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ABSTRACT 
 
The impact of the recent exponential increase in complexity of digital VLSI circuits has heavily 

affected verification methodologies. Many advances toward verification and debugging 

techniques of digital VLSI circuits have relied on Computer Aided Design (CAD). Existing 

techniques are highly dependent on specialized test patterns with specific numbers increased by 

the rising complexity of VLSI circuits. A second problem arises in the form of large sizes of 
injecting circuits for correction and large number of SAT solver calls with a negative impact on 

the resultant running time. Three goals arise: first, diminishing dependence on a given test 

pattern by incrementally generating compact test patterns corresponding to design errors 

during the rectification process. Second, to reduce the size of in-circuit mutation circuit for 

error-fixing process. Finally, distribution of test patterns can be performed in parallel with a 

positive impact on digital VLSI circuits with large numbers of inputs and outputs. The 

experimental results illustrate that the proposed incremental correction algorithm can fix design 

bugs of type gate replacements in several digital VLSI circuits from ISCAS'85 with high speed 

and full accuracy. The speed of proposed Auto-correction mechanism outperforms the latest 

existing methods around 4.8x using ISCAS'85 benchmarks. The parallel distribution of test 

patterns on digital VLSI circuits during generating new compact test patterns achieves speed 

around 1.2x compared to latest methods. 

 

KEYWORDS 
 
Auto-correction, ATPG, Fault detection, Verification.  

  

1. INTRODUCTION 
 

Recently, integrated circuits (ICs) known as microchips have become omnipresent in all aspects 
of our lives from automobiles to smartphones. Their impact on our lives has gradually evolved to 

be the most crucial chips as they are considered the heart of modern computing devices. These 

compact ICs contain billions of transistors which perform billions of computations compared 
with vacuum tubes or single transistor preceded them. Therefore, the complexity of ICs design 

flow has increased over the last three decades with a highly increasing list of requirements in 

terms of functional, power, performance and physical size. Therefore, the IC design is not a push-
button process. Instead, it is a highly complicated task as it needs a full understanding of the IC 

restrictions, specifications and all the required EDA tools. Several procedures should be 

considered in the IC design flow which are highly error-prone as many translations should be 

performed on various levels of IC representations (e.g. RTL description and gate-level netlist). 
Therefore, the uselessness rate of silicon slabs has been increased by increasing the number of 

undetected errors that might propagate from the RTL description to the fabricated chip. Hence, 
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several recent contributions of developing verification and testing methodologies have been 
emerged to avoid the consumed cost and time for achieving the desired design with its required 

specifications. And by the time, the procedure of verifying, testing, debugging and correcting 

digital circuits have been contributing up to 70% of the entire time for designing the aspired IC 

[1]. On top of that, the functional verification has become the most significant issue of the IC 
design as the fact proved in [2] that the main reason for unsuccessful Application Specific 

Integrated Circuits (ASIC), around 60% of them, is the existence of undetected functional errors 

(Not because of high power consumptions and timing issues). Consequently, up to 46% of the 
whole time of IC design is consumed in the functional verification step [3]. Therefore, three main 

processes are implemented following each conversion from high level to more detailed level of 

abstraction in the pre-silicon design, termed Verification, Debugging and Correction. These 
processes are defined as follows:  

 

Definition 1: the process of searching for inconsistencies between two levels of circuit 

abstraction in the pre-silicon design is called "Verification". 
 

Definition 2: In case of functional inconsistencies intended for diagnosing and detecting 

potential bug locations in an erroneous circuit is called "Debugging". Therefore, it is also often 
termed Bug Localization. 

 

Definition 3: the phase responsible for modifying components causing errors discovered by 
debuggers is known as "Correction", so it can rectify the desired circuit to behave in its intended 

manner. The output of this phase is the correct design that can match the desired specification 

(the previous abstraction). 

