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ABSTRACT 
 
One of the significant challenges of Artificial Intelligence (AI) and Machine learning models is 

to preserve data privacy and to ensure data security. Addressing this problem lead to the 

application of Federated Learning (FL) mechanism towards preserving data privacy. 

Preserving user privacy in the European Union (EU) has to abide by the General Data 

Protection Regulation (GDPR). Therefore, exploring the machine learning models for 

preserving data privacy has to take into consideration of GDPR. In this paper, we present in 

detail understanding of Federated Machine Learning, various federated architectures along 

with different privacy-preserving mechanisms. The main goal of this  survey work is to highlight 
the existing privacy techniques and also propose applications of Federated Learning in 

Industries. Finally, we also depict how Federated Learning is an emerging area of future 

research that would bring a new era in AI and Machine learning.   
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1. INTRODUCTION 
 

Due to the emergence of AI and Machine learning over the past few decades, there has been 

significant progress in various domains like Robotics, Computer Vision and Gaming 
Applications. One of the major concerns is to preserve data privacy. Preserving the data privacy 

is of utmost importance in these days as the data is created in abundance every day. Data leaks on 

publicly available data and the private data of the companies lead to alarming increase towards 
data privacy. Utilizing the data which is isolated as data islands by maintaining specific privacy 

standards is very crucial for better data security. Misusing the personal data of the user may cause 

overhead to the user forcing him not to enclose his personal details. Even in the companies and 

industries, it is essential to protect data from data leaks as it would lead to grave consequences for 
the company. The data leaks, in turn, would affect the financial and commercial aspects of the 

company on a large scale leading to huge losses. One of the well-known standards for ensuring 

data privacy is the General Data Protection Regulation (GDPR) [1, 2] in the European Union. 
The GDPR was proposed in 2018 to ensure data privacy of every user, which in turn motivates to 

use AI and machine learning frameworks adapting to this standard while using data. 

 
Many machine learning and AI models need sufficient data for training and to produce high-

quality models. Although the models need to use user data if they need to build good prediction 

models for the user, there should be a way to ensure user privacy. Few organizations need to 
exchange data for working collaboratively for better performance of the companies, in turn, 
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ensuring the data privacy and confidentiality. In edge devices where users interact with different 
applications like in mobile phones, there is an ample amount of private data related to the user 

which is being exposed every day. To solve the problem of using data to train models, ensuring 

data privacy, we have a new approach known as Federated Learning (FL) [3]. The term Federated 

Learning (FL) was introduced by McMahan et al. [4] in 2016. Federated Learning is a 
collaborative Machine learning technique where the machine learning models are trained on edge 

devices (like mobiles) instead of a central server to ensure data privacy. The data is not 

exchanged between the devices. However, only the model updates (gradient updates) are sent to 
the server to build a global model using the aggregated gradients from all the computing edge 

devices. Thus, the server has no information about the raw data that the edge devices have been 

trained on, maximizing the data privacy of the users. Federated Learning has been evolving over 
the past few years due to the increasing demand for data privacy and security. It mitigates the risk 

of data privacy in comparison to centralized machine learning approaches. It also reduces the cost 

involved in traditional and centralized machine learning approaches.  

 
The rest of the survey work is organized as follows: Section 2 details various related works in the 

area of Federated Learning. Section 3 details about Federated Learning, its working principle, 
training process, categorization of Federated Learning architectures along with various 

implementation frameworks, and Section 4 elaborates more about the privacy- preserving 

mechanisms in FL. Section 5 describes the application of Federated Learning in Industries along 

with its drawbacks, and in Section 6, we discuss in detail about the privacy- preserving aspect of 
Federated Learning. Section 7 concludes the survey work and suggests a few possible directions 

for the future area of research. 

