
MINIMISING DELAY AND ENERGY IN ONLINE

DYNAMIC FOG SYSTEMS

Faten Alenizi and Omer Rana

School of Computer Science and Informatics, Cardiff University, Cardiff, UK

ABSTRACT

The increasing use of Internet of Things (IoT) devices generates a greater demand for data transfers and

puts increased pressure on networks. Additionally, connectivity to cloud services can be costly and

inefficient. Fog computing provides resources in proximity to user devices to overcome these drawbacks.

However, optimisation of quality of service (QoS) in IoT applications and the management of fog resources

are becoming challenging problems. This paper describes a dynamic online offloading scheme in vehicular

traffic applications that require execution of delay-sensitive tasks. This paper proposes a combination of

two algorithms: dynamic task scheduling (DTS) and dynamic energy control (DEC) that aim to minimise

overall delay, enhance throughput of user tasks and minimise energy consumption at the fog layer while

maximising the use of resource-constrained fog nodes. Compared to other schemes, our experimental

results show that these algorithms can reduce the delay by up to 80.79% and reduce energy consumption

by up to 66.39% in fog nodes. Additionally, this approach enhances task execution throughput by 40.88%.

KEYWORDS

Dynamic Fog Computing, iFogSim, Computational Offloading, Energy Consumption, Minimising

Delay, Dynamic Resource Management, Internet of Things (IoT).

1. INTRODUCTION

Cloud computing plays an important role in processing tasks generated by IoT devices [1].

However, as the number IoT devices increases, so does the amount of generated data, and

processing these data in the cloud may incur significant overhead in multi-hop networks. This is

because the cloud server is usually remote and spatially distant from the IoT devices, which leads

to high transmission latency, downgraded performance of latency-sensitive applications and

network congestion [2]. To address this issue, fog computing (FC) – considered an extension of

cloud computing (CC) [3, 4] – has been introduced by CISCO [5] which acts as an intermediary

between the cloud and end-user devices. This brings processing, storage, and networking services

spatially closer to end devices to reduce latency and network congestion. The main idea behind

FC is to deploy computing resources, i.e. fog nodes (FNs), at the network edge [3, 6]. FNs can be

routers, gateways, and access points to which end devices offload their computationally intensive

tasks. However, FNs are characterised as resource-limited devices [4, 7] because they cannot

handle all requests emanating from IoT devices located in their radius of coverage. To overcome

this problem, computational offloading within the fog computing paradigm is one of the solutions

that helps to improve the utilisation of available resources at FNs and allows for the processing

of end-user tasks [8-10].

In fog computing, computational offloading refers to the cooperation between fog nodes in the

same layer or with upper layers in which overloaded FNs delegate part of the workload to

underloaded FNs within their proximity [9, 11] (we refer to such proximal fog nodes as forming

a “neighbourhood”). Offloading, in this sense, refers to the sharing of the workload amongst the

David C. Wyld et al. (Eds): ACITY, DPPR, VLSI, WeST, DSA, CNDC, IoTE, AIAA, NLPTA - 2020
pp. 139-158, 2020. CS & IT - CSCP 2020 DOI: 10.5121/csit.2020.101513

http://airccse.org/cscp.html
http://airccse.org/csit/V10N15.html
https://example.com
https://doi.org/10.5121/csit.2020.101513

nodes to minimise the overall latency of end-user tasks and improve QoS for user applications

[11-13]. Computational offloading aims to maximise usage of the available fog resources,

however at the expense of increasing energy use of fog nodes. An open research challenge

considered in this work is understanding when a FN will decide to dynamically offload its

workload and to which other FNs in the neighbourhood. This timely decision making is critical

but challenging, especially within a dynamic system, where tasks generation cannot be known a

priori. Another important question is understanding how to manage energy of fog resources, while

still exploiting most of the available resources. The optimization problem of minimising the delay

and the energy consumption has been decomposed into two sub-problems, named delay

minimization problem and energy saving problem. The main objectives of this work can be

summarised as following: (i) maximising the utilisation of resource-constrained fog nodes; (ii)

minimising application loop delay; (iii) improving throughput of user tasks; (v) optimising energy

consumption of fog nodes. This paper is structured as follows. The related works are introduced

in Section 2. We describe the model of the fog computing system and constraints in Section 3. In

Section 4, we explained the problem formulation. In Section 5, the proposed algorithms are

presented. Simulations are conducted in Section 6 with numerical results, and concluding remarks

are drawn in Section 7 with future work.

2. RELATED WORK

This section is divided into two main parts. The first focuses on computational offloading between

entities within a specific system model; the second addresses the effect of dynamically controlling

servers to improve power efficiency (e.g. either switching servers on and off as required or

running them at lower capacity to improve power efficiency).

2.1. Computational Offloading

Offloading computing tasks to a cloud data centre and/or neighbouring fog computing servers has

received considerable attention in other publications [4, 8, 9, 12-15]. Due to the differences in

system models, existing works can be categorised as outlined below:

2.1.1. Computation Offloading in IoT-Fog-Cloud Computing Systems

IoT devices can be tasks generators and can process their own tasks aided by either fog or cloud

resources, or both. The following scenarios illustrate this point:

(i) An end-user device either processes its tasks locally or chooses to offload them to the nearest

fog node for processing (this is referred to as the IoT-Fog computing system). In this scenario,

Tang et al. [12] aimed to maximise the total number of executed tasks on IoT devices and fog

nodes while meeting the deadline requirements under energy constraints. The authors formulated

the problem as a decentralised, partially observable offloading optimisation problem in which end

users are partially aware of their local system status which includes the current number of

remaining tasks, the level of battery power and the availability of the nearest fog node resource

(availability is based on the number of tasks in the fog node’s queue). These criteria are used to

determine whether to process tasks locally or offload them to the nearest fog node. The suggested

solution enables the IoT device to make an approximate optimal decision based on its locally

observed system while meeting the delay requirements. Chen and Hao [15] investigated the task

offloading problem in a dense software-defined network. The authors describe the problem as a

mixed-integer nonlinear problem and decomposed it into two sub-problems: (1) deciding whether

the end-user device should process its tasks locally or offload them to the edge device and (2)

determining how many computational resources should be given to each task. To solve these sub-

problems, the authors proposed an efficient software-defined task offloading scheme. The results

of their proposed scheme, compared to random and uniform offloading schemes, demonstrate the

effectiveness of their solution in decreasing the overall task execution time and the end-user

device’s energy consumption.