 
By increasing the design size, the uselessness rate of silicon slabs has been grown by increasing 

the number of undetected errors that might propagate from the RTL description to the fabricated 

chip. In addition, the proportion of losing time and increasing the non-recurring engineering 
(NRE) cost is gradually extended by taking the blind assuming of "synthesis tools make no 

mistakes". Therefore, several recent contributions of developing verification/testing, debugging 

and correction methodologies have been emerged to avoid the cost and time consumed during 

achieving the desired design that should be matched with the behavioral specifications. And by 
the time, the procedures of verifying/testing, debugging and correcting digital circuits have been 

contributing up to 70% of the entire time for designing the aspired IC [1]. As the growth of the 

complexity of digital integrated circuits and reduced time-to-market budget, debugging 
mechanisms with auto-correction in a digital design flow have become more and more 

challenging task, contributing on average 60% of the verification process in case of observing 

some failures in a given design. Although, many contributions have been devoted on the 
verification and debugging steps, few efforts have been dedicated on fixing the detected errors 

which are left to the creativities of the designers to manually correct them. Also, studies report 

that the main reasons for failures existed in a large portion of first tap-out are simply functional 

errors which could escape from the earlier correction step  [1]. So, the correction procedure is 
considered the expensive and complicated task because other phases of IC design directly depend 

on "how efficiently the correction procedure works". In this paper, we focus on improving the 

process of auto-correction using partial test patterns in the gate-level representation as it is a core 
factor of reducing the ad-hoc manual effort, time and possibilities of undetected bugs in the 

manufactured chip. 

 
 Gate-level auto-correction problem has been addressed by many researches proposing different 

algorithms for auto-debugging and/or suggesting the possible modification for achieving the 

correct design. Also, most of error correction techniques are focused on gate-level netlist because 

it can give the designers different reasons of occurring bugs such as incorrect individual 
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connection wires or incorrect individual gate types that can NOT be provided in a higher level of 
abstraction.  The conceivable idea of fixing errors by re-synthesis is not an efficient way for most 

of today's digital circuits as errors can be caused by the synthesis tool itself. Also, some physical 

optimization that should be previously performed might Not be validated. 

 
In this paper, we proposed a new efficient automatic correction (ACM-CTV) method using 

partial test patterns to generate both a corrected digital circuit and compact test patterns by the 

following advantages: 
 

1- The injecting circuit is reduced to be 3-to-1 multiplexers instead of 6-to-1 multiplexers as 

it used in [4]. 
2- One of two solutions that are generated in every iteration is exploited to reduce the search 

space (Find_OneSol Algorithm). 

3- Parallel distribution of test patterns (GPU_UC procedure) is performed that can give a 

high performance in case of large number of inputs and outputs of faulty digital circuit.  
 

2. RELATED WORK 
  
Recently, many extensive problems in digital very-large-scale-integration problems can be 
addressed within a Boolean satisfiability framework as it offers various solutions. In [5-7], the 

main idea is mapping the diagnosis problem to SAT problem in a compatible form (as CNF) to be 

solved using SAT solvers. These SAT-based methods outperform the traditional methods as it is 
implemented with high performance. 

 

In [8], the bug localization problem is addressed by replacing every possibly buggy gate with 2-
to-1 multiplexers, then converting to a conjunction normal form (CNF) formula. After that, a new 

constraint is added to the CNF instance to represent the initial test patterns and passing all the 

final formula to SAT solver to return a satisfiability model of CNF instance that can detect the 

exact locations.  
 

Authors in [6] have proposed a debugging method of gate-level circuits using partial maximum 

satisfiability (MAX-SAT) for detecting spatial and temporal bug locations.  
 

In [9], authors proposed a bug localization of gate-level circuits using level Quantified Boolean 

Formula (QBF) that is equivalent process to repetitive calls of normal SAT solvers. All the 

previous methods attempt to exactly detect logic bugs in order to finally rectify the digital circuit 
to satisfy specifications. 