 

2. RELATED LITERATURE  
 

As the data is vastly distributed over many devices, it is crucial for machine learning and AI 

models to access the data reliably for building efficient models. The goal of many research 

communities in the fields of Machine Learning, Artificial Intelligence, Cryptography and 
Distributed Systems has been to learn from the massively distributed data ensuring data security 

and privacy. Federated Learning is the recent trends for training the machine learning models in a 

decentralized way without having any information about the raw data except for the updated 
gradients from the client models. Federated Learning focusses on the edge and mobile computing 

[4, 5] devices and then extended its application to large scale production systems. Now industries 

are extensively using Federated Learning as part of their production systems for better product 

and profit generation on a large scale. 

 
The data scattered everywhere as data islands need to be integrated on a large scale for useful 
application of AI models. It is challenging to integrate the data from these islands as it gives a 

cost overhead. Federated Learning has been the saviour for reducing the cost for data integration 

through execution of AI models on the data available on edge computing devices. Federated 

Learning is being used by Google in its Gboard mobile keyboard [6, 7, 8, 9, 10]. They also 
implemented a few of the features using Federated Learning in Android Messages [11] and Pixel 

phones [12]. Even Apple is using Federated Learning in iOS 13 [13], for various applications like 

the vocal classifier for “Hey Siri” [14] and QuickType keyboard. Other applications include 
Federated Learning for medical research [15] and the detection of hot words [16]. 

 
Currently, much of the research work is being focussed in FL, due to the privacy-preserving 
aspect of Federated Learning. Clifton and Vaidya proposed secure k-means [17], secure 

association mining rules [18], and a naive Bayes classifier [19] for vertically partitioned data. The 

authors of [20] implemented a privacy-preserving protocol using homomorphic encryption for 
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applying linear regression on horizontally partitioned data. The authors of [21, 22] have proposed 
a linear regression approach for vertically partitioned data. FL directly solved the linear 

regression problem. The authors of [23] have approached the problem with Stochastic Gradient 

Descent (SGD) and also proposed privacy-preserving protocols for neural networks and logistic 

regression. The authors of [24] proposed a novel algorithm for association rules on horizontally 
partitioned data. Secure Support Vector Machines (SVM) algorithms have been implemented for 

horizontally partitioned data [25] and vertically partitioned data [26]. The authors of [27] 

proposed various secure protocols for multi-party linear regression and classification. The authors 
of [28] proposed efficient, secure multi-party gradient descent methods. All these works used 

Secure Multiparty Computation (SMC) [29, 30] for preserving privacy and ensuring security. 
The authors of [31] proposed a secure logistic regression protocol based on homomorphic 
encryption. Shokri and Shmatikov [32] proposed training of neural networks on horizontally 

partitioned data with exchanges of updated parameters. The authors of [33] used homomorphic 

encryption to enhance the security of the entire system and preserve the privacy of gradients. 

With recent trends in machine learning and AI, privacy-preserving neural networks are also one 
of the research interest [34, 35, 36, 37]. Therefore, building a decentralized system with 

collaborative machine learning models and ensuring data privacy is one of the crucial aspects of 

many industries.  

 

3. FEDERATED MACHINE LEARNING 
 

The term Federated Learning refers to a decentralized machine learning setting where all the 
participating clients train a shared global model without exposing the data to the central server. 

Only the model updates from each participating device are sent to the server. The model updates 

are then aggregated based on Federated Averaging mechanism [5] to obtain an efficient global 
model. Therefore, it is a collaborative machine learning where all the clients contribute the model 

updates to achieve a common learning objective. FL allows for smarter models, lower latency, 

and less power consumption, all while ensuring privacy. It is also used in distributed architectures 

where machine learning needs to be integrated into them.  
 

3.1. Definitions 
 

To understand the term Federated Learning, it is essential to know the terms distributed learning 

[38, 39], centralized and decentralized Federated Learning [5, 40, 41]. 