Computer Science & Information Technology (CS & IT)140

(ii) To determine whether end-user tasks should be processed on the end-user device, on the fog

nodes or on the cloud servers (this is referred to as the IoT-Fog-Cloud computing system), Sun et

al. [14] Since processing tasks are not limited to fog nodes, most tasks are processed either on

the IoT devices (if they have the computational capacity), or on cloud servers as long as the task

deadline is not violated. This leads to fewer tasks being processed within the fog environment,

thereby reducing the energy consumed in fog nodes. Computational offloading has been studied

in fog radio access networks [13] to achieve minimum system cost, which is the weighted sum of

total energy consumption and total offloading latency. In their work, task latency only involves

computation and transmission latency – no queuing latency is considered. To enhance the

offloading decision, along with improving resource allocation for computation and radio

resources, Zhao et al. have formulated the problem as a non-linear, non-convex joint optimisation

problem. Their proposed solution has proven its effectiveness in comparison both to the mobile

cloud computing system (MCC), in which all user tasks are processed on a cloud server, and to

the mobile edge computing system (MEC), in which all end-user tasks are executed in the edge

computing system. This is attributed to the fact that, in their model, both the fog and the cloud

computation resources are available to support the offloading scheme.

(iii) In this scenario, in addition to the previous scenario, fog nodes can make the decision to

offload the workload partially or fully to another fog node (this is referred to as the IoT-Fog-Fog-

Cloud computing system. In [11], Yousefpour et al. proposed a delay-minimisation policy to

reduce the overall service delay. In their work, the decision for a fog node to process its upcoming

task(s), or either to offload to one of its neighbours (horizontal cooperation) or to the cloud server,

is based on the estimated queue waiting time. If the offloading (queue waiting time) threshold has

been reached, then a fog node will select one of the neighbouring fog nodes in its domain to

offload its upcoming tasks to. The selection of the best neighbouring fog node is based on

minimising total propagation delay plus queuing delay. Three different models have been

considered and compared. In the first model, there is no processing of tasks in the fog system

(NFP), so an IoT device either processes its own requests or sends them to a cloud data centre.

The second model only allows for the processing of light computational tasks in the fog system

with heavy computational tasks being processed in the cloud (LFP). In the third model, fog

computing can process all types of tasks (AFP). The results show that AFP achieved the minimum

average service delay compared to the two previous models.

2.1.2. Computation Offloading in Fog-cloud Computing Systems

In this approach the end-user devices offload all their computational tasks to the associated fog

nodes for processing. The associated fog nodes can choose to offload part of their computational

workload to another fog node or to the cloud, thereby exploiting fog and cloud resources to

process end-user tasks. Gao et al. [9] investigated dynamic offloading and resource allocation,

formulating the problem as a stochastic network optimisation to minimise delay and power

consumption while ensuring the stability of all queues in the system. They present a predictive

offloading and resource allocation approach that focuses on the trade-off between energy

consumption and delay. Their approach suggests that increasing the allocation of processing

resources in fog nodes causes a reduction in delay but increases energy consumption due to the

processing of additional tasks and vice versa. The authors demonstrate the benefit of their

approach compared to other schemes.

In [4], Xiao and Krunz developed a workload offloading strategy that maximises the average

response time of all end-user tasks that are given a power efficiency constraint. In their

experiment, power consumption is measured as the power spent on offloading each unit of

received workload, but the power consumed to execute workloads is not considered. The decision

for fog nodes to start cooperating and offload the workload is made through an agreement between

the parties, and the amount of workload to be offloaded is based on the workload processing

capabilities and the workload arrival rates. Based on their results, cooperation between fog nodes

Computer Science & Information Technology (CS & IT) 141

helps to decrease the average response time. They also observed a fundamental trade-off between

the average response time and the power efficiency of the fog node. The authors suggested that

in order to optimise the power efficiency of the fog computing systems the response time of end-

user tasks should be set to its maximum tolerable point, which means that when end-user tasks

can stand higher delay there is no need to offload tasks to save energy. In addition, the authors

stated that with delay-sensitive applications it is better to equip fog nodes with high-power

consumption so that they are able to share more of their workload with other fog nodes, thus

minimising response time.

2.1.3. Computation offloading in Fog Computing Systems

In this computing system, only fog resources are available to process end-user tasks, but no

processing in the cloud is considered. Considering computation resources, Mukherjee et al. [16]

designed a scheduling policy that manages to meet the deadline constraint of end-user tasks. In

their scheduling policy, the deadline requirements of a task determine whether a fog node places

it in its high priority queue, in its low priority queue or offloads it to one of its neighbouring fog

nodes within the same tier. The decision whether to process the task or offload it to its neighbours

is based on the availability of a neighbour with a lower transmission delay plus lower queue length

of a specified type. Their results show the effectiveness of their proposed policy when compared

to (a) an approach where no offloading is involved, and the fog node assigns its upcoming tasks

randomly to one of its two queues with no consideration to priority and (b) an approach where

workload offloading occurs between fog nodes with random task scheduling to any queue without

considering their priority.

2.2. Dynamic Server Energy Management

Related work in this area is classified into two sections based on the environment in which this

technique has been applied, which are Cloud Computing systems and Wireless Local Area

Networks (WLANs). This technique has not been applied in fog computing system, while it has

proved its efficiency in other environments.

2.2.1. Cloud Computing System

To save energy in a cloud environment, it has been proposed that servers should be dynamically

shut down [17, 18] or put into sleep mode [19-21]. The authors in [17-21] investigated the

problem of Virtual Machine (VM) placement to save energy and still maintaining QoS. In their

work, underloaded data centres were detected and shutdown as per [17, 18] or put in a sleep mode

as per [19-21]. All VMs in those data centres where then be migrated to other active underloaded

data centres. This is done to minimise the energy consumed by cloud computing systems and is

called ‘VM consolidation’. For overloaded data centres, different VM selection methods have

been proposed to decide which VMs should be migrated to other active data centres. Furthermore,

a switched-off data centre could be activated to accommodate the migrated VMs to ensure QoS

requirements in the system are met. The researchers saved the most energy when putting idle-

mode data centres into sleep or shutdown mode.

Mahadevamangalam in [19] stated that in a cloud environment, idle-mode data centres with no

workload consume energy equivalent to 70% of the energy consumed by data centres that are

fully utilised and in busy mode. Therefore, shutting down idle-mode data centres will save up to

70% of the energy consumed in a cloud environment.

