
David C. Wyld et al. (Eds): NLP, JSE, MLTEC, DMS, NeTIOT, ITCS, SIP, CST, ARIA - 2020

pp. 143-151, 2020. CS & IT - CSCP 2020 DOI: 10.5121/csit.2020.101411

A TOPOLOGICAL METHOD FOR COMPARING

DOCUMENT SEMANTICS

Yuqi Kong1, Fanchao Meng1 and Ben Carterette2

1Department of Computer & Information Sciences,

University of Delaware, Newark, USA
2Spotify, Greenwich Street, New York, USA

ABSTRACT

Comparing document semantics is one of the toughest tasks in both Natural Language

Processing and Information Retrieval. To date, on one hand, the tools for this task are still rare.

On the other hand, most relevant methods are devised from the statistic or the vector space

model perspectives but nearly none from a topological perspective. In this paper, we hope to

make a different sound. A novel algorithm based on topological persistence for comparing

semantics similarity between two documents is proposed. Our experiments are conducted on a

document dataset with human judges’ results. A collection of state-of-the-art methods are

selected for comparison. The experimental results show that our algorithm can produce highly

human-consistent results, and also beats most state-of-the-art methods though ties with NLTK.

KEYWORDS

Topological Graph, Document Semantics Comparison, Natural Language Processing,

Information Retrieval, Topological Persistence

1. INTRODUCTION

The problem focused in this paper is Document Semantics Comparison Problem as follows.

Given two human readable, fairly long documents in similar lengths (and temporarily only in

English), a real value to reflect the similarity between the two documents is desired. This problem
is one of the fundamental problems lying at the heart of Natural Language Processing (NLP) and

Information Retrieval (IR). To date, this problem has been attacked majorly from the statistical

perspective, such as TF-IDF [1] [2] based methods, and vector space model (VSM) [3] methods.

The former category directly utilizes TF-IDF information combined with statistical techniques to
design the methods, while the latter category emphasizes and represents the relationships between

words or constituents via VSM models, most of which are constructed still based on statistical

information. In this paper, several state of the art and concrete such methods are selected for
comparison. In Section 2, these methods will be briefly explained.

The methods proposed in this paper sheds a light from a different perspective, topology. More

specifically, our methods are utilizing topological persistence [4] to represent the relationship
between any two given documents, then the semantics similarity is computed from this

representation. Our methods started with a very natural motivation. That is, if two documents

have similar semantics, then they must have a relatively larger amount of relationships reflecting
this similarity. Then a core task to formulate this similarity is to represent the relationships

between the two documents. A document can be considered as a concrete carrier of its semantics.

It consists of a collection of words and the relationships between these words. These relationships

http://airccse.org/cscp.html
http://airccse.org/csit/V10N14.html
https://doi.org/10.5121/csit.2020.101411

144 Computer Science & Information Technology (CS & IT)

are ciphered in the grammars and the conventions in human languages. From a computational
perspective, our arsenal to represent these relationships is actually quite limited. Then we need to

be creative to take advantage of our weapons. Parse trees [5], constituency-based and

dependency-based, are powerful tools to represent word relationships within a sentence. To

measure the similarity or distance between any two words, a number of candidates are also ready
to be picked. Then utilizing these two types of tools, we are able to partially construct the

relationships in two documents. In other words, within a document, words in a sentence are

organized in a connected component via a parse tree, and words in different document can be
connected via checking the similarity or distance between them. In this way, a combinatorial

graph is constructed, in which every path from word to another reflects a direct or indirect

relationship, and the collection of such relationships can consequently reflect a portion of the
relationship between the two documents. Then how to extract features from this graph becomes

the key to define the similarity of semantics.