 
 Distributed Machine Learning: In distributed machine learning, we train a model on a 

large dataset. Here, the clients are computing nodes in a single cluster or datacenter. All 
the clients can access any part of the dataset. The data is distributed onto multiple 

computing nodes in a datacentre. Distributed learning aims at parallelization of 

computing power through the distribution of data or model. 
 Centralized Federated Learning: It has a central server which is used to orchestrate the 

entire training process and coordinate all the participating nodes during the learning 

process. The central server is responsible for the selection of nodes initially before the 

training starts and the aggregation of the received model updates. The server may 
become a bottleneck here as all the selected nodes have to send updates to a single entity. 

 Fully Decentralized/ Peer-to-Peer Learning: It has a peer-to-peer topology [42], where 

every participating client can talk to the other participating clients. It has a possibly 

dynamic connectivity graph structure without any central orchestration. 
 Decentralized Federated Learning: In this Federated Learning setting, the computing 

nodes can coordinate between themselves to compute the global model. As the model 



238 Computer Science & Information Technology (CS & IT) 

updates are exchanged only between interconnected nodes without the orchestration of 
the central server, this setting prevents single-point failures. 

 

3.2. Federated Learning Life Cycle 
 

Federated Learning ensures secure collaborative machine learning with the decentralization of 

data. It uses hub-and-spoke topology, with the hub representing a coordinating service provider 
and the spokes connecting to clients. Despite preserving privacy, it has many challenges like if 

the server fails, then the global update of the model would be difficult. For better performance of 

the FL systems, the federated system must be resilient to failures.  

 
The clients participating in the FL process can be multiple clients or multiple organizations. 

Based on the participating client, we have two Federated Learning settings, namely Cross-device 
and Cross-silo Federated Learning [43]. In Cross-device Federated Learning, multiple clients like 

mobile devices are stateless and highly unreliable. Only a few of the clients would be available at 

any point in time, thus making the computation and communication difficult. In Cross-silo 

Federated Learning, the clients are different organizations (medical or financial domains) 
participate in the FL process. This setting is typically limited to a hundred organizations while 

Cross-device setting can have an extensively large number of clients. In both Cross-device and 

Cross-silo setting, the data is decentralized and local to each client. The server acts as a central 
authority for organizing the training process, and it never sees the raw data of the participating 

clients. In this paper, we mainly consider the cross-device federated setting for explaining the 

Federated Learning life cycle and the training process. 
 

 
 

Figure 1. Life cycle of a Federated Learning (FL) model. 

 

Initially, in the FL process, a model engineer develops a model for a particular application. In 

natural language processing, a domain expert may develop a prediction model for next word 
prediction to use in a virtual keyboard application. Figure 1 depicts the primary components and 

actors involved in the FL process. A typical workflow of the FL model can be realized, as shown 

in Figure 2. The life cycle of a Federated Learning (FL) model consists of six stages, as shown in 

Figure 2. 
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Figure 2. Stages in Life cycle of a Federated Learning (FL) model. 

 

1. Problem identification: In this stage, the model engineer first identifies a problem that 

needs to be solved with Federated Learning. 
 

2. Client instrumentation: The clients store the necessary training data locally. In a few 

cases, additional data or metadata might need to be maintained; for example, the labels for a 
supervised learning task. 

 

3. Simulation prototyping: The model architectures are prototyped by the model engineer and 
then test’s learning hyperparameters in a Federated Learning simulation using a proxy 

dataset. 

 

4. Federated model training: Usually, all the federated training tasks are initiated to train 
different variations of the model. We could also use different optimization hyperparameters 

for further training. 

 
5. Federated model evaluation: Once the Federated Learning tasks have been trained 

sufficiently, the models are then analyzed, and the best candidates are selected. The analysis 

depends on various metrics computed on standard datasets in the datacenter. Federated 
evaluation is carried out on local client data wherein the models are pushed to held-out 

clients. 

 

6. Deployment: Once a good model is selected, it then goes through a standard model launch 
process, including live A/B testing, manual quality assurance and a staged rollout. The 

application owner sets the specific launch process for the selected model and is independent 

of how the model is trained. 