2.2.2. Wireless Local Area Networks (WLANs)

In WLANs, putting access points (APs) into sleep mode or switching them off has improved the

energy efficiency of WLANs. In [22], Marsan and Meo found that in a group of APs that partially

overlap, having one AP in each group to monitor the system and serve the upcoming users while

all others are switched off can reduce energy consumption by up to 40%. In addition, if all APs

Computer Science & Information Technology (CS & IT)142

are switched off during idle periods, e.g. at night, energy consumption could be reduced by a

further 60%. Li et al. [23] proposed a state transitions-aware energy-saving mechanism in which

APs are not just switched on and off based on user demand, but there is also an intermediate stage

that helps make the switching frequency as low as possible. This is to avoid frequently switching

APs on and off as this will shorten their service life and also to avoid latency and energy overheads

when APs are switched on.

2.3. Summary

In connection with minimising delay, computational offloading has been proposed in the literature

[4, 8, 9, 11-16, 24]. Computational offloading can be deployed offline or online. In offline

deployment, computational offloading decisions are made at the system design stage. All the

required information about the system is known beforehand and is based on historical or

predictive knowledge, such as the computational capacity of fog nodes, the total number of IoT

devices and their workload (number of requests). In online deployment, the decision of

computational offloading takes place at run-time and considers the current system status and

process characteristics, such as the current waiting time. Most research investigating the

offloading problem have considered the offline approach [4, 8, 9, 14, 15, 25] , while online

approach has limited coverage [11-13, 16]. This shed lights on the importance of investigating

the online computational offloading method, our approach primarily makes use of the online

approach. In addition to that, none of the state-of-the-art fog computing models explore the impact

of varying the offloading threshold on the system performance.

Fog computing is designed to place computational resources near the end users. To minimise

delay, the end-users send their requests to the nearest fog node. However, if the fog node is

overloaded, existing mechanisms focus on offloading part of this workload to the cloud for

processing. However, there might be other nearby underloaded fog nodes that could help to

process the workload to further minimise delay. This is called ‘fog cooperation’, but so far it has

received limited coverage [4, 9, 11, 16].

In terms of minimising both delay and energy in the fog paradigm, most studies have addressed

either minimising energy at IoT devices and ignoring the energy spent at the fog paradigm [12,

13, 15] or investigating the trade-off between these two aspects withing fog systems [4, 9, 14]

because executing more tasks at fog nodes will reduce delay and consume more energy while

executing fewer tasks at fog nodes and sending the rest to the cloud will increases delay but

reduces energy consumption at fog paradigm. Therefore, most research addresses the balance

between delay and energy by processing the workload on IoT devices, fog nodes or cloud servers

if the QoS is satisfied. This results in fewer tasks being processed by the fog, thus consuming less

energy as long as the QoS is met (e.g. deadline of users’ tasks). However, there might be

underloaded or idle-mode fog nodes that could be switched off to save energy but still maintain

the benefits of fog architecture, i.e. executing more tasks at fog nodes and thus minimising delay.

To the best of knowledge of this paper’s authors, minimising both delay and energy at the same

time and applying dynamic server energy management by switching on/off fog nodes have not

been addressed before in the fog system.

3. SYSTEM MODELLING AND CONSTRAINTS

System model is presented in section 3.1, and Types of Connections and Constraints is described

in section 3.2.

3.1. System Model

Network diagram is described in section 3.1.1, and application module description in section

3.1.2.

Computer Science & Information Technology (CS & IT) 143

3.1.1 Network Diagram

An overview of the fog computing architecture is shown in Figure.1 and consists of three layers:

• The IoT devices layer: this layer contains of mobile vehicles. The vehicle node has a set of

sensors. Each sensor transmits different types of tasks and an actuator and once they are within

the coverage radius of a fog node, they will send their tasks. Two types of tasks are emitted by

the mobile vehicle. The first type is non-urgent and contains information such as current

location, speed, and direction of the vehicle. The second task is an urgent request that requires

a quick response. For example, this task may contain a video stream of a moving vehicle’s

surroundings, which requires quick processing by fog nodes to help avoid collisions. This

might be important, especially for autonomous driverless vehicles.

• Fog computing layer: this layer consists of a set of fog nodes and a fog controller. Fog nodes

reside in roadside units (RSU) that are deployed in different areas of a city. Fog nodes can

communicate with each other if they are located within each other’s vicinity [26]. Fog nodes

can form an ad hoc network between themselves to share and exchange data. All fog nodes

are logically connected to the fog controller which monitors the performance of all fog nods

and manages the resources. The fog nodes are static and receive two different types of tasks

from all vehicles within their radius. These tasks are called priority and non-priority tasks.

Regarding priority tasks, fog nodes process requests generated by a user’s sensor and send

the response back to the user. For non-priority tasks, fog nodes do some processing of the

information provided by the vehicles within their range and send the results to the cloud for

further analysis and storage for retrieval by traffic management organisations.

• Cloud computing layer: this layer contains cloud servers. It manages and controls the traffic

at the city-level based on historical data received by fog nodes.

Figure 1: Fog Computing Model

3.1.2 Application module description

The application model of this study consists of three modules named Road Monitor, Global Road

Monitor and Process Priority Tasks. The first two modules are responsible for traffic light control

systems and the last module is only for processing end-user priority tasks. The function of each

of these modules is as follows:

Computer Science & Information Technology (CS & IT)144

• Road Monitor: this module is placed in fog nodes. If a vehicle enters an area within the coverage

of a fog node, the sensor automatically sends the current car location, its speed, weather conditions

and road conditions to the connected fog node for analysis. Then the module processes these data

and the results are sent to the cloud for further analysis.

• Global Monitor: this module is placed in the cloud and receives the collected data from fog

nodes (after being processed by the Road Monitor module), analyses these data and stores the

results.

• Process Priority task: this module is placed in fog nodes and is responsible for processing the

priority requests from the user. The results are then sent back to the user. The application in

iFogSim is represented as a directed acyclic graph (DAG) = (M, E) where M is the set of

application modules deployed = {m1, m2, m3, ... , mn}, e.g. Process Priority Task, Road Monitor

and Global Road Monitor modules. Between application modules, there is a set of edges

belonging to E, which represents the data dependencies between application modules. This is

shown in Figure.2.

Figure 2: Directed Acyclic Graph (DAG) of the application model.

3.2 Types of Connections and Constraints

This section describes the connections between a vehicle and a fog node, between fog nodes, and

between fog nodes and cloud. Also, the set of constraints involved within these connections.

3.2.1 Connection between Vehicles and Fog nodes

The connection between a vehicle and a fog node is made with communication and processing

constraints.