Topological persistence represents and extracts features of topological spaces from the algebraic
topological space, and in algebraic topology language, it is also a one-dimensional abstract

simplicial complex [4]. Our methods compute homology groups [4] and the corresponding

topological persistence [6] for representing the relationships between the documents. The final
similarity scores are computed based on the topological persistence. Again, in an intuitive way,

the topological persistence for a given dimension contains a set of “holes” which have birth and

death [6] so that their lifetime can be measured. The longer the lifetime, the more important the
“hole”. Moreover, in our case, a “hole” represents a piece of a sentence in one document has a

relatively strong semantic relationship with a piece of another sentence in the other document.

The background of topological persistence will be introduced in Section 3.

The major contribution of this paper is a novel algorithm to compute semantic similarity between

documents. For the experimentation, we compare the similarity scores produced by our algorithm

with those given by human judges, and also, we compare our algorithm with a collection of state-
of-the-art methods. The experimental results strongly support that firstly our algorithm can

produce similarity scores highly consistent with human judges; meanwhile it has better

performance than most methods selected though ties with NLTK. Section 4 and 5 will present our

algorithm and the experiments respectively. Discussion and conclusion follow in section 6 and 7.

2. RELATED WORK

The first method that we have particular interest is Doc2vec [7], which is a deep learning model
designed base on Word2vec [8]. The essential idea of this method is actually not complicated.

Since Word2vec is a model to represent words, then why not we add another vector (for

paragraph) to represent document. Then the authors of Word2vec throw in another model named

as Distributed Memory version of Paragraph Vector (DMPV) [8] which acts as a memory, in a
rough way to explain, memorizing the topic of document. This model has demonstrated some

significant progress on several NLP tasks such as topic extraction and sentiment analysis [8].

However, topic extraction and sentiment analysis are not equivalent tasks to document semantics
comparison problem, since the latter problem is concentrating on the base level semantics

(without any implications, metaphors, ironies or any other such concerns). Then it is also

interesting to know if this state-of-the-art method would also work well on our problem.

The second work that has been selected is a state-of-the-art concrete software library for NLP

research and development, named as NLTK [9]. In this library, a vector space model-based

method [11] for comparing document semantics can be found. Its general idea is nothing more a
classic one. that is, TF-IDF combined with cosine similarity, and the vector space model in

Computer Science & Information Technology (CS & IT) 145

NLTK is actually constructed via utilizing TF-IDF. However, it optimizes the procedure a lot via
some statistic techniques, and in this way, its performance has been having a good reputation.

The third word is Text2vec [12]. This is one of the newest implementation libraries for NLP, and

it contains four methods for comparing document semantics. They are Jaccard similarity [13],
Cosine similarity (similar as the one provided by NLTK), Cosine with LSA [14] and Euclidean

distance with LSA. These methods are all implemented based on vector space model and

statistics. The most interesting point is that a couple of methods are combined with LSA which
has been playing an important role in topic extraction.

We are not aware of any published work to date on use of topological persistence on
representation of semantics and comparisons except a paper published in 2013 by Xiaojin Zhu

[15]. The author shows a relatively preliminary application of persistent homology in natural

language processing. The objective of this paper is use persistence to distinguish simple rhythmic

literatures, and child or adolescent writings. Specifically, in the methods proposed in this paper,
each paragraph is formulated as a bag-of-words vector, and the datasets are nursery rhymes, and

child and adolescent writings; moreover, the use of topological persistence is limited to the

number of “holes”. Our methods to represent and compare semantics will be designed for more
sophisticated and general cases.

3. THEORETICAL BACKGROUND

In this section, we provide a brief introduction to fundamentals of homology theory and
persistence. Intuitively, the major task of homology theory is to describe “holes” in a geometric

space from the algebraic perspective, and persistence describe how persistent these “holes” are.

We start with the formal definition of the most important concept for formulating geometric

spaces from the algebraic perspective, namely abstract simplicial complex.

