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ABSTRACT 

The increasing use of Internet of Things (IoT) devices generates a greater demand for data transfers and 

puts increased pressure on networks. Additionally, connectivity to cloud services can be costly and 

inefficient. Fog computing provides resources in proximity to user devices to overcome these drawbacks. 

However, optimisation of quality of service (QoS) in IoT applications and the management of fog resources 

are becoming challenging problems. This paper describes a dynamic online offloading scheme in vehicular 

traffic applications that require execution of delay-sensitive tasks. This paper proposes a combination of 

two algorithms: dynamic task scheduling (DTS) and dynamic energy control (DEC) that aim to minimise 

overall delay, enhance throughput of user tasks and minimise energy consumption at the fog layer while 

maximising the use of resource-constrained fog nodes. Compared to other schemes, our experimental 

results show that these algorithms can reduce the delay by up to 80.79% and reduce energy consumption 

by up to 66.39% in fog nodes. Additionally, this approach enhances task execution throughput by 40.88%. 
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1. INTRODUCTION 

Cloud computing plays an important role in processing tasks generated by IoT devices [1]. 

However, as the number IoT devices increases, so does the amount of generated data, and 

processing these data in the cloud may incur significant overhead in multi-hop networks. This is 

because the cloud server is usually remote and spatially distant from the IoT devices, which leads 

to high transmission latency, downgraded performance of latency-sensitive applications and 

network congestion [2]. To address this issue, fog computing (FC) – considered an extension of 

cloud computing (CC) [3, 4] – has been introduced by CISCO [5] which acts as an intermediary 

between the cloud and end-user devices. This brings processing, storage, and networking services 

spatially closer to end devices to reduce latency and network congestion. The main idea behind 

FC is to deploy computing resources, i.e. fog nodes (FNs), at the network edge [3, 6]. FNs can be 

routers, gateways, and access points to which end devices offload their computationally intensive 

tasks. However, FNs are characterised as resource-limited devices  [4, 7] because they cannot 

handle all requests emanating from IoT devices located in their radius of coverage. To overcome 

this problem, computational offloading within the fog computing paradigm is one of the solutions 

that helps to improve the utilisation of available resources at FNs and allows for the processing 

of end-user tasks  [8-10].  

In fog computing, computational offloading refers to the cooperation between fog nodes in the 

same layer or with upper layers in which overloaded FNs delegate part of the workload to 

underloaded FNs within their proximity  [9, 11] (we refer to such proximal fog nodes as forming 

a “neighbourhood”). Offloading, in this sense, refers to the sharing of the workload amongst the 
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nodes to minimise the overall latency of end-user tasks and improve QoS for user applications 

[11-13]. Computational offloading aims to maximise usage of the available fog resources, 

however at the expense of increasing energy use of fog nodes. An open research challenge 

considered in this work is understanding when a FN will decide to dynamically offload its 

workload and to which other FNs in the neighbourhood. This timely decision making is critical 

but challenging, especially within a dynamic system, where tasks generation cannot be known a 

priori. Another important question is understanding how to manage energy of fog resources, while 

still exploiting most of the available resources. The optimization problem of minimising the delay 

and the energy consumption has been decomposed into two sub-problems, named delay 

minimization problem and energy saving problem. The main objectives of this work can be 

summarised as following: (i) maximising the utilisation of resource-constrained fog nodes; (ii) 

minimising application loop delay; (iii) improving throughput of user tasks; (v) optimising energy 

consumption of fog nodes. This paper is structured as follows. The related works are introduced 

in Section 2. We describe the model of the fog computing system and constraints in Section 3. In 

Section 4, we explained the problem formulation. In Section 5, the proposed algorithms are 

presented. Simulations are conducted in Section 6 with numerical results, and concluding remarks 

are drawn in Section 7 with future work. 

2. RELATED WORK 

This section is divided into two main parts. The first focuses on computational offloading between 

entities within a specific system model; the second addresses the effect of dynamically controlling 

servers to improve power efficiency (e.g. either switching servers on and off as required or 

running them at lower capacity to improve power efficiency).  