• Communication Constraints

Vehicles connect to the fog node if and only if it is located within its communication range, as

constraint (1)

 𝑫𝒗,𝒇 ≤ 𝒎𝒂𝒙 𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆𝒇; ∀ 𝒗 ∈ 𝑽, ∀ 𝒇 ∈ 𝑭𝑵 (1)

Where V is all vehicles, v one vehicle, FN is all fog nodes and f is one fog node. D v,f is the

distance between a vehicle v and a fog node f, is calculated as

Computer Science & Information Technology (CS & IT) 145

 𝑫𝒗,𝒇 = √(𝑿𝒗 − 𝑿𝒇) + (𝒀𝒗 − 𝒀𝒇); ∀ 𝒗 ∈ 𝑽, ∀ 𝒇 ∈ 𝑭𝑵 (2)

where (XV, YV) and (Xf, Yf) are the coordinates of a vehicle and a fog node, respectively. If a

vehicle is located within the coverage radius of more than one fog node it will connect to the

nearest fog node. This to reduce delay because the expected arrival time of the task at the

connected fog node depends on the transmission and the propagation delay, but the propagation

delay depends solely on the distance between the two connected objects. Propagation delay (PD)

is calculated as

 𝑷𝑫 =
𝑫𝒗,𝒇

𝑷𝑺
 (3)

Following [27], we assume that the speed of signal propagation (PS) is equal to the speed of light,

c = 3 × 108.

• Processing Constraints

For fog nodes to process user tasks, application modules in which these tasks are processed should

be placed at fog nodes. To ensure the placement of these application modules, application

modules require CPU, Ram and Bandwidth capacity so that fog nodes will have enough CPU,

Ram and Bandwidth capacity to place these application modules, thus processing end-user tasks

at the fog paradigm.

 ∑ 𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚

𝑴

𝒊=𝟎

𝒎𝒊 ≤ ∑ 𝑨𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 𝒇; ∀𝒎𝒊 ∈ 𝐌, ∀𝒇 ∈ 𝐅𝐍 (4)

Where 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 for each application module = {CPU, Ram, Bandwidth} and the fog node

capacity = {CPU, Ram, Bandwidth}. Constraint (4) ensures that the total required capacity of all

application modules should not exceed the available capacity of the fog node in which they should

be placed. In iFogSim, if the capacity required to place application modules exceeds the available

capacity of fog nodes, the system will iterate through upper tiers fog computing system until it

reaches the cloud and places these application modules. The CPU required for an application

module is calculated as following:

 𝑪𝑷𝑼 = 𝑵𝑽 ∗ (𝑹𝒂𝒕𝒆 ∗ 𝑻𝒂𝒔𝒌𝑪𝑷𝑼) (5)

Where NV is the total number of connected vehicles to a fog node, and TaskCPU is the task CPU

length which is the number of instructions contained in each task in Million Instructions Per

Second (MIPS). Rate is calculated as:

 𝑹𝒂𝒕𝒆 =
𝟏

𝑻𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏 𝑻𝒊𝒎𝒆 𝒊𝒏 𝒎𝒔
 (6)

The placement of application modules in iFogSim is done before running the system and starting

the emission of tasks. If the number of vehicles increases, this will impact the required CPU

capacity for an application module. In this case the number of connected vehicles for each fog

node is limited as constraint (7).

 ∑ 𝒗𝒊

𝑽

𝒊=𝟎

𝒇𝒋 ≤ 𝑴𝑨𝑿𝒗𝒆𝒉𝒊𝒄𝒍𝒆 𝒏𝒖𝒎𝒃𝒆𝒓; ∀ 𝒗𝒊 ∈ 𝑽, ∀ 𝒇𝒋 ∈ 𝑭𝑵 (7)

Computer Science & Information Technology (CS & IT)146

3.2.2 Connection between Fog nodes

This section describes the waiting queue for fog nodes in which the offloading decision is

determined, how fog nodes communicate and the selection criteria for the best neighbouring fog

node.

• Fog nodes’ waiting queue

Each fog node maintains a waiting queue into which tasks are placed upon their arrival at the fog

node. Fog nodes process one task at a time. Once the execution of that task is completed the fog

node will check its waiting queue and process the next task according to its scheduling policy, i.e.

first come, first served. This process continues until no tasks are in the waiting queue. Following

the work [11], the waiting queue time triggers the decision to start computational offloading to

neighbouring fog nodes. To start sharing workloads, the queue waiting time (𝑻𝑸𝒖𝒆𝒖𝒆) should exceed

the offloading threshold, e.g. 50ms, 100ms or 200ms.

 𝑻𝑸𝒖𝒆𝒖𝒆 > 𝑴𝒂𝒙𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 (8)

𝑇𝑄𝑢𝑒𝑢𝑒 is calculated as

 𝑻𝑸𝒖𝒆𝒖𝒆 = ∑ 𝑻𝒊 ∗ 𝑻𝒊
𝒑𝒓𝒐𝒄𝒆𝒔𝒔

+ ∑ 𝑻𝒛 ∗ 𝑻𝒛
𝒑𝒓𝒐𝒄𝒆𝒔𝒔

; ∀ 𝒊, 𝒛 ∈ 𝑻 (9)

Where Ti and Tz are the total number of tasks of the type i and z, e.g. priority or non-priority. T is

all tasks and 𝑇𝑖
𝑝𝑟𝑜𝑐𝑒𝑠𝑠 is the expected execution time of a specific task and calculated as

 𝑻𝒑𝒓𝒐𝒄𝒆𝒔𝒔 =
𝑻𝒂𝒔𝒌𝑪𝑷𝑼

𝑭_𝑴𝑰𝑷𝑺 ∗ 𝑵 𝒐𝒇 𝑷𝑺
 (10)

Where F_MIPS is the total mips available in a fog node and N of PS is the total number of

processing units allocated in that fog node.

• Coverage Method

To achieve area coverage, several fog nodes are required. Fogs can also overlap to achieve

maximum coverage as in [28] see Figure. 3.

Figure 3: Overlapping Fog Nodes.

• Selecting the Best Neighbouring Fog Node

The process of selecting the best neighbouring fog node follows the work in [11]. It happens

when a fog node reaches its offloading threshold, e.g. 50ms, 100ms or 200ms waiting queue time,

for each upcoming task that is generated from vehicles in the coverage range of this fog node.