 

On the other hand, the auto-correction methods have been addressed using both the bug locations 
and test patterns for the corresponding logic bugs. In [10], a mutation-based correction 

mechanism is proposed by adding 6-to-1 multiplexers into the place of every potential bug to 

quickly check all possible gates instead of the faulty one. In [11], the rectification process is 
employed by injecting 3-to-1 multiplexers instead of 6-1 multiplexers in order to reduce the CNF 

instance passed to SAT engine for shrinking the search space. The previous two methods are 

based on knowing exact bug locations and test patterns of the correct digital circuit in order to 

automatically correct circuits. In [12], a new correction method is proposed based on [10] in 
order to incrementally correcting a given circuit by generating new test patterns. The generation 

of compact test patterns is performed by finding two different solutions in every iteration, so it 

can guarantee that the returned rectified circuit is completely corrected for all test patterns.  
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In [4], authors improved the previous automatic correction method by exploiting the two 
solutions generated in every iteration not only in finding a new test pattern but also, in shrinking 

the search space for the next iterations. Therefore, the proposed rectification (ACM-CTV) 

mechanism exploit advantages of methods proposed in [4, 11] in order to reducing search space 

and running time for correction.  
 

3. BACKGROUND 
 

3.1.  Design Errors 
 

A component among a design implementation such as RTL or gate-level representation or 

behavioural specifications such as testbench and assertions that produces functional 
inconsistencies between the two representation is known as an error or a bug. Therefore, failures 

(defined in Definition 4) can be occurred in design implementation or behavioral specification as 

a result of bugs or errors. There are different categories of bugs or errors that can be found in 
digital VLSI circuits but they can be divided into three main types: design errors, verification 

errors and manufacturing errors. Design errors also can be divided into: functional errors and 

electrical errors or circuit bugs. Functional errors are the functional inconsistences (or functional 

mismatches) in a design implementation as a result of incorrect wire connections or functional 
misbehavior of some gate elements. The main reason of occurring design errors is usually a 

designer interference during a synthesis phase in order to reach to a specific level of a system 

optimization. On the other hand, any bugs occurred in a behavioral specification is known as 
verification errors. 

 

Definition 4: If the same primary input stimulus is applied to observe IC design with the same 
initial condition and at one or more observation points, there is an inconsistency between a design 

implementation (RTL abstraction) and its specification, it can be called as a failure. 

 

 
 

Figure. 1. Main Types of Errors or Bugs. 

 

3.2. Bug Localization and Auto-Correction processes 
 
In Bug localization process, counterexamples generated in logic verification phase are exploited 

to quickly detect potential locations of observed bugs. The efficient mechanism is identifying 

fault candidates by adding extra logic to faulty circuit and converting to a suitable formula to be 

handled by recent SAT solvers. Therefore, most debuggers take test patterns (logic assignments 
of inputs and their expected output of circuits) and buggy digital circuit then passed to four main 

stages as shown in figure 2 to finally detect fault candidates. The CNF formula [13, 14]  of the 
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complete design can be easily refined and replicated to every test pattern and every time frame 
then passing to SAT solver to find error suspects 

 

 
 

Figure 2. Main Steps of SAT-based Debugging Approach 

 

In [15], a diagnosis technique is proposed to find potential bug locations using minimal 

correction subsets of UNSAT formula represented a faulty circuit. Also, the reasons of errors can 
be generated as a minimal unsatisfiable formulas (MUS) which can give designers which clauses 

combined together and produce the logic fault.      

 

In most SAT-based auto-correction routines, the faulty circuit is automatically modified in order 
to be satisfy the given test pattern. Therefore, the accuracy and number of test patterns give to 

rectification algorithm have a high impact on the performance and accuracy of the rectified 

circuit. Therefore, the algorithms of auto-correction are classified into two main categories. 
Figure 3 demonstrates the main differences between those two categories. The first group of 

approaches as shown in figure (3.a) [16] focuses on the accuracy of corrected circuit by 

combining the debugger and correction algorithms together in order to achieve the equivalence 
between the actual circuit and the golden test patterns (as a black box of specification). Some 

techniques can be utilized to improve these error-fixing categories by abstracting and refining 

processes [17]  for reducing the repetitive checking process. But these methods are not practical 

in a large-sized digital circuit as it has high consumed time and low resolution. 
 

 The second category is shown in figure 3.b. In this mechanism, the repetitive calling of logic 

debuggers and verifiers can be dispensed by fixing upon reduced counterexamples and using the 
original gate-level circuits [18]. Therefore, the performance of these techniques for rectifying 

design errors is improved but the accuracy is dependent on how many test patterns utilized. 