2.1. Computational Offloading 

Offloading computing tasks to a cloud data centre and/or neighbouring fog computing servers has 

received considerable attention in other publications [4, 8, 9, 12-15]. Due to the differences in 

system models, existing works can be categorised as outlined below: 

2.1.1. Computation Offloading in IoT-Fog-Cloud Computing Systems 

IoT devices can be tasks generators and can process their own tasks aided by either fog or cloud 

resources, or both. The following scenarios illustrate this point: 

(i) An end-user device either processes its tasks locally or chooses to offload them to the nearest 

fog node for processing (this is referred to as the IoT-Fog computing system). In this scenario, 

Tang et al. [12] aimed to maximise the total number of executed tasks on IoT devices and fog 

nodes while meeting the deadline requirements under energy constraints. The authors formulated 

the problem as a decentralised, partially observable offloading optimisation problem in which end 

users are partially aware of their local system status which includes the current number of 

remaining tasks, the level of battery power and the availability of the nearest fog node resource 

(availability is based on the number of tasks in the fog node’s queue). These criteria are used to 

determine whether to process tasks locally or offload them to the nearest fog node. The suggested 

solution enables the IoT device to make an approximate optimal decision based on its locally 

observed system while meeting the delay requirements. Chen and Hao [15] investigated the task 

offloading problem in a dense software-defined network. The authors describe the problem as a 

mixed-integer nonlinear problem and decomposed it into two sub-problems: (1) deciding whether 

the end-user device should process its tasks locally or offload them to the edge device and (2) 

determining how many computational resources should be given to each task. To solve these sub-

problems, the authors proposed an efficient software-defined task offloading scheme. The results 

of their proposed scheme, compared to random and uniform offloading schemes, demonstrate the 

effectiveness of their solution in decreasing the overall task execution time and the end-user 

device’s energy consumption. 
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(ii) To determine whether end-user tasks should be processed on the end-user device, on the fog 

nodes or on the cloud servers (this is referred to as the IoT-Fog-Cloud computing system), Sun et 

al.  [14] Since processing tasks are not limited to fog nodes, most tasks are processed either on 

the IoT devices (if they have the computational capacity), or on cloud servers as long as the task 

deadline is not violated. This leads to fewer tasks being processed within the fog environment, 

thereby reducing the energy consumed in fog nodes. Computational offloading has been studied 

in fog radio access networks [13] to achieve minimum system cost, which is the weighted sum of 

total energy consumption and total offloading latency. In their work, task latency only involves 

computation and transmission latency – no queuing latency is considered. To enhance the 

offloading decision, along with improving resource allocation for computation and radio 

resources, Zhao et al. have formulated the problem as a non-linear, non-convex joint optimisation 

problem. Their proposed solution has proven its effectiveness in comparison both to the mobile 

cloud computing system (MCC), in which all user tasks are processed on a cloud server, and to 

the mobile edge computing system (MEC), in which all end-user tasks are executed in the edge 

computing system. This is attributed to the fact that, in their model, both the fog and the cloud 

computation resources are available to support the offloading scheme. 

(iii) In this scenario, in addition to the previous scenario, fog nodes can make the decision to 

offload the workload partially or fully to another fog node (this is referred to as the IoT-Fog-Fog-

Cloud computing system. In [11], Yousefpour et al. proposed a delay-minimisation policy to 

reduce the overall service delay. In their work, the decision for a fog node to process its upcoming 

task(s), or either to offload to one of its neighbours (horizontal cooperation) or to the cloud server, 

is based on the estimated queue waiting time. If the offloading (queue waiting time) threshold has 

been reached, then a fog node will select one of the neighbouring fog nodes in its domain to 

offload its upcoming tasks to. The selection of the best neighbouring fog node is based on 

minimising total propagation delay plus queuing delay. Three different models have been 

considered and compared. In the first model, there is no processing of tasks in the fog system 

(NFP), so an IoT device either processes its own requests or sends them to a cloud data centre. 

The second model only allows for the processing of light computational tasks in the fog system 

with heavy computational tasks being processed in the cloud (LFP). In the third model, fog 

computing can process all types of tasks (AFP). The results show that AFP achieved the minimum 

average service delay compared to the two previous models. 