Computer Science & Information Technology (CS & IT) 147

The neighbouring fog nodes of a fog node are the fog nodes that are located within the coverage

radius of the fog node itself. This is shown in constraint (11)

 𝒅𝒊𝒋 ≤ 𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆𝒓𝒂𝒅𝒊𝒖𝒔; ∀ 𝒊, 𝒋 ∈ 𝑭𝑵 (11)

Where dij is the distance between fog nodes i and j. In Figure. 3, FOG 2 and FOG 3 are the

neighbouring fog nodes for FOG 1. Also, FOG 1, FOG 4, FOG 5 are the neighbouring fog nodes

for FOG 3. The criteria for selecting the best neighbouring fog node depends on two factors. First,

the neighbouring fog node should be within the communication range of the primary fog node.

Second, and most importantly, a neighbouring fog node should have the minimum sum of waiting

queue time plus propagation delay amongst all available neighbours.

 𝑴𝒊𝒏 ∑ 𝑻𝑸𝒖𝒆𝒖𝒆 + 𝑷𝑫 (12)

PD is calculated as

 𝑷𝑫 =
𝑫𝒇,𝒇′

𝑷𝑺
 (13)

(𝑫𝒇,𝒇′) is the distance between fog nodes f and f’and it is calculated similar the distance between

a vehicle and a fog node (𝑫𝒗,𝒇) and propagation speed PS is equal to the speed of light, its value

3×108, this done similar to the work in [27].

3.2.3 Between Fog Nodes and the Cloud

When fog nodes finish the processing of non-urgent tasks the results are sent to the cloud for

further analysis and processing by the application module named Global Road Monitor. In the

current work, the cloud is the least to be considered in sharing the workload of fog nodes when

they reach the offloading threshold. This is due to the availability of neighbouring fog nodes and

in order to get maximum usage of the available resources in the fog system. However, if all

neighbours reach their offloading threshold, the primary fog node will determine to send the task

to the cloud if its queue waiting time is higher than transmission delay caused by sending the task

for processing to the cloud and getting the results back. Due to the powerful computational

capabilities at the cloud server compared to fog nodes, queueing delay is neglected so tasks are

processed upon their arrival [29-31] .

4. PROBLEM FORMULATION

The optimisation problem of minimising the delay and the energy consumption has been

decomposed into two sub-problems: the delay minimisation problem and the energy saving

problem.

4.1 Delay Minimization Problem

The response time includes the round-trip time for transmitting the workload between a user and

the associated fog node. It includes the transmission delay, propagation delay, queuing delay and

processing delay. If the workload is processed by the vehicle’s primary fog node then the service

latency is calculated as

 𝑻 = 𝑻𝒔𝑻𝒗 + 𝟐 𝑿 (𝑻𝒗𝑻𝒇
𝑻𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒊𝒐𝒏 + 𝑷𝑫𝒗𝑻𝒇) + 𝑻𝑸𝒖𝒆𝒖𝒆 + 𝑻𝒑𝒓𝒐𝒄𝒔𝒔 + 𝑻𝒗𝑻𝒂 (14)

Where 𝑻𝒔𝑻𝒗 and 𝑻𝒗𝑻𝒂 is the latency time between a vehicle and its sensor, and between the vehicle

and its actuator, respectively. 𝑻𝒗𝑻𝒇
𝑻𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒊𝒐𝒏 is transmission delay between the vehicle and its

Computer Science & Information Technology (CS & IT)148

primary fog node. It is based on the network length of the task and the bandwidth, and it is

calculated as

 𝑻𝑻𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒊𝒐𝒏 =
𝑵𝒆𝒕𝒘𝒐𝒓𝒌 𝑳𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝑻𝒂𝒔𝒌

𝑩𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉
 (15)

If the primary fog node decides to offload the workload to one of its neighbours, then the latency

is calculated as

𝑻 = 𝑻𝒔𝑻𝒗 + 2 x (𝑻𝒗𝑻𝒇

𝑻𝒓𝒂𝒏𝒔𝒎𝒔𝒊𝒊𝒐𝒏 + 𝑷𝑫𝒗𝑻𝒇)+ 2 x (𝑻𝒇𝑻𝒇
𝑻𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏 + 𝑷𝑫𝒇𝑻𝒇) + 𝑻𝑸𝒖𝒆𝒖𝒆+

𝑻𝑷𝒓𝒐𝒄𝒆𝒔𝒔 + 𝑻𝒗𝑻𝒂
(16)

If the primary fog node decides to send the task to the cloud, then the latency is calculated as

 𝑻 = 𝑻𝒔𝑻𝒗 + 2 x (𝑻𝒗𝑻𝒇
𝑻𝒓𝒂𝒏𝒔𝒎𝒔𝒊𝒊𝒐𝒏 + 𝑷𝑫𝒗𝑻𝒇)+ 2 x (𝑻𝒇𝑻𝒄

𝑻𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏) + 𝑻𝑷𝒓𝒐𝒄𝒆𝒔𝒔 + 𝑻𝒗𝑻𝒂 (17)

 4.2 Energy Saving Problem
By minimising the power consumption of fog nodes, the overall cost of electricity consumption

and environmental impact is reduced. Each fog node has two power modes: idle and busy. The

fog node’s power is said to be in idle mode when the fog node is not doing any task processing

and in busy mode when the fog node is busy processing tasks. The energy consumed is the power

spent when a fog node is processing workload and when the fog node is switched ON and not

doing any processing. The total energy consumption in iFogSim is calculated as in [32] as

 𝑬 = 𝑷𝑹 + (𝑻𝑵 − 𝑳𝑼𝑻) ∗ 𝑳𝑼𝑷 (18)

Where PR is previous total energy consumed in this fog node, TN is the time now which is the

time that the updateEnergyConsumption () is called when utilising this fog node, LUT is the last

time this fog node has been utilised and finally LUP which is the fog node last utilization power

status, which is idle power or busy power, the value of this is based on the predefined parameters

when creating a fog node. The problem of minimizing delay and energy is formulated as follows:

Min ∑ 𝑻 & ∑ 𝑬

s.t. (1), (7), (4)

𝑻𝑸𝒖𝒆𝒖𝒆 ≤ 𝑴𝒂𝒙𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 (19)

 𝑷𝑭 + 𝑷𝑵 = 𝟏, 𝑷 𝑭 & 𝑷 𝑵 = {𝟎, 𝟏} (20)

Equation (1) ensures the connection between a fog node and a vehicle that is located within its

communication range. Equation (7) ensures the number of vehicles connected to one fog node

does not exceed the threshold number. Constraint (4) ensures the placement of application

modules at fog nodes. Equation (19) ensures the stability of fog nodes’ queues so that, to process

its upcoming tasks, the waiting queue time should not exceed its threshold. In constraint (20), PF

and PN mean that if the task is processed in its primary fog node, then PF = 1 and PN = 0 and

vice versa. Therefore, the task is either processed in the primary fog node or one of its neighbours.