 

 
                                                       

a. First Mechanism 
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b. Second Mechanism 

 
Figure 3. Categories of Debugging and Correction strategies. 

 

4. THE PROPOSED RECTIFICATION ALGORITHM 
 
In this section, the proposed automatic correction algorithm with generating compact test patterns 

(ACM-CTV) is described in more details. 

 
Algorithm 1 illustrates the pseudo code of the proposed algorithm for generating both the Correct 

Circuit (CC) and Compact Test Vectors (CTV). The main inputs of this algorithm are: 

 

1- Buggy circuit. 
2- Buggy location. 

3- Specification of the expected correct circuit. 

4- Initial Test pattern (always one test pattern) 
 

First of all, the Boolean values of inputs and outputs of buggy component should be defined. So, 

if it's one of the circuit's inputs and outputs, there is no need to call SAT solver. Otherwise, the 
buggy circuit with the initial test pattern are passed to SAT solver in CNF form in order to detect 

the Boolean values of inputs and outputs of the faulty location. Defining these assignments have 

a great impact on reducing the size of search space for generating the correct circuit and the 

compact TV. This process performed in lines 1-9 at Algorithm 1. Next, If the faulty gates have 
one input so the faulty circuit is enriched by 2-1 MUX. Otherwise, the faulty circuit is injected 

with 3-1 MUX. The inputs of 3-1 MUX are determined according to the detected Boolean values 

of inputs and output of faulty gate. These steps for generating CNF formula of MUX is 
performed in lines 10-16. After that lines 17-38, the steps for expecting the correct circuit with 

compact Tv are performed using the enriched circuit and the initial Tv. This process is a loop of 

generating two possible solutions (sol1, sol2), mitering between them, generating a new TV, 

pushing it into compact TV and retaining the possible correct solution as sol1 between two 
solutions for the next iteration. The loop stops when there is no second solution. Therefore, the 

sol1 is the correct component and the generated TV is the compact TV. 
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Algorithm 2 illustrates the pseudo code of the procedure of  This main goal of 

this process is to detect a probable second corrected circuit that can satisfy the generated compact 

test patterns and can be another solution than sol1. This process can be performed by duplicating 

the enriched circuit according to the current number  of compact test patterns then adding 

new constraints for: 

 

1- representing compact test patterns 
2- blocking solution 1. 

 

Therefore, the final CNF instance can be a combination of duplicated circuits 
 

Algorithm 1: Pseudo code of Proposed ACM-CTV Method  

Input: ECA_CTV ( ):  

Output:  

1.   

2.    

3.    

4. if  then 

5.      

6. else  

7.      

8.        

9. end-if 

10. if  then        // NOT, BUFF or DFF gates 

11.       

12. else  

13.              

14.      

15.      

16. end-if 

17.  

18.  

19. do 

20.      if   then 

21.              

22.      else 

23.              

24.      end-if 

25.       

26.      if ( ) then 

27.              

28.             if (  then    // cir1 is not compatible with  

29.                   (  

30.             end-if 

31.      else  

32.              

33.      end-if 

34.       

35. while ( ) 

36. end-do-while 

37.  

38.  
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 , blocked clause  and unit clauses for  as shown in 

equation 1, where :  

 
 

After creating equation 1, the solver is called by this instance to find a second solution (Sol2), the 
assigned values of MUX' selectors that can be used to produce cir2 which is used to find a new 

test pattern if it exists (line 25 in algorithm 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Algorithm 3 illustrates the pseudo code of  method that is used to generate new 
compact test pattern during searching for the correct circuit. This procedure has three main 

inputs: 

 

1- Specification of the expected correct circuit. 
2- The probable first circuit. 

3- The probable second circuit. 

