is the strategy known as top-k sparse coding where, like the ReLUs, the k 

maximum activation values are preserved and all the others are set to 0. This ensures that there 

are always exactly k active units. However, the selection of these values makes implementation 

impractical and generally less efficient. In both cases the use of the max function is because of its 
computing speed. However, the unbounded nature of this function, in combination with training 

methods such as back-propagation, can lead to unstable configurations, such as disproportionate 

weight growth [11]. 
 

Finally, distributed coding is perhaps the most common one, since it is the type of representation 

obtained, for example, in the hidden layers of multi-layer perceptrons [12, 13]. As 
aforementioned, autoencoders produce this type of codification precisely because they are 

formed by layers of perceptrons and their response is the result of activation in their hidden layer. 

Nevertheless, there are also some variants of the simple autoencoder such as the so-called tied, 

where the weights between the encoder and the decoder are shared, or the denoise, where noise is 
added only to the input. These alternative techniques produce different types of encodings while 

using essentially the same architecture. 

 
Each of these strategies shows interesting properties and, at the same time, different limitations, 

especially when looking for an encoding that meets the specific conditions to capture different 

types of features. In the following section an alternative strategy is presented to generate the 

desired type of sparse coding, trying to keep some of the advantages already mentioned, and 
avoiding the main drawbacks described. 

 

3. REGULATED SPARSE REPRESENTATION 

 
Given that sparse coding can be seen as a compromise between local and distributed coding, we 

consider the possibility of a sparse coding strategy whose activation ratio can be chosen so that it 

can behave with any level of sparseness between both extremes. 

 
One type of commonly used activation function that can generate a local coding is softmax. It 

can be used in statistics to represent a distribution of categories, i.e. the distribution of 

probabilities over N possible categories. This type of function is also known as multinomial 
logistic regression, since it is a generalization of the logistic regression (in which case N=2). On 

the other hand, the logistic function is usually used as activation function to generate distributed 

encodings, for example in hidden layers in multi-layer perceptrons. 
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This illustrates the relationship between the two extreme types of encoding (distributed and 
local), even when the type of solution we look for is not exactly a probability distribution. It 

would be preferable some parameter that permits a smooth transition between both extreme 

behaviours. 
 

For this, we will consider a network architecture consisting of an input layer X of dimension M 

and an output layer Y of dimension N, preferably with M>N. Layer X can include an extra unit 
clamped at 1 that represents an activation threshold. The units in Y are expected to take values on 

the interval [0,1]. The connections between X and Y are represented by the matrix W, which is 

initialized at random. The stimulus received by each unit Yj can be expressed as: 

 
 

The exponential of the dot product it produces a higher stimulus for the units whose weights 

resemble, at least partially, certain features present at the input. In order to control which portion 
of the units will have a better chance of being activated, a parameter k will be used. For example, 

for a value of k=1, a behaviour similar to that of the softmax function is expected, with a single 

unit taking a higher level of activation than the others. On the other hand, with a value of 𝑘 =

 𝑁 2⁄  it would be similar to the logistic function, with all units having roughly the same 

possibilities of activation. However, this parameter does not directly indicate how many units 

will be active at a time, and does not even have to be limited to integer values. 

 

The transfer function is a logistic shifted in 1 2⁄ , with a relatively steep β slope, for example with  

 
values between 5 and 10, so that it saturates rapidly when approaching 0 or 1. 

 

 In order to estimate the level of activation of the units, one must first compute the average 

stimulus they get. 
 

In this manner it is possible to estimate a maximum activation level (2z) and from there 

determine a cut-off point p being k steps below this estimated maximum (𝑘 .  2𝑧
2⁄ ). That is, the 

units with a stimulus higher than p will tend to be activated. 
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Finally, for this value to coincide with the inflection point of the transfer function, the stimuli can 

be multiplied by a correction factor c so that c · p = 1/2. 
 

 
Thus the final activation level for unit j is given by: 

 

In the figure 1 the stimulus received by 16 units can be seen along with the estimated value of p 

for k = 4, and its effect on the final activation levels. The most active units are those that receive 
the greater correction, so that the next time a similar pattern appears in the input, the differences 

in the activation levels will be even more emphasized. 

 

 
Figure 1.  Stimulus and activation levels for 16 units with k=4. 
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4. DERIVATION OF THE LEARNING RULE 
 
To perform the learning it is possible to calculate the corrections from an estimate of how much 

can be described about input X from the active units in the output. The simplest form consists of 

a linear approximation XX of the input computed from the output units Yj and the weights W. 
 

 
 

The gradient of the corrections of the weights is determined by a learning rule derived from a 

cost function E that minimizes the sum of quadratic errors from the difference between the 
original input and the calculated approximation. In the expression of XX the terms Y and W were 

explicitly included to clearly specify their origin. In the same way, X and W will also be 

explicitly included in the expression of Y. In addition, as the cost is calculated over the whole 
dataset, a superscript indicates the corresponding instance, and a subscript indicates the  

 
corresponding variable. 