2.1.2. Computation Offloading in Fog-cloud Computing Systems 

In this approach the end-user devices offload all their computational tasks to the associated fog 

nodes for processing. The associated fog nodes can choose to offload part of their computational 

workload to another fog node or to the cloud, thereby exploiting fog and cloud resources to 

process end-user tasks. Gao et al. [9] investigated dynamic offloading and resource allocation, 

formulating the problem as a stochastic network optimisation to minimise delay and power 

consumption while ensuring the stability of all queues in the system. They present a predictive 

offloading and resource allocation approach that focuses on the trade-off between energy 

consumption and delay. Their approach suggests that increasing the allocation of processing 

resources in fog nodes causes a reduction in delay but increases energy consumption due to the 

processing of additional tasks and vice versa. The authors demonstrate the benefit of their 

approach compared to other schemes.  

In [4], Xiao and Krunz developed a workload offloading strategy that maximises the average 

response time of all end-user tasks that are given a power efficiency constraint. In their 

experiment, power consumption is measured as the power spent on offloading each unit of 

received workload, but the power consumed to execute workloads is not considered. The decision 

for fog nodes to start cooperating and offload the workload is made through an agreement between 

the parties, and the amount of workload to be offloaded is based on the workload processing 

capabilities and the workload arrival rates. Based on their results, cooperation between fog nodes 
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helps to decrease the average response time. They also observed a fundamental trade-off between 

the average response time and the power efficiency of the fog node. The authors suggested that 

in order to optimise the power efficiency of the fog computing systems the response time of end-

user tasks should be set to its maximum tolerable point, which means that when end-user tasks 

can stand higher delay there is no need to offload tasks to save energy. In addition, the authors 

stated that with delay-sensitive applications it is better to equip fog nodes with high-power 

consumption so that they are able to share more of their workload with other fog nodes, thus 

minimising response time. 

2.1.3. Computation offloading in Fog Computing Systems 

In this computing system, only fog resources are available to process end-user tasks, but no 

processing in the cloud is considered. Considering computation resources, Mukherjee et al. [16] 

designed a scheduling policy that manages to meet the deadline constraint of end-user tasks. In 

their scheduling policy, the deadline requirements of a task determine whether a fog node places 

it in its high priority queue, in its low priority queue or offloads it to one of its neighbouring fog 

nodes within the same tier. The decision whether to process the task or offload it to its neighbours 

is based on the availability of a neighbour with a lower transmission delay plus lower queue length 

of a specified type. Their results show the effectiveness of their proposed policy when compared 

to (a) an approach where no offloading is involved, and the fog node assigns its upcoming tasks 

randomly to one of its two queues with no consideration to priority and (b) an approach where 

workload offloading occurs between fog nodes with random task scheduling to any queue without 

considering their priority.  

2.2. Dynamic Server Energy Management 

Related work in this area is classified into two sections based on the environment in which this 

technique has been applied, which are Cloud Computing systems and Wireless Local Area 

Networks (WLANs). This technique has not been applied in fog computing system, while it has 

proved its efficiency in other environments. 

2.2.1. Cloud Computing System 

To save energy in a cloud environment, it has been proposed that servers should be dynamically 

shut down  [17, 18] or put into sleep mode [19-21]. The authors in [17-21] investigated the 

problem of Virtual Machine (VM) placement to save energy and still maintaining QoS. In their 

work, underloaded data centres were detected and shutdown as per  [17, 18] or put in a sleep mode 

as per [19-21]. All VMs in those data centres where then be migrated to other active underloaded 

data centres. This is done to minimise the energy consumed by cloud computing systems and is 

called ‘VM consolidation’. For overloaded data centres, different VM selection methods have 

been proposed to decide which VMs should be migrated to other active data centres. Furthermore, 

a switched-off data centre could be activated to accommodate the migrated VMs to ensure QoS 

requirements in the system are met. The researchers saved the most energy when putting idle-

mode data centres into sleep or shutdown mode. 

Mahadevamangalam in [19] stated that in a cloud environment, idle-mode data centres with no 

workload consume energy equivalent to 70% of the energy consumed by data centres that are 

fully utilised and in busy mode. Therefore, shutting down idle-mode data centres will save up to 

70% of the energy consumed in a cloud environment. 