5. PROPOSED ALGORITHMS

An approach that combines two algorithms has been proposed to solve the above stated

problem. The first algorithm is called dynamic task allocation and the second is called dynamic

resource saving. In this paper, both stated algorithms need to work together to achieve the

intended outcome.

Computer Science & Information Technology (CS & IT) 149

5.1 Dynamic Task Scheduling (DTS):

The aim of this algorithm is to minimise delay by allowing cooperation between fog nodes in

terms of workload sharing, to maximise the resource utilization and maximise throughput. The

fog controller is not involved in the selection of the best neighbouring fog node, it is mainly

involved in the DEC algorithm. Also, in regards to DTS algorithm, if the best neighbour is

switched OFF, the fog controller will send a signal to switch ON the selected best neighbour, this

is further explained in section 5.2.

The process of offloading a task based on the queue waiting time of the fog nodes was originally

proposed by [11]. In [11], the task can be offloaded multiple times, which means that if the

primary fog node decides to offload the upcoming task to its neighbour i, by the time this task

arrives at fog node i, fog node i might have reached its offloading threshold. Then fog node i will

select fog node j to offload this task to, resulting in offloading this task multiple times and adding

additional transmission and propagation delay. As stated by [11], multiple task offloading will

increase the delay compared to only allowing the task to be offloaded one time, and this is applied

to the current work. The technique is shown in Figure. 4.

When a fog node receives a task, if this task is the first task in its queue it will immediately process

it, if not, it will check its queue waiting time. If its queue did not reach its offloading threshold,

e.g. 50ms, 100ms or 200ms, the task will be added to its queue, but if the queue reaches its

threshold the fog node will check if the task has been offloaded by another fog node. If it has,

then it will add this task to its queue. If it has not been offloaded by another fog node it will select

the best neighbour to offload this task to, according to the criteria described in section 3.2.2. If

the best neighbour reaches its offloading threshold during the selection process and before

offloading the task, then the primary fog node will make the decision whether to offload the task

to the cloud for processing or process the task locally. This is determined when comparing the

transmission delay caused by sending the task for processing to the cloud and getting the results

back with the queuing delay of the fog node itself. if the queueing delay is higher, then the fog

node will send the task for processing to the cloud, else, the task will be processed locally at the

primary fog node.

Figure 4: Flowchart of Dynamic Task Scheduling Algorithm.

Computer Science & Information Technology (CS & IT)150

5.2 Dynamic Energy Control (DEC)

The need for 24/7 availability of fog nodes poses a challenge on energy efficiency and cost since

the fog provider needs to maintain available resources that may be used but are not continuously

needed. If a fog node is not needed it should be turned off to save energy. Dynamic energy control

(DEC) has been proposed in order to optimise resource utilisation by dynamically deciding when

to switch off an active fog node(s) and conserve overall system energy. The pseudo code of our

proposed algorithm is given in Algorithm 1.

In this system, the ON and OFF switching of fog nodes is carried out by the fog controller which

runs algorithm 1 each time it receives information about the system. Fog nodes update the fog

controller with their information so that fog controller can make the appropriate decision to save

energy. At the beginning of the simulation, all fog nodes are switched OFF.

Algorithm 1 Dynamic Energy Controlling

Input: System Data: 1- current waiting time; 2- current processing states; 3- if

awaiting task/s

Output: Sending signals to switch ON/OFF determined FNs

1: Fog Controller receives System data

2: for all FNs do:

3: if (FN. status ==OFF)

4: if (FNQueueSize! = 0)

5: Send Signal ON

6: else

7: else

8: if (processingStatus =1) //fog node is not processing task/s

9: Send Signal OFF

10: else

11: end if

12: end for

6. PERFORMANCE EVALUATION

In this section, we first provide the details of the simulations, then we investigate the performance

of our two comined algorithms.

6.1 Simulation Environment Settings

iFogSim has been used to simulate the environment. It is a toolkit developed by Gupta et. al [33],

which is an extension of the CloudSim simulator. It is a toolkit allowing the modelling and

simulation of IoT and fog environments and is capable of monitoring various performance

parameters, such as energy consumption, latency, response time, cost, etc. For this research, the

three-tier fog system was established first as shown by the simulation in Figure. 1. The simulation

was run with one cloud server, seven fog nodes, the fog controller, and a total of 50 vehicles. Two

fog nodes connected to 25 vehicles, but the other five fog nodes are not connected to any vehicles.

This is done to vary the workload amongst fog nodes because if all fog nodes have the same

workload then offloading will not be beneficial [11]. Each vehicle transmits two different tasks

every 3ms. The parameter values used in the simulation is in Tables 1 - 5.

Computer Science & Information Technology (CS & IT) 151

Table 1: Application Modules Requirements.

Module CPU (mips/vehicle) BW (Mbps) Ram (GB)

Process priority task 333.33 1000 10

Road Monitor 300 1000 10

Global Road Monitor 99.99 1000 10

Table 2: Tasks details.

Task Type Processed module CPU length (MIPS) Network Length

(Mbps)

Request (urgent) Process priority task 1000 1000

Sensor (nonurgent) Road Monitor 900 500

Statistical traffic data Global Road Monitor 300 500

Table 3: Entity Configurations in iFogSim.

Characteristics Vehicle Fog nodes Cloud servers

CPU (MIPS) 0.0 15100 448000

RAM (MB) 0 40000 40000

Uplink BW (Mbps) 1000 1000000 1000000

Downlink BW

(Mbps)

1000 1000000 1000000

Rate Per MIPS 0.0 0.001 0.01

Level 2 1 0

Table 4: Power Consumption with ON/OFF.

Device Power Consumption (W) when

device is ON

Power Consumption (W) when

device is OFF

Idle Busy Power

Fog Node 83.4333 107.339 0.0

Cloud Server 16*103 16*83.25 No

Table 5: Latency values between entities.

Between Link latency (ms)

Cloud Fog node 100 ms

Fog node Neighboring FN 2 ms

Vehicle Fog node [1-5] depends on location

Sensor/Actuator Vehicle 1 ms

6.2 Experiments

The conducted experiments are shown in Table 6. The metrices used to measure the

performance are:

• Service latency as the average round trip time for all tasks processed in the fog environment

• Throughput, which is measured as the total number of processed tasks within a time window.

• Total Energy Consumption in fog environment

Computer Science & Information Technology (CS & IT)152

Table 6: Set of Conducted Experiments Details.

Experiment Dynamic Task Scheduling Dynamic Energy

Controlling no name Yes/No When

1 No offloading no - No

2 no - Yes

3 Offloading-50 yes 50 ms No

4 yes 50 ms Yes

5 Offloading-100 yes 100 ms No

6 yes 100 ms Yes

7 Offloading-200 yes 200 ms No

8 yes 200 ms Yes

6.2.1 Average round trip time

There are two control loops in the simulation:

• Sensor → Process Priority Tasks → Actuator. This control loop represents the path of the

priority requests, and it is called Control loop A.

• Sensor → Road Monitor → Global Road Monitor. This control loop represents the path pf the

non-priority requests, and it is called Control loop B.

Figure 5: Average Round Trip Time with no-offloading and different Offloading Thresholds

The aim here is to minimise the average round-trip time for control loop A, in which the result is

going back to the users, compared to control loop B, in which the user tasks should be processed

at fog nodes and the results sent to the cloud for further analysis and storage. The results in Figure.

6 show that when a fog node is not offloading its tasks to the neighbouring fog nodes, the average

round trip time for all the processed tasks for control loop A is 203.01ms. This is due to the long

queuing delay. However, the average round trip is minimised when the offloading threshold is set

to 50ms. This is because more neighbours are involved in the process of executing tasks. With a

50ms threshold, the average latency of the control loop was reduced by 80.79% compared to the

no-offloading case.

203.01

103.51

62.21

38.99

244.84

141.74
128.77 122.77

0

50

100

150

200

250

No Offloading Offloading -200 Offloading -100 Offloading -50

A
ve

rg
e

 L
at

e
n

cy
 o

f
C

o
n

tr
o

l L
o

o
p

s
in

m

ill
is

e
co

n
d

s

Control Loop A

Conrol Loop B

Computer Science & Information Technology (CS & IT) 153

6.2.2 Throughput Evaluation

According to the results in Figure. 7, when the offloading threshold is set to 50ms the number of

executed tasks is increased by almost 40.88% compared to the no-offloading method. As with the

no-offloading method, many tasks are waiting to be executed in the queue compared to when the

offloading threshold is set to 50ms, the threshold where fog node cooperation is allowed and

workloads (tasks) are shared.

Figure 6:Number of executed Tasks in Fog Nodes with no offloading and different Offloading

Thresholds

6.2.3 Total Energy Consumption

In cases where a dynamic energy control algorithm is not applied the highest energy consumption

in the fog environment occurs when the offloading threshold is set to 50ms. This is because more

fog nodes are involved in the execution process and are in their busy mode power mode. This

compares to the no-offloading method where only two fog nodes are busy processing tasks while

the rest of the fog nodes are not doing any processing and are in their idle power mode (see Figure

8). In the no-offloading method, DEC saves around 66.39% of power. This power was spent

powering on unused fog nodes, which cause a wastage in resources. Applying the DEC algorithm

helps to minimise the total energy consumed in the fog environment by 2.59%, 3.84% and 6.37%

with the various offloading thresholds of 50ms, 100ms and 200ms, respectively. The reason for a

low energy saving with various offloading thresholds compared to a high energy saving with the

no-offloading approach is that the workload of the primary fog nodes is high, thus sharing some

of their workloads with their neighbours. As a result, neighbours staying ON most of the time

helps to process these tasks.

18376

29647
30605 31082

0

5000

10000

15000

20000

25000

30000

35000

No offloading Offloading-200 Offloading-100 Offloading-50

To
ta

l N
u

m
b

e
r

o
f

Ex
e

cu
te

d
 T

as
ks

Computer Science & Information Technology (CS & IT)154

Figure 7: Total Energy Consumed in the fog environment with no offloading and different

offloading thresholds with and without Dynamic Energy Controlling (DEC) algorithm

Varying the offloading threshold of the queuing delay, such as 50ms, 100ms and 200ms does

improve service latency and throughput. However, this is not the case with energy consumption

because more energy is spent by the fog system when the offloading threshold is set to 50ms. This

is because more fog nodes are involved in the execution process and therefore require more power

to work efficiently. However, after applying the DEC algorithm, energy consumption was

reduced. Varying the offloading threshold has not been addressed before in other publications,

but it does have a positive impact on overall results. However, this technique depends on the

number of neighbouring fog nodes that are willing to help and the availability of these fog nodes.

This will be addressed in future work.

7. CONCLUSION

In this paper, we studied the problem of minimising service latency and power consumption in

fog computing systems and proposed a combination of two efficient and effective algorithms:

dynamic task scheduling (DTS) and dynamic energy control (DEC).

In future work, latency and energy overhead caused by activating switched off fog nodes should

be considered, and their impact on the system should be addressed. This is because fog nodes are

operational devices that require time and energy to boot up in contrast to previous work that

powers on switched off datacentres without considering latency and energy overhead. Also,

frequent switching ON and OFF of edge devices might lead to edge device failure in the long

term and shorten the life of edge devices. Therefore, the frequency of switching fog nodes on and

off should be considered and minimised.

637363.05

740,192.61 743,653.03 745,143.30

214187.92

693,064.78
715,109.38 725,877.23

0

150000

300000

450000

600000

750000

No offloading Offloading-200 Offloading-100 Offloading-50

To
ta

l E
n

e
rg

y
C

o
n

su
m

e
d

 a
t

Fo
g

N
o

d
e

s

total Energy consumption without DEC total Energy consumption with DEC

Computer Science & Information Technology (CS & IT) 155

REFERENCES

[1] H. R. Arkian, A. Diyanat, and A. Pourkhalili, "MIST: Fog-based data analytics

scheme with cost-efficient resource provisioning for IoT crowdsensing

applications," Journal of Network and Computer Applications, vol. 82, pp. 152-

165, 2017.

[2] P. Hu, S. Dhelim, H. Ning, and T. Qiu, "Survey on fog computing: architecture,

key technologies, applications and open issues," Journal of network and

computer applications, vol. 98, pp. 27-42, 2017.

[3] K. Ma, A. Bagula, C. Nyirenda, and O. Ajayi, "An iot-based fog computing

model," Sensors, vol. 19, no. 12, p. 2783, 2019.

[4] Y. Xiao and M. Krunz, "QoE and power efficiency tradeoff for fog computing

networks with fog node cooperation," in IEEE INFOCOM 2017-IEEE

Conference on Computer Communications, 2017: IEEE, pp. 1-9.

[5] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya, "Fog

computing: Principles, architectures, and applications," in Internet of things:

Elsevier, 2016, pp. 61-75.

[6] H. F. Atlam, R. J. Walters, and G. B. Wills, "Fog computing and the internet of

things: a review," big data and cognitive computing, vol. 2, no. 2, p. 10, 2018.

[7] B. Jamil, M. Shojafar, I. Ahmed, A. Ullah, K. Munir, and H. Ijaz, "A job

scheduling algorithm for delay and performance optimization in fog computing,"

Concurrency and Computation: Practice and Experience, vol. 32, no. 7, p.

e5581, 2020.

[8] Q. Wang and S. Chen, "Latency‐minimum offloading decision and resource

allocation for fog‐enabled Internet of Things networks," Transactions on

Emerging Telecommunications Technologies, p. e3880, 2020.

[9] X. Gao, X. Huang, S. Bian, Z. Shao, and Y. Yang, "Pora: Predictive offloading

and resource allocation in dynamic fog computing systems," IEEE Internet of

Things Journal, 2019.

[10] R. Mahmud, R. Kotagiri, and R. Buyya, "Fog computing: A taxonomy, survey

and future directions," in Internet of everything: Springer, 2018, pp. 103-130.

[11] A. Yousefpour, G. Ishigaki, and J. P. Jue, "Fog computing: Towards

minimizing delay in the internet of things," in 2017 IEEE international

conference on edge computing (EDGE), 2017: IEEE, pp. 17-24.

[12] Q. Tang, R. Xie, F. R. Yu, T. Huang, and Y. Liu, "Decentralized Computation

Offloading in IoT Fog Computing System With Energy Harvesting: A Dec-

POMDP Approach," IEEE Internet of Things Journal, 2020.

[13] Z. Zhao et al., "On the design of computation offloading in fog radio access

networks," IEEE Transactions on Vehicular Technology, vol. 68, no. 7, pp.

7136-7149, 2019.

[14] H. Sun, H. Yu, G. Fan, and L. Chen, "Energy and time efficient task offloading

and resource allocation on the generic IoT-fog-cloud architecture," Peer-to-Peer

Networking and Applications, vol. 13, no. 2, pp. 548-563, 2020.

[15] M. Chen and Y. Hao, "Task offloading for mobile edge computing in software

defined ultra-dense network," IEEE Journal on Selected Areas in

Communications, vol. 36, no. 3, pp. 587-597, 2018.

[16] M. Mukherjee, M. Guo, J. Lloret, R. Iqbal, and Q. Zhang, "Deadline-aware Fair

Scheduling for Offloaded Tasks in Fog Computing with Inter-fog Dependency,"

IEEE Communications Letters, 2019.

Computer Science & Information Technology (CS & IT)156

[17] M. A. H. Monil, R. Qasim, and R. M. Rahman, "Energy-aware VM

Consolidation Approach Using Combination of Heuristics and Migration

Control."

[18] A. Mosa and N. W. Paton, "Optimizing virtual machine placement for energy

and SLA in clouds using utility functions," Journal of Cloud Computing, vol. 5,

no. 1, p. 17, 2016.

[19] S. Mahadevamangalam, "Energy-aware adaptation in Cloud datacenters," ed,

2018.

[20] M. A. H. Monil and R. M. Rahman, "Implementation of modified overload

detection technique with VM selection strategies based on heuristics and

migration control," in 2015 IEEE/ACIS 14th International Conference on

Computer and Information Science (ICIS), 2015: IEEE, pp. 223-227.

[21] M. A. H. Monil and R. M. Rahman, "VM consolidation approach based on

heuristics, fuzzy logic, and migration control," Journal of Cloud Computing, vol.

5, no. 1, p. 8, 2016.

[22] M. A. Marsan and M. Meo, "Queueing systems to study the energy consumption

of a campus WLAN," Computer networks, vol. 66, pp. 82-93, 2014.

[23] F. Li, X. Wang, J. Cao, R. Wang, and Y. Bi, "A State Transition-Aware Energy-

Saving Mechanism for Dense WLANs in Buildings," IEEE Access, vol. 5, pp.

25671-25681, 2017.

[24] Q. Zhu, B. Si, F. Yang, and Y. Ma, "Task offloading decision in fog computing

system," China Communications, vol. 14, no. 11, pp. 59-68, 2017.

[25] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, "Multiobjective

optimization for computation offloading in fog computing," IEEE Internet of

Things Journal, vol. 5, no. 1, pp. 283-294, 2017.

[26] S. F. Abedin, M. G. R. Alam, N. H. Tran, and C. S. Hong, "A Fog based system

model for cooperative IoT node pairing using matching theory," in 2015 17th

Asia-Pacific Network Operations and Management Symposium (APNOMS),

2015: IEEE, pp. 309-314.

[27] S. A. Soleymani et al., "A secure trust model based on fuzzy logic in vehicular

ad hoc networks with fog computing," IEEE Access, vol. 5, pp. 15619-15629,

2017.

[28] F. T. Zohora, M. R. R. Khan, M. F. R. Bhuiyan, and A. K. Das, "Enhancing the

capabilities of IoT based fog and cloud infrastructures for time sensitive events,"

in 2017 International Conference on Electrical Engineering and Computer

Science (ICECOS), 2017: IEEE, pp. 224-230.

[29] G. Lee, W. Saad, and M. Bennis, "An online secretary framework for fog

network formation with minimal latency," in 2017 IEEE International

Conference on Communications (ICC), 2017: IEEE, pp. 1-6.

[30] S. El Kafhali, K. Salah, and S. B. Alla, "Performance Evaluation of IoT-Fog-

Cloud Deployment for Healthcare Services," in 2018 4th International

Conference on Cloud Computing Technologies and Applications (Cloudtech),

2018: IEEE, pp. 1-6.

[31] L. Liu, Z. Chang, and X. Guo, "Socially aware dynamic computation offloading

scheme for fog computing system with energy harvesting devices," IEEE

Internet of Things Journal, vol. 5, no. 3, pp. 1869-1879, 2018.

Computer Science & Information Technology (CS & IT) 157

[32] D. Rahbari and M. Nickray, "Scheduling of fog networks with optimized

knapsack by symbiotic organisms search," in 2017 21st Conference of Open

Innovations Association (FRUCT), 2017: IEEE, pp. 278-283.

[33] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, "iFogSim: A toolkit

for modeling and simulation of resource management techniques in the Internet

of Things, Edge and Fog computing environments," Software: Practice and

Experience, vol. 47, no. 9, pp. 1275-1296, 2017.

Computer Science & Information Technology (CS & IT)158

© 2020 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

http://airccse.org