 

3.3. Federated Learning Training Process 
 
Federated Learning decouples the ability to do machine learning from the need to store the data 

in the central server or cloud. We could make use of local models to make predictions on mobile 

devices by bringing model training to the device as well. From Figure 3, the device first 
downloads the current model, improves it by learning from data on the phone, and then 

summarizes the changes as a small, focused update. Only this focused update is sent to the server 

through encrypted communication. Then immediately averaged with other user updates to 

improve the shared global model. Since all the training data remains on the device, no individual 
updates are stored in the server.  
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Figure 3. Process of Federated Learning (FL) model training.  

(A) represents many users' updates are aggregated  

(B) to form a consensus change (C) to the shared model, after which the procedure is repeated. [3] 

 

 
 

Figure 4. Stages in Federated Learning (FL) training process. 

 
Federated Learning (FL) training process consists of five steps, as shown in Figure 4. A central 

server orchestrates the training process in FL setting, by iterative execution of the five steps 

shown in Figure 4 until the training process is stopped. 

 
1. Client selection: First, the server samples from a set of participating clients meeting 

eligibility requirements. Mobile phones would only check in to the server if they are 
plugged in, and idle, to avoid impact on the device user. 

 

2. Broadcast: In this step, the selected clients download the current model weights and a 
training program from the central server. For example, a training program can be a 

TensorFlow graph [44].  

 
3. Client computation: In this step, each selected device locally computes a focused update to 

the model by executing the training program, like running SGD on the local data as in 

Federated Averaging algorithm. 

 
4. Aggregation: The central server collects an aggregate of the device focused updates for 

efficiency. This step also includes other techniques like secure aggregation for added 

privacy, noise addition, a lossy compression of aggregates for communication efficiency and 
update clipping for differential privacy. 

 

5. Model update: Finally, in this step, the server locally updates the shared model based on 
the aggregated update computed from all the participating clients in the current round. For 
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better performance of the central global machine learning model, FL relies on an iterative 
process of model updates. 

 

3.4. Federated Learning Categorization 
 

The data used for training the Federated Learning (FL) is non-identical as the data is on multiple 

devices. Based on how the data is distributed across multiple participating devices in the 
Federated Learning (FL) process, we classify FL into three different categories as Horizontal FL, 

Vertical FL and Federated Transfer Learning. The central authority to execute the final global 

update of the model based on the model updates from the clients plays a vital role in FL. Based 

on whether there is a central authority or not for coordination, FL can be classified as Centralized 
FL and Decentralized FL as already discussed. The clients participating in the FL process may be 

mobile devices or can be organizations. Few organizations need to collaborate to implement 

effective practical solutions which are profitable to the organizations involving as a whole. 
Therefore, we can classify FL into Cross-silo and Cross-device Federated Learning when the 

participating client is organization and mobile device, respectively. We will discuss in detail 

about FL categorization based on data partitioning. 
 

Horizontal Federated Learning (HFL): In a Horizontal Federated Learning (HFL) system, only 

the central server can compromise the privacy of data participants. Horizontal Federated Learning 

(HFL), also known as sample-based Federated Learning (FL), is used in the scenarios in which 
datasets share the same feature space but different space in samples, as shown in Figure 5. 
 

 
 

Figure 5.  Horizontal Federated Learning (HFL) data partitioning. 

 

For example, two regional banks that differ in user groups have a small intersection of users. 

However, as the business is very similar, they have the same feature spaces. The authors of [45] 
proposed a collaboratively deep-learning setting wherein participants train independently and 

share only subsets of parameter updates. Google proposed a Horizontal Federated Learning 

(HFL) solution for Android phone model updates [46]. In this framework, a single user using an 

Android phone updates the model parameters locally and then uploads the parameters to the 
Android cloud. Thus, jointly training the centralized model together with other data owners. A 

secure aggregation was used to protect the privacy of aggregated user updates, as shown in [47]. 

The authors of [48] use homomorphic encryption for model parameter aggregation to provide 
security. 
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Figure 6.  Horizontal Federated Learning (HFL) architecture. 
 