In an abstract simplicial complex, a 𝓅-simplex is a 𝓅-dimensional simplex (e.g. a line segment is

a 1-simplex, or a triangle convex hull is a 2-simplex). A 𝓅-chain is a formal sum of a set of 𝓅 -

simplices, written as ∑ αkσkk , where αk is a co-efficient in the ground field 𝔽 and σk is a

simplex. The 𝓅-cycles and the 𝓅-boundary are all 𝓅-chains. They are defined by the boundary

operator, denoted by ∂p. The boundary operator maps 𝓅-chains to (𝓅 − 1)-boundaries. For

example, given a triangle-shape convex hull, the boundary operator takes this convex hull and

returns the triangle consisting of three-line segments without the interior of the convex hull. The

resulting triangle is called the boundary of the convex hull. A 𝓅-cycle is a 𝓅-chains to whom

apply the boundary operator will return zero. In other words, ∂2 = 0. This property of boundary

operators is called the chain complex property [4] [16]. A 𝓅-homology-classes is a set of 𝓅-

cycles equivalent to one another, and the equivalence relation is defined in the way that if two 𝓅-

cycles 𝒞p
i and 𝒞p

j
 are equivalent then 𝒞p

i − 𝒞p
j
 is a 𝓅-boundary. A 𝓅-homology-group is the set of

𝓅-homology-classes computed from a complex. In a formal way, the 𝓅-homology-group is

defined as ℋp =
𝒵p

ℬp
, where 𝒵p is the 𝓅-cycle group, and ℬp is the 𝓅-boundary group.

Equivalently, the homology group [4] is also defined as ℋ𝑝 =
𝒦ℯ𝓇(𝜕𝑝)

ℐ𝓂(𝜕𝑝+1)
.

A filtration is a sequence of indexed sets attached to the abstract simplicial complex, where each
simplex is assigned with a filtration value [6] indicating the moment when this simplex is about

to appear in the sequence, the birth of a 𝓅-homology-class is the earliest moment when any of its

146 Computer Science & Information Technology (CS & IT)

representative 𝓅-cycle appears in the sequence, the death of a 𝓅-homology-class is the earliest

moment when a 𝓅 + 1-cycle containing the exact set of vertices of any of this 𝓅-homology-

class’s 𝓅-cycle appears (N.B. this moment can be infinity), and the lifetime of a 𝓅-homology-

class is the distance between its birth and death. A visualization of the collection of the set of 𝓅-

homology-classes with birth-death pairs computed from an abstract simplicial complex with a
filtration is called a persistence diagram.

4. ALGORITHMS

Given:

Two English documents, Di, Dj.

A predetermined parameter, θt ∈ [0,1].
A stopwords list, Ws

Seek:

A real value reflecting the semantic similarity between Di and Dj.

Step 1: For each sentence, Sik ∈ Di, and each sentence, Sjh ∈ Dj, where k, h are indices for the

two sentences respectively, compute their dependency-based parse trees.

Step 2: Do tokenization and lemmatization on each parse tree, (i.e. prune non-word terminals and

convert words to lemmas).

Step 3: For each term pair (tik
p

, tjh
q

), where tik
p

∈ Sik, tjh
q

∈ Sjh, and tik
p

, tjh
q

∉ Ws, and p, q are

indices for the two terms respectively, compute the word similarity between tik
p

 and tjh
q

 via

utilizing Wordnet [10] LIN similarity [17]. We denote this similarity τt(tik
p

, tjh
q

), and

τt(tik
p

, tjh
q

) ∈ [0,1].

Step 4: θw is taken as a threshold for the word similarities. For each τt(tik
p

, tjh
q

), if τt(tik
p

, tjh
q

) ≥

θt, then the two terms tik
p

 and tjh
q

 are considered as two vertices and placed into an empty graph,

and also an edge between the two terms is created. The weight on this edge is τt(tik
p

, tjh
q

).

Step 5: For each parse tree obtained in Step1, it is a graph, in which the vertices are the terms and

the edges are determined by the tree. For each edge in this graph, set its weight to1. Then union

all such graphs obtained from the parse tree with all resulting graphs from Step 4. The final graph

will be an undirected and weighted graph, denoted by 𝒢ij.