2.2.2. Wireless Local Area Networks (WLANs) 

In WLANs, putting access points (APs) into sleep mode or switching them off has improved the 

energy efficiency of WLANs. In [22], Marsan and Meo found that in a group of APs that partially 

overlap, having one AP in each group to monitor the system and serve the upcoming users while 

all others are switched off can reduce energy consumption by up to 40%. In addition, if all APs 
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are switched off during idle periods, e.g. at night, energy consumption could be reduced by a 

further 60%. Li et al.  [23] proposed a state transitions-aware energy-saving mechanism in which 

APs are not just switched on and off based on user demand, but there is also an intermediate stage 

that helps make the switching frequency as low as possible. This is to avoid frequently switching 

APs on and off as this will shorten their service life and also to avoid latency and energy overheads 

when APs are switched on. 

2.3. Summary 

In connection with minimising delay, computational offloading has been proposed in the literature 

[4, 8, 9, 11-16, 24]. Computational offloading can be deployed offline or online. In offline 

deployment, computational offloading decisions are made at the system design stage. All the 

required information about the system is known beforehand and is based on historical or 

predictive knowledge, such as the computational capacity of fog nodes, the total number of IoT 

devices and their workload (number of requests). In online deployment, the decision of 

computational offloading takes place at run-time and considers the current system status and 

process characteristics, such as the current waiting time. Most research investigating the 

offloading problem have considered the offline approach [4, 8, 9, 14, 15, 25] , while online 

approach has limited coverage [11-13, 16]. This shed lights on the importance of investigating 

the online computational offloading method, our approach primarily makes use of the online 

approach. In addition to that, none of the state-of-the-art fog computing models explore the impact 

of varying the offloading threshold on the system performance.   

Fog computing is designed to place computational resources near the end users. To minimise 

delay, the end-users send their requests to the nearest fog node. However, if the fog node is 

overloaded, existing mechanisms focus on offloading part of this workload to the cloud for 

processing. However, there might be other nearby underloaded fog nodes that could help to 

process the workload to further minimise delay. This is called ‘fog cooperation’, but so far it has 

received limited coverage  [4, 9, 11, 16]. 

In terms of minimising both delay and energy in the fog paradigm, most studies have addressed 

either minimising energy at IoT devices and ignoring the energy spent at the fog paradigm [12, 

13, 15] or investigating the trade-off between these two aspects withing fog systems [4, 9, 14] 

because executing more tasks at fog nodes will reduce delay and consume more energy while 

executing fewer tasks at fog nodes and sending the rest to the cloud will increases delay but 

reduces energy consumption at fog paradigm. Therefore, most research addresses the balance 

between delay and energy by processing the workload on IoT devices, fog nodes or cloud servers 

if the QoS is satisfied. This results in fewer tasks being processed by the fog, thus consuming less 

energy as long as the QoS is met (e.g. deadline of users’ tasks). However, there might be 

underloaded or idle-mode fog nodes that could be switched off to save energy but still maintain 

the benefits of fog architecture, i.e. executing more tasks at fog nodes and thus minimising delay. 

To the best of knowledge of this paper’s authors, minimising both delay and energy at the same 

time and applying dynamic server energy management by switching on/off fog nodes have not 

been addressed before in the fog system. 

3. SYSTEM MODELLING AND CONSTRAINTS 

System model is presented in section 3.1, and Types of Connections and Constraints is described 

in section 3.2. 

3.1. System Model 

Network diagram is described in section 3.1.1, and application module description in section 

3.1.2. 
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3.1.1 Network Diagram  

An overview of the fog computing architecture is shown in Figure.1 and consists of three layers: 

• The IoT devices layer: this layer contains of mobile vehicles. The vehicle node has a set of 

sensors. Each sensor transmits different types of tasks and an actuator and once they are within 

the coverage radius of a fog node, they will send their tasks. Two types of tasks are emitted by 

the mobile vehicle. The first type is non-urgent and contains information such as current 

location, speed, and direction of the vehicle. The second task is an urgent request that requires 

a quick response. For example, this task may contain a video stream of a moving vehicle’s 

surroundings, which requires quick processing by fog nodes to help avoid collisions. This 

might be important, especially for autonomous driverless vehicles. 