Sample architecture for a horizontal Federated Learning (FL) system is shown in Figure 6. In this 

system, k participants with the same data structure collaboratively learn a machine-learning 
model using a parameter or cloud server. It assumes that there is no leakage of information from 

any participants to the server [48]. The training process of the HFL system usually contains the 

following four steps. 

 
• Step 1: Initially, all the participants locally compute training gradients and then mask selected    

gradients with differential privacy [49], encryption [48], or secret sharing [47] techniques. Later 
these masked results are sent to the server. 
• Step 2: The server then performs secure aggregation without learning any information about 

any participating client. 
• Step 3: The server sends the aggregated results to all the participants. 
• Step 4: Participants update their respective model with the decrypted gradients. 
All the steps go through iterations until the loss function converges, thus completing the entire 

training process. 
 

Vertical Federated Learning (VFL): Vertical Federated Learning (VFL) or feature-based 

Federated Learning (FL) is applicable to the cases in which two datasets share the same sample 
ID space but differ in feature space. For example, two different companies, like the bank and the 

other is an e-commerce company in the same city. Their user sets contain most of the residents of 

the area, and the intersection of their user space is enormous. However, their feature spaces are 

very different. Vertically Federated Learning (VFL) aggregates these different features and 
computes the gradients and training loss in a privacy-preserving manner. It finally builds a model 

with data from both parties collaboratively. At the end of the learning phase, each party holds 

only those model parameters associated with its features. Finally, at inference time, the two 
parties need to collaborate to generate output. 
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Figure 7.  Vertical Federated Learning (VFL) data partitioning. 

 
Many privacy-preserving machine learning algorithms have been proposed for vertically 

partitioned data, including association rule mining [50], cooperative statistical analysis [51], 
secure linear regression [52, 53], gradient descent [54] and classification [55]. Two companies A 

and B would like to train a machine-learning model jointly, and their business systems each have 

their data. For data privacy and security reasons, companies A and B cannot directly exchange 
data. During the training process, a third-party collaborator C is involved to ensure the privacy 

and confidentiality of the data. This Federated Learning (FL) system consists of two parts, as 

shown in Figure 8. 

 
Part 1. Encrypted entity alignment: As the user groups of the two companies, A and B are 

different; the system uses the encryption-based user ID alignment techniques [56, 57] to confirm 
the standard users of both parties without A and B exposing their data. During the entity 

alignment, the system does not expose users that do not overlap with each other. 

 
Part 2. Encrypted model training: Once the common entities are determined, we can use these 

common entities’ data to train the machine-learning model. 
 
The training process of VFL can be divided into the following four steps, as shown in Figure 8. 

 
•  Step 1: Initially, Collaborator C creates encryption pairs and sends a public key to A and B. 
• Step 2: Both A and B encrypt and exchange the intermediate results for gradient and loss 

calculations. 
• Step 3: Companies A and B compute the encrypted gradients and add a mask, respectively. 
Company B also computes an encrypted loss. Both A and B send encrypted values to C. 
• Step 4: C decrypts and send the decrypted gradients and loss back to A and B. Then A and B 

unmask the gradients and update the model parameters accordingly. 
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Figure 8.  Vertical Federated Learning (VFL) architecture. 

 
Federated Transfer Learning (FTL): Federated transfer learning is used in scenarios in which 
two datasets differ in both sample and also in feature space. FTL is a vital extension to the 

existing Federated Learning (FL) systems as it deals with the problems outside the scope of 

existing Federated Learning (FL) algorithms. For example, if one is a bank located in Russia and 

the other is an e-commerce company located in Ireland. A small portion of the feature space 
overlaps from both parties due to geographical restrictions. The architecture of VFL works only 

for the overlapping dataset. To extend it to the entire sample space, we introduce transfer 

learning. Typically, transfer learning involves learning a common representation between the 
features of parties A and B. It minimizes the errors in predicting the labels for the target-domain. 