Step 6: The graph obtained from Step 5 is a one-dimensional abstract simplicial complex,

denoted by Σij
1 . Given this abstract simplicial complex, compute the homology group for

dimension one, denoted by ℋij
1.

Step 7: Set the filtration value for each simplex in Σij
1 via utilizing the weights in 𝒢ij (i.e. the

filtration value for an edge, (tik
p

, tjh
q

), which is a one-dimensional simplex is set to 1 − τt(tik
p

, tjh
q

),

and the filtration values for the two corresponding vertices which are zero-dimensional simplices
on this edge are all set to the same values.

Computer Science & Information Technology (CS & IT) 147

Step 8: Given the homology group, ℋij
1, and the abstract simplicial complex, Σij

1 , obtained from

Step 6, and the filtration values for the simplices obtained from Step7, compute the topological

persistence for dimension one, denoted by 𝒫ij
1.

Step 9: In 𝒫ij
1, for each homology class, denoted by [cl], its birth is determined by the minimum

filtration value of the simplices in cl; and its death is determined by the maximum filtration value

which is equal 1. Compute the lifetime of [cl] which is equal to min
(tu

l ,tv
l)∈cl

{τt(tu
l , tv

l)}, where

(tu
l , tv

l) is a one-dimensional simplex in cl (which is also an edge in Σij
1).

Step 10: The final similarity between Di, and Dj is the sum of all lifetimes of the homology

classes in 𝒫ij
1, (i.e. ∑ min

(tu
l ,tv

l)∈cl

{τt(tu
l , tv

l)}[cl]∈𝒫ij
1), obtained from Step 9.

5. EXPERIMENTATION

Design: The goal of this experiment is evaluating the performance of Algorithm (TopoSem)
proposed in Section 4. TopoSem will be compared to human judges. The performance of

TopoSem should reflect how competent this algorithm can compare semantics of two documents

as human judges. A dataset containing a collection of English documents will be utilized. For
each pair of documents, human judges determine if this pair of documents have similar

semantics, and provide a score to measure their similarity. Taking these similarity scores, two

groups of document pairs can be constructed. One group contains all pairs that are determined by

human judges as similar in semantics, and the other contains dissimilar pairs. Then TopoSem is
applied to both groups to give each document pair in the two groups a semantic similarity score.

If these scores given by TopoSem agree on the two groups, then the performance of TopoSem is

considered as positive. Essentially, this experiment is a classification task, where the two classes
are determined by the two groups, and TopoSem will be tested on classifying document pairs

collected from the two groups into the two classes.

Settings: The dataset in use is provided by Michael D. Lee [18] which contains 50 documents

selected from the Australian Broadcasting Corporation’s news mail service. The lengths of

documents vary from 51 to 126 words, and cover a number of broad topics. The documents in

this dataset have been evaluated by human judges. For each pair of documents, there is an
average of scores from human judges ranging from 1 to 5, where 1 indicates highly unrelated,

and 5 indicates highly related. Besides this 50-document dataset, Michael D. Lee also provides an

additional dataset containing 300 background documents which are in average longer than the 50
documents.

To utilize WordNet [10] Lin [17] to compare word meanings, an information content database
needs to be specified. What is selected in this experiment is SemCor provided by WordNet 3.0.

Group 1, denoted by 𝔾1, of document pairs is constructed by collection all pairs that are scored ≤
2.5, and Group 2, denoted by 𝔾2, is constructed by collecting all pairs scored ≥ 3.5. 𝔾1 contains

1095 pairs, and 𝔾2 contains 46 pairs. Since the rest of pairs could be hardly determined as similar

or dissimilar even by human judges, then they are not considered in our experiment. The

predetermined parameter θt takes values 1, 0.95, 0.9, 0.85 and 0.8 for five trials. The stopwords

list in use is provided by Onix Text Retrieval Toolkit [19] which contains 571 words.