• Fog computing layer: this layer consists of a set of fog nodes and a fog controller. Fog nodes 

reside in roadside units (RSU) that are deployed in different areas of a city. Fog nodes can 

communicate with each other if they are located within each other’s vicinity [26]. Fog nodes 

can form an ad hoc network between themselves to share and exchange data. All fog nodes 

are logically connected to the fog controller which monitors the performance of all fog nods 

and manages the resources. The fog nodes are static and receive two different types of tasks 

from all vehicles within their radius. These tasks are called priority and non-priority tasks. 

Regarding priority tasks, fog nodes process requests generated by a user’s sensor and send 

the response back to the user. For non-priority tasks, fog nodes do some processing of the 

information provided by the vehicles within their range and send the results to the cloud for 

further analysis and storage for retrieval by traffic management organisations.  

• Cloud computing layer: this layer contains cloud servers. It manages and controls the traffic 

at the city-level based on historical data received by fog nodes. 

 

Figure 1: Fog Computing Model 

3.1.2 Application module description 

The application model of this study consists of three modules named Road Monitor, Global Road 

Monitor and Process Priority Tasks. The first two modules are responsible for traffic light control 

systems and the last module is only for processing end-user priority tasks. The function of each 

of these modules is as follows: 
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• Road Monitor: this module is placed in fog nodes. If a vehicle enters an area within the coverage 

of a fog node, the sensor automatically sends the current car location, its speed, weather conditions 

and road conditions to the connected fog node for analysis. Then the module processes these data 

and the results are sent to the cloud for further analysis. 

• Global Monitor: this module is placed in the cloud and receives the collected data from fog 

nodes (after being processed by the Road Monitor module), analyses these data and stores the 

results. 

• Process Priority task:  this module is placed in fog nodes and is responsible for processing the 

priority requests from the user. The results are then sent back to the user. The application in 

iFogSim is represented as a directed acyclic graph (DAG) = (M, E) where M is the set of 

application modules deployed = {m1, m2, m3, ... , mn}, e.g. Process Priority Task, Road Monitor 

and Global Road Monitor modules. Between application modules, there is a set of edges 

belonging to E, which represents the data dependencies between application modules. This is 

shown in Figure.2. 

 

Figure 2: Directed Acyclic Graph (DAG) of the application model. 

3.2 Types of Connections and Constraints 

This section describes the connections between a vehicle and a fog node, between fog nodes, and 

between fog nodes and cloud. Also, the set of constraints involved within these connections. 

3.2.1 Connection between Vehicles and Fog nodes 

The connection between a vehicle and a fog node is made with communication and processing 

constraints. 

• Communication Constraints  

Vehicles connect to the fog node if and only if it is located within its communication range, as 

constraint (1) 

 𝑫𝒗,𝒇 ≤  𝒎𝒂𝒙 𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆𝒇;  ∀ 𝒗 ∈ 𝑽, ∀ 𝒇 ∈  𝑭𝑵 (1) 

Where V is all vehicles, v one vehicle, FN is all fog nodes and f is one fog node. D v,f is the 

distance between a vehicle v and a fog node f, is calculated as 
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 𝑫𝒗,𝒇 =  √(𝑿𝒗 − 𝑿𝒇) + (𝒀𝒗 −  𝒀𝒇 );    ∀ 𝒗 ∈ 𝑽, ∀ 𝒇 ∈  𝑭𝑵 (2) 

where (XV, YV) and (Xf, Yf) are the coordinates of a vehicle and a fog node, respectively. If a 

vehicle is located within the coverage radius of more than one fog node it will connect to the 

nearest fog node. This to reduce delay because the expected arrival time of the task at the 

connected fog node depends on the transmission and the propagation delay, but the propagation 

delay depends solely on the distance between the two connected objects. Propagation delay (PD) 

is calculated as   

 𝑷𝑫 =
𝑫𝒗,𝒇

𝑷𝑺
 (3) 

Following [27], we assume that the speed of signal propagation (PS) is equal to the speed of light, 

c = 3 × 108. 

• Processing Constraints 

For fog nodes to process user tasks, application modules in which these tasks are processed should 

be placed at fog nodes. To ensure the placement of these application modules, application 

modules require CPU, Ram and Bandwidth capacity so that fog nodes will have enough CPU, 

Ram and Bandwidth capacity to place these application modules, thus processing end-user tasks 

at the fog paradigm. 

 ∑ 𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚

𝑴

𝒊=𝟎

𝒎𝒊 ≤ ∑