At inference time, it still requires both parties to compute the prediction results. Thus, transfer-

learning [58] techniques can be applied to provide solutions for the entire sample and feature 
space under a federated setting. Generally, a common representation is learnt between the two 

feature spaces using limited common sample sets and then later applied to obtain predictions for 

only one-side feature samples. 

 

 
 

Figure 9.   Federated Transfer Learning (FTL) data partitioning. 
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3.5. Federated Learning Implementation Frameworks 
 

Federated Learning is difficult to implement and deploy in real life due to the heterogeneity in 

edge computing devices. These devices may have different programming languages, frameworks, 
and hardware configurations. There are many federated frameworks available to simulate FL 

algorithms. Few of the available tools and frameworks are TensorFlow Federated [59], PySyft 

[60], Federated AI Technology Enabler [61], PaddleFL [62], Leaf [63] and Clara Training 
Framework [64]. TensorFlow Federated (TFF) introduced by Google is an extensible, powerful 

framework for implementing Federated Learning (FL) research by simulating Federated Learning 

(FL) computations on realistic proxy datasets. It has Federated Core (FC) API is used for 

expressing new algorithms, and Federated Learning (FL) API can be used for implemented 
federated models. PySyft is another open-source library built for Federate Learning (FL) and 

preserving privacy. It was developed by the OpenMined community which combines these 

different tools for building secure and private machine learning models. It is built as an extension 
of well known DL libraries, such as PyTorch, Keras and Tensorflow. Using these popular deep 

learning frameworks, we can immediately begin to build privacy-preserving applications without 

having to learn a new Deep Learning framework. Thus, Federated Learning (FL) and other tools 
could be easily adopted in any application domain for preserving privacy. Therefore, these 

frameworks are designed to simulate FL in a server environment. However, they do not allow 

experimentation in a distributed mobile setting for a large number of clients. Another framework 

Leaf includes a set of open-source federated datasets, an evaluation framework, and a set of 
reference implementations using for practical federated environments. 

 

4. PRIVACY MECHANISMS IN FEDERATED LEARNING 
 
Privacy is one of the crucial properties of Federated Learning (FL). Therefore, it requires analysis 

and security models to provide privacy guarantees. In this section, we briefly review various 

privacy techniques for Federated Learning (FL).  
 
Secure Multiparty Computation (SMC): SMC security models involve multiple parties and 

provide security proof in a well-defined simulation framework to guarantee that each party knows 

nothing except its input and output. Here, the parties have zero knowledge about other parties. 
Zero-knowledge is highly desirable, but this desired property usually requires highly complicated 

computation protocols and may not be achieved efficiently. In certain exceptional scenarios, 

disclosure of partial knowledge can be considered acceptable if security guarantees are provided. 

Therefore, it is possible to build a security model with SMC under lower security requirements in 
exchange for efficiency. 

 
Differential Privacy: Differential Privacy involves adding noise to the data, or using 

generalisation methods to hide certain sensitive attributes until the third party cannot distinguish 

the individual, thereby making the data impossible to be restored to protect user privacy. The DP 

method is lossy as machine learning models are built after noise is injected, which can reduce 
much performance in prediction accuracy. 

 

 Local Differential Privacy: Differential privacy can be achieved without requiring trust 
in a centralised server by having each client apply a differentially private transformation 

to their data before sharing it with the server. 
 Distributed Differential Privacy: Here, the clients first compute and encode a minimal, 

focused report, and then send the encoded reports to a secure computation function, 

whose output is available to the central server. The output already satisfies differential 
privacy requirements by the time the central server can inspect it. The encoding is done 
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to help maintain privacy on the clients. This privacy-preserving technique can be 
implemented via secure aggregations and secure shuffling. 

 Hybrid Differential Privacy: This combines multiple trust models by partitioning users 

by their trust model preferences. There are two options before the advent of HDP like 

most-trusting and the least trusting model. 
 