 

The resulting learning rule is identical to the Hebbian learning rule originally proposed by Oja 
[14]. This rule, used with linear activation units, is able to learn a transformation onto a space 

equivalent to that found by Principal Component Analysis (PCA). That is to say, even changing 

the way in which activation is obtained in the output layer, the corrections in the weights are 

computed in the same way. 
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This has special interest since sparse coding has a disadvantage when applied to an architecture 
for dimension reduction such as that of a typical autoencoder. It is generally estimated that, for a 

sparse coding to be effective, only 12% to 25% of the units must be activated at a time. For this 

to be achieved, an overcomplete coding is usually used, that is, the case where N>M [15]. For the 

following tests an overcomplete architecture will be used, trying to capture the characteristics 
that best represent the input data [16]. 

 

5. EXPERIMENTAL RESULTS 
 
The tests performed consisted of comparing two of the most commonly used methods to produce 

a dispersed coding, the rectified linear units plus a penalty term in the cost function (ReLU+λL1), 

and the selection of the largest k values (SparseTopK), with the technique proposed in this work, 

COding with Logistic Softmax Sparse UnitS (COLOSSUS). 
  

All models were trained for an equal and fixed number of epochs. The results shown were 

obtained by averaging several independent runs. Tests for all methods were performed by 
varying the number of output units (N), which is the number of features, and the proportion of 

simultaneous active units (p) expected. The data set used consisted of 6×6 pixel patches, with 

values bounded between 0 and 1, from the MNIST set. The results analyzed are the convergence 
speed, estimated from the training error, the test error, from the MSE, and the coding sparsity, 

from the activation level obtained by the L1 norm. 

 
Table 1.  MSE loss for training data after 20 epochs. 

 

Method N=48 p=12.5% N=64 p=12.5% N=72 p=12.5% 

ReLU+λL1 11.118 10.217 9.981 

SparseTopK 29.754 19.698 16.935 

COLOSSUS 6.903 4.564 4.012 
 

 N=48 p=25% N=64 p=25% N=72 p=25% 

ReLU+λL1 10.787 9.833 9.210 

SparseTopK 9.936 7.152 6.161 

COLOSSUS 5.336 3.987 3.831 
 

 N=48 p=50% N=64 p=50% N=72 p=50% 

ReLU+λL1 9.253 8.580 8.114 

SparseTopK 4.346 3.426 3.101 

COLOSSUS 4.478 3.721 3.387 

 
Table 1 shows the training loss taken at epoch 20, for 60,000 data instances, using the Mean 

Square Error (MSE). This measure gives an idea of how quickly different methods can converge 

to a good solution under different conditions. In the case of a higher level of dispersion, the 
SparseTopK method seems to converge marginally faster, but the proposed method offers 

consistently good results in any situation. 

 
Table 2.  MSE loss for testing data after training. 

 

Method N=48 p=12.5% N=64 p=12.5% N=72 p=12.5% 

ReLU+λL1 0.00136 0.00131 0.00123 

SparseTopK 0.00804 0.00516 0.00458 

COLOSSUS 0.00181 0.00122 0.00111 
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 N=48 p=25% N=64 p=25% N=72 p=25% 

ReLU+λL1 0.00138 0.00123 0.00120 

SparseTopK 0.00263 0.00188 0.00162 

COLOSSUS 0.00144 0.00106 0.00105 

    

 N=48 p=50% N=64 p=50% N=72 p=50% 

ReLU+λL1 0.00123 0.00114 0.00107 

SparseTopK 0.00117 0.00092 0.00083 

COLOSSUS 0.00121 0.00102 0.00091 

 

Table 2 compares the evaluation errors, also calculated using MSE, with fully trained models, 
over 10,000 instances never seen during training. This is the measure that is usually shown to 

compare efficacy, but as it can be seen, except for small differences, the performance is similar in 

all cases. 
 

Table 3.  Coding sparsity measured as L1 norm. 

The expected active units are denoted by k. 

 

Method N=48 k=6 N=64 k=8 N=72 k=9 

ReLU+λL1 6.845 6.130 6.142 

SparseTopK 14.347 16.619 17.290 

COLOSSUS 11.516 14.764 16.605 

 

 N=48 k=12 N=64 k=16 N=72 k=18 

ReLU+λL1 7.510 6.777 6.459 

SparseTopK 19.928 24.028 26.045 

COLOSSUS 14.256 18.618 21.705 

 

 N=48 k=24 N=64 k=32 N=72 k=36 

ReLU+λL1 9.593 8.802 8.142 

SparseTopK 39.559 45.221 45.808 

COLOSSUS 23.907 32.037 35.882 

 

Finally, in Table 3 we try to show how sparse the coding is. For this purpose, the L1 norm over 

the activation at the output of the models is used as a measure. This value alone can be difficult 

to interpret, so instead of specifying the proportion of active units (p), the amount of active units 
(k) to which it is targeted is included. As, in the first case, under more restricted conditions ReLU 

units offer better results, but the operation of the proposed method is consistently better in a 

greater variety of cases. 

 

6. CONCLUSIONS 
 

Methods such as ReLU take advantage of the efficiency of max function calculation, but the 

addition of the L1 penalty in the cost function makes training more difficult and the results are 
not always reliable. The selection of a portion of maximum activation values requires a more 

complicated implementation where all the efficiency gained by using the easily computable max 

function is lost. The technique proposed in this work not only avoids these problems, since it can 

be trained with a very simple learning rule, and can be effectively calculated as the logistics of a 
softmax multiplied by a constant, but also offers at least equivalent results and in many cases 

better, than the other techniques, both in convergence speed, feature extraction, and coding 

sparsity. 
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