Method: TopoSem is applied to both 𝔾1 and 𝔾2 to compute a similarity score for each document

pair. For each group, the 95% confidential interval of the scores is computed, denoted by ℐc
1 and

148 Computer Science & Information Technology (CS & IT)

ℐc
2 respectively, where the superscripts are indices. 𝔾1 is set as the positive class (setting 𝔾2 as

the positive class is also tested). If a document pair in 𝔾1, denoted by 𝒹1(x, y) ∈ 𝔾1, where 1 is

the group index, x, y are document indices, is given a score, denoted by α(𝒹1(x, y)), which holds

α(𝒹1(x, y)) ≤ 𝒰(ℐc
1), then 𝒹1(x, y) is considered as a true positive, where 𝒰(·) takes the

supremum of a given interval. If α(𝒹1(x, y)) ≥ ℒ(ℐc
2), then 𝒹1(x, y) is a false negative, where

ℒ(·) takes the infimum of a given interval. Similarly, for a document pair 𝒹2(a, b) ∈ 𝔾2, if

α(𝒹2(a, b)) ≥ ℒ(ℐc
2), then 𝒹2(a, b) is considered as a true negative; and if α(𝒹2(a, b)) ≤ 𝒰(ℐc

1),

then 𝒹2(a, b) is considered as a false positive. Foreach trial (with a specific θt), all true positives,

true negatives, false positives and false negatives are collected and counted, and then precision,
recall and F1 score are calculated.

Table 1. Error rates for TopoSem and control groups of methods

Methods 𝔾𝟏 Error Rate 𝔾𝟐 Error Rate Average Error Rate

TopoSem (𝜃𝑡 = 1.00) 2.19 % 19.56 % 10.88 %

TopoSem (𝜃𝑡 = 0.95) 2.37 % 19.56 % 10.97 %

TopoSem (𝜃𝑡 = 0.90) 3.01 % 19.56 % 11.28 %

TopoSem (𝜃𝑡 = 0.85) 4.29 % 17.39 % 10.84 %

TopoSem (𝜃𝑡 = 0.80) 6.48 % 21.73 % 14.11 %

Doc2Vec 33.33 % 17.39 % 25.36 %

Text2vec (Jaccard

similarity)

15.07 % 39.13 % 27.10 %

Text2vec (Cosine

similarity)

9.50 % 39.13 % 24.32 %

Text2vec (Cosine +
LSA)

9.50 % 32.61 % 21.01 %

Text2vec (Euclidean +

LSA)

7.03 % 32.61 % 19.82 %

NLTK 2.28 % 15.22% 8.75 %

Table 2. Precisions, Recalls and F1 scores with Group 1 as positive and Group 2 as negative.

𝔾1as positive and 𝔾2 as negative

Methods Precision Recall F1

TopoSem (𝜃𝑡 = 1.00) 0.97 0.99 0.98

TopoSem (𝜃𝑡 = 0.95) 0.97 0.99 0.98

TopoSem (𝜃𝑡 = 0.90) 0.96 0.99 0.97

TopoSem (𝜃𝑡 = 0.85) 0.94 0.99 0.96

TopoSem (𝜃𝑡 = 0.80) 0.91 0.99 0.95

Doc2Vec 0.60 0.99 0.75

Text2vec (Jaccard

similarity)

0.84 0.98 0.91

Text2vec (Cosine

similarity)

0.89 0.98 0.94

Text2vec (Cosine + LSA) 0.89 0.98 0.93

Text2vec (Euclidean +

LSA)

0.91 0.98 0.94

NLTK 0.96 0.99 0.98

Computer Science & Information Technology (CS & IT) 149

Table 3. Precisions, Recalls and F1 scores with Group 2 as positive and Group 1 as negative.

𝔾2 as positive and 𝔾1 as negative

Methods Precision Recall F1

TopoSem (𝜃𝑡 = 1.00) 0.59 0.35 0.44

TopoSem (𝜃𝑡 = 0.95) 0.59 0.33 0.43

TopoSem (𝜃𝑡 = 0.90) 0.63 0.31 0.42

TopoSem (𝜃𝑡 = 0.85) 0.62 0.22 0.32

TopoSem (𝜃𝑡 = 0.80) 0.50 0.12 0.20

Doc2Vec 0.55 0.03 0.05
Text2vec (Jaccard

similarity)
0.25 0.04 0.06

Text2vec (Cosine similarity) 0.31 0.07 0.12
Text2vec (Cosine + LSA) 0.44 0.10 0.17
Text2vec (Euclidean + LSA) 0.50 0.16 0.25

NLTK 0.70 0.39 0.50

In this experiment, a control group of methods are also tested on the same task. The methods

include Doc2vec, Text2vec and NLTK. One of the implementations of Doc2vec (whose name is
Gensim [20]) provides a direct interface to compare semantics of two documents. Text2vec

provides Jaccard similarity, cosine similarity [22], cosine similarity with TF-IDF, cosine

similarity with LSA and Euclidean distance with LSA these methods for comparing document

semantics directly. NLTK provides a vector space model based on TF-IDF, then the document
similarity can be computed via cosine similarity.

Experimental Results: The experimental results are listed in Table 1, Table 2 and Table 3. Table

1 shows the error rate for each method. In this table, the winner for 𝔾1 is our TopoSem with θt =
1.00 while NLTK and our TopoSem with θt = 0.95, 0.90 produce similar results. The winner for

𝔾2 is NLTK while our TopoSem with θt = 0.85, 1.00, 0.95, 0.90 also produce similar results. In

average, the winner is NLTK and our TopoSem with θt = 0.85 is the second winner. The

difference between the average error rate of NLTK and that of TopoSem with θt = 0.85 is 2.09%

which is not significant. It can be observed that the error rates on 𝔾2 are higher the error rates on

𝔾1. The reason is that the dataset is skewed so that the misclassified pairs in 𝔾2 impact the error

rates on 𝔾2 much more significantly than the misclassified pairs in 𝔾1.

Table 2 shows the precision, recall and F1 score for each method under the case that 𝔾1 is set as

positive and 𝔾2 is set as negative. The winner of F1 score is our TopoSem with θt = 1.00, 0.95

and NLTK. Table 3 shows the case that 𝔾1 is set as negative and 𝔾2 is set as positive. In the

latter case, NLTK is slightly better than our TopoSem but still not significant. Additionally, the

reason that the F1 scores in Table 3 are lower than those in Table 2 is again because of the skew

in the dataset.

6. DISCUSSION

From table 1, deep learning methods such as Doc2vec and Text2vec have much worse error rate
compare with our method and NLTK. Since those two deep learning methods require massive

training documents to pretrain the model. If in the scenario that lacks such pretraining dataset,

such as Michael D. Lee’s dataset we used which only contains 300 background documents. The

performance of those methods will hurt. Contrarily, non-training methods such as our topological
method and NLTK are capable in any scenario.

150 Computer Science & Information Technology (CS & IT)

Can our method do better? This was the first question we asked ourselves right after the results
popped out. Since the performance of our method seems does not significantly better then NLTK

and even slightly worse in the case that 𝔾1 is set as negative and 𝔾2 is set as positive. The

bottleneck comes from Wordnet and LIN. They are far out of date tools, the number of synsets in

Wordnet is not adequate, those out-of-vocabulary words compromised the performance by
hindering the formation of simplicial complex (aka, meaningful “holes”). Furthermore, LIN may

not be the best option either. WordNet provided LIN as its out-of-box word similarity algorithm.

However, our major goal is to propose a unique novel topological structure that can unify both

syntactic and lexical semantics of the document and quantify the semantics without any

pretraining procedure. The results proved the validity of our proposal. Moreover, there is a lot of
room for improvement.

7. CONCLUSION

In this paper, a novel algorithm for comparing document semantics is proposed. This algorithm is
designed based on topological persistence, which is distinguished from most methods for the

same task. The experimental results provide strong support to our algorithm showing that it can

unify both syntactic and lexical semantics of documents, then produce highly human-consistent
results, and also outperform some state-of-the-art methods.

8. FUTURE WORK

Although, TopoSem shows potentials that it is highly consistent with human judgment. The
results indicated the performance does not significantly outperform the control methods. There

are many aspects that we can do to improve this novel approach. A new version of the algorithm

is under development. We are plan to involve parse tree trimming to trim unnecessary nodes in
order to reduce the effect of noise homology classes. For the current algorithm, we only use

filtration value to weight terms edges formed in step 4. In the next version of the algorithm, we

try to not only weigh the terms edges but also parse tree edges then use harmonic mean to

combine two types of weights together. We hope this could give TopoSem a more comprehensive
similarity function. Furthermore, one of the limitations of TopoSem is complexity, this impedes

the application of TopoSem to large datasets. After the algorithm matured, we will focus on the

optimization of TopoSem.

REFERENCES

[1] Luhn, H. P. (1957). A statistical approach to mechanized encoding and searching of literary

information. IBM Journal of research and development, 1(4), 309-317.

[2] Jones, K. S. (1972). A statistical interpretation of term specificity and its application in retrieval.
Journal of documentation.

[3] Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing.

Communications of the ACM, 18(11), 613-620.

[4] Munkres, J. R. (2018). Elements of algebraic topology. CRC Press.

[5] Jurafsky, D., & Martin, J. H. (2014). Speech and language processing. Vol. 3.

[6] Edelsbrunner, H., & Harer, J. (2010). Computational topology: an introduction. American

Mathematical Soc..

[7] Le, Q., & Mikolov, T. (2014, January). Distributed representations of sentences and documents. In

International conference on machine learning (pp. 1188-1196).

[8] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations

in vector space. arXiv preprint arXiv:1301.3781.

[9] Loper, E., & Bird, S. (2002). NLTK: the natural language toolkit. arXiv preprint cs/0205028.

Computer Science & Information Technology (CS & IT) 151

[10] Pedersen, T., Patwardhan, S., & Michelizzi, J. (2004, May). WordNet:: Similarity-Measuring the

Relatedness of Concepts. In AAAI (Vol. 4, pp. 25-29).

[11] Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing.

Communications of the ACM, 18(11), 613-620.

[12] Selivanov, D. (2016). text2vec: Modern Text Mining Framework for R: R package version 0.4. 0.
[13] Real, R., & Vargas, J. M. (1996). The probabilistic basis of Jaccard's index of similarity. Systematic

biology, 45(3), 380-385.

[14] Dumais, S. T. (2004). Latent semantic analysis. Annual review of information science and

technology, 38(1), 188-230.

[15] Zhu, X. (2013, August). Persistent homology: An introduction and a new text representation for

natural language processing. In IJCAI (pp. 1953-1959).

[16] Hatcher, A. (2002). Algebraic Topology. Cambridge University Press.

[17] Lin, D. (1998, July). An information-theoretic definition of similarity. In Icml (Vol. 98, No. 1998, pp.

296-304).

[18] Lee, M. D., Pincombe, B., & Welsh, M. (2005). An empirical evaluation of models of text document

similarity. In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 27, No. 27).

[19] Buckley, C., & Salton, G. (2007) Onix Text Retrieval Toolkit Stopword List2.
http://www.lextek.com/manuals/onix/stopwords2.html.

[20] Rehurek, R., & Sojka, P. (2011). Gensim–python framework for vector space modelling. NLP Centre,

Faculty of Informatics, Masaryk University, Brno, Czech Republic, 3(2).

[21] Real, R., & Vargas, J. M. (1996). The probabilistic basis of Jaccard's index of similarity. Systematic

biology, 45(3), 380-385.

[22] Karypis, M. S. G., Kumar, V., & Steinbach, M. (2000, May). A comparison of document clustering

techniques. In TextMining Workshop at KDD2000 (May 2000).

© 2020 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license

http://airccse.org/

	Abstract
	Keywords
	Topological Graph, Document Semantics Comparison, Natural Language Processing, Information Retrieval, Topological Persistence