Homomorphic Encryption (HE): Homomorphic encryption is adopted to protect user data 

privacy through an exchange of parameters under the encryption mechanism. Unlike differential 

privacy protection, the data and the model itself are not transmitted, nor can they be guessed by 
the other party’s data. Homomorphic encryption (HE) schemes allow certain mathematical 

operations to be performed directly on ciphertexts, without any prior decryption. Homomorphic 

encryption is a powerful tool for enabling Multiparty Computation (MPC) by enabling a 
participant to compute functions on values, keeping the values hidden. Different variations of HE 

exist, ranging from general Fully Homomorphic Encryption (FHE) [65] to the more efficient 

levelled variants [66, 67, 68, 69]. There are also partially homomorphic schemes allowing either 

homomorphic multiplication or addition. 

 
Secure Aggregations: Secure aggregation is functionality for n number of clients and a server. It 
enables each client to submit a tensor value such that the server learns just an aggregate function 

of the clients’ values, generally the sum. The server learns just an unordered collection of the 

messages from all clients. The server cannot link any message to its sender beyond the 

information in the message itself. There are many research literature exploring secure aggregation 
in both the single-server setting using threshold homomorphic encryption [70, 71, 72], pairwise 

additive masking [73, 74, 75], and generic secure multi-party computation [76]. It is also used in 

the multiple non-colluding servers setting [77, 78, 79]. Secure aggregation can also be 
implemented using trusted execution environments as in [80]. 

 
Secure Shuffling: Secure shuffling can be considered as an instance of Secure Aggregation 
where the values are multiset-singletons, and the aggregation operation is multiset-sum. It is 

mostly the case that very different implementations provide the best performance for secure 

shuffling and secure aggregation. Secure shufflers have been studied in the context of secure 
multi-party computation [81, 82] and also in trusted computing [83]. 

 
SecureBoost: SecureBoost is a novel gradient-tree boosting algorithm in the setting of Federated 
Learning (FL). It consists of two main steps. First, it aligns the data under the privacy constraint. 

Second, it collaboratively learns a shared gradient-tree boosting model while keeping all the 

training data secure over multiple private parties. SecureBoost is beneficial as it provides the 
same level of accuracy in comparison to non-privacy-preserving approach while at the same time, 

reveal zero information of each private data provider. The SecureBoost framework is as accurate 

as other non-federated gradient tree-boosting algorithms that bring the data into one place and is 

theoretically proven. 

 
Private Information Retrieval (PIR): PIR is functionality for one client and one server. It 
enables the client to download an entry from a server-hosted database such that the server gains 

no information about which entry the client has requested. MPC approaches to PIR can be put 

into two main categories: computational PIR (cPIR), in which a single party can execute the 

entire server-side of the protocol [84], and information theoretic PIR (itPIR), in which multiple 
non-colluding parties are required to execute the server-side of the protocol [85]. Computational 

PIR has a very high computational cost [86], while the non-colluding parties setting has been 

complex to achieve in industrial scenarios. Recently, the results on PIR have shown dramatic 
reductions in the computational cost through the use of lattice-based cryptosystems [87, 88, 89]. 
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It shows how to construct communication-efficient PIR on a single-server by leveraging side 
information available at the user [90]. Research works propose to leverage local client state to 

speed up PIR. Patel et al. [91] showed a practical hybrid PIR scheme on a single server was 

implemented and validated. Corrigan-Gibbs and Kogan [92] present protocols for PIR with 

sublinear online time by working in an offline/online model. During an offline phase, clients 
fetch information from the server(s) independent on the future query to be executed. 

 

5. APPLICATIONS IN INDUSTRIES AND LIMITATIONS 
 
Federated Learning (FL) is not only a technology standard but also a business model for many 

industries. When we consider the effects of big data, the first thing is to aggregate the data, 

compute the models through a remote processor, and then download the results for further use. In 

such cases, cloud computing comes into demand. With the increasing importance for data privacy 
and data security and a high relationship between a company’s profits and its data, the cloud 

computing model has been challenged. However, the business model of Federated Learning (FL) 

has provided a new paradigm for many applications of big data. When the isolated data by each 
institution fails to produce an ideal model, the mechanism of Federated Learning (FL) makes it 

possible for many institutions and enterprises to share a united global model without the 

exchange of data. 