 
This procedure is dependent on finding the Boolean values of inputs that can represent a 

difference between outputs of cir1 and cir2. For finding these values, a CNF instance represented 

a miter circuit between cir1 and cir2 is performed using  (line 2). The miter 
circuit is nothing but XORs between the outputs of the circuit and OR between all XORs. After 

that, a new constraint is added to  in order to reduce the search space that make the 

output of miter circuit as 1 (line 3). After that, this instance is passed to SAT solver. If the CNF 
formula is satisfied, the model returned from solver can be used to find the assigned values of 

inputs (line 6). Then, the expected correct output  corresponding to   is 

generated using specification which can be combined with   (line 7) in one CNF formula and 

passed to SAT solver (line 8). Otherwise ( ), there is no new test pattern .  This 

means that Sol2 is a spurious solution (line 31-33 in algorithm1) that should be blocked in the 
enriched circuit before going to the next iteration in algorithm 1.  
  

Algorithm 2: Find_OneSol Method  

Input:  ( ):  

Output:  

1.  

2. for do 

3.     

4.     
5. end-for 
6. if ( ) then 

7.        
8. end-if 

9.  
10. if then 

11.  
12. end-if 

13.  

14.  
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5. PERFORMANCE EVALUATION 
 

In this section, a comparison between our proposed ACM-CTV algorithm with serial and parallel 

distribution and the previous proposed algorithm in [4] in terms of running time is proposed in 
table 1. The implementation is performed using ISCAS'85 benchmark [19] of SAT CNF 

instances (6 combinational circuits). Two algorithms were implemented in C++ and executed on 

Intel core i7-4510U working at 2.6 GHz with 8 GB system memory. As it proposed in compared 
algorithm in [4], every bug has been injected randomly in the Verilog module of a given circuit 

as a logic design error. Also, the SAT instance of every faulty digital circuit of ISCAS'85 is 

generated using a serial version of SAT encoder proposed in [13]. Also, the solving process is 
performed using Parallel CUD@SAT DPLL engine in two algorithms. Parallel subroutines are 

implemented in CUDA C and executed on NIVIDIA Geforce. 

 

Table 1 illustrates the consumed time in seconds of previous correction process proposed in [4] 
and the proposed ACM-CTV correction algorithm. After analysis, the proposed ACM-CTV 

algorithm can rectify faulty digital circuit with full accuracy by generating compact test patterns 

during correction process in order to guarantee that there is no new test pattern can prove 
inconsistence. The proposed correction algorithm for single design errors in digital VLSI circuits 

delivers about 4.8x average speed compared to the latest existed correction method proposed in 

[4]. Also, the parallel version of test pattern distribution has a good benefit in case of using digital 

circuit with large ports as c432. Therefore, the maximum speed of parallel distribution of test 
patterns are 1.2x comparing to serial distribution proposed in [4]. 

 
Table 1. Comparison between running time (s) of previous Correction algorithm  

and proposed ACM-CTV algorithm. 

 Method: Algorithm 3 

Input:   ( ):  

Output:  

1.  

2.  

3.  
4.  
5. if  then 

6.       
7.       

8.       

9.        

10.        
11. end-if 

12.  

 

CNF 

Type 

 

 

#gates 

 

 

#Inputs 

 

 

 

#outputs 

 

Time (s) of 

Correction 

Algorithm in 

[4] 

 

Time(ms) of 

proposed 

ACM-CTV 

with serial 

dis. 

 

Time (ms) of 

proposed 

ACM-CTV 

with parallel 

dis. 

C17 6 5 2 0.420 0.018 0.469 

C432 160 36 7 3.127 1.668 1.529 

C499 202 41 32 3.195 2.654 3.038 

C880 383 60 26 5.931 5.953 5.537 

C1908 880 33 25 17.683 15.698 15.843 

C3540 1699 50 22 40.389 31.356 34.445 
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6. CONCLUSIONS 
 
In this paper, we propose an incremental auto-correction algorithm with generating compact test 

patterns. The main advantages of the proposed ACM-CTV algorithm are avoiding the 

dependency of the given test patterns by incrementally generating compact patterns and reducing 

the search space by injecting small size of in-circuit mutation (MUX 3x1 instead of MUX 6x1). 
By combining two enhanced methods, the proposed algorithm significantly outperforms the 

previous algorithm in [4] in terms of run time, delivering 4.8x average speed. Also, it shrinks the 

search space using small size of injected circuit and one test pattern in case of single faults. 
Therefore, the shrinking rate of search space is 6x compared to previous methods in [4, 11].  
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