 
However, Federated Learning (FL) could make equitable rules for profits allocation using 

blockchain techniques. We believe that the establishment of the business model for data alliance 
and the technical mechanism for Federated Learning (FL) should be implemented together. 

Various standards for Federated Learning (FL) in many fields need to be put into use for the 

betterment of industries and enterprises. Industries could use Federated Learning mechanism for 
the resilience management where the computing or manufacturing devices are likely to fail due to 

the quality fails or manufacturing defects at later stages. It could affect the profits of industries on 

a large scale, especially in the pandemic situations wherein there should be manual intervention 

for the devices for parameter settings. It could be an area of application for Federated mechanism 
where the devices run efficiently even in case of failures and thus optimizing the profits on a 

global scale. Cross-silo Federated Learning applications can be seen in various domains including 

finance risk prediction for reinsurance [93], electronic health records mining [94], 
pharmaceuticals discovery [95], medical data segmentation [96], and smart manufacturing [97]. 

Commercial data platforms incorporating Federated Learning (FL) are in progress in various 

technology companies and smaller start-up companies. 

 
Even though there are significant practical privacy improvements of Federated Learning over 

centralizing all the training data, there is still no formal guarantee of privacy in this baseline 
Federated Learning (FL) model. The significant challenges of the Federated Learning (FL) 

setting are non-Independent and Identically Distributed (IID) data, unbalanced, massively 

distributed, and limited communication. Each user generates quite different data, and thus the 

data is non-IID data. Due to the massive number of participating clients in the federated process, 
some of the users produce significantly more data than others, making it unbalanced. It is 

massively distributed, and therefore there are more mobile device owners than the average 

training samples on each device. Due to unstable, unreliable and asymmetric mobile network 
connections between the clients and the server, there is limited communication. 

 

6. DISCUSSION 
 

Federated Learning (FL) embodies basic principles of focused data collection and minimization 
and can reduce many of the systemic privacy risks. Although there are many existing privacy-
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preserving techniques in a Federated Learning (FL) setting, they still do not offer much support 
to complete privacy of the system. An actively malicious adversary controlling the central server 

could lead to a large number of fake client devices as a “Sybil attack” [98]. Adversarial attacks 

include data poisoning [99], model evasion attacks [99, 100] and model update poisoning [101, 

102], which degrade the model performance. Hitaj et al. [103] devised an attack based on GANs, 
which shows that record-level differential privacy is generally ineffective in Federated Learning 

(FL) systems. Balcan et al. [104] introduced a concept to add statistical noise only to a subset of 

data, but the resulting privacy in this scenario is dependent on the number of statistical queries 
required to learn the dataset. It is interesting to investigate various approaches to facilitate 

federated privacy mechanisms, which could then be integrated into many business models for 

scaling the profits. Therefore, Federated Learning (FL) mechanism motivates the development of 
novel and highly trusted models taking Federated Learning’s unique computational model as the 

baseline. 

 

7. CONCLUSIONS AND FUTURE SCOPE 
 
The emphasis on data privacy and security with the isolation of data has become the next 

challenges for AI, but Federated Learning (FL) has emerged with the solution. It could establish a 

united model for multiple enterprises and institutions while local data is protected so that 
enterprises could work together on data security. Thus, Federated Learning (FL) provides a 

platform to build a cross-enterprise, cross-data, and cross-domain ecosphere for AI, Machine 

learning and big data. This paper generally introduces the basic working of Federated Learning 

(FL), various architectures, privacy-preserving techniques of Federated Learning (FL), and 
discusses its potential in industrial applications. In the near future, Federated Learning (FL) 

would break the barriers between industries and establish a new community, wherein the data and 

knowledge could be shared. It ensures the safety and the benefits would be equally distributed 
based on the contribution of each participant. Finally, the essence and need of AI would be 

brought to every corner of our lives through Federated Learning (FL).  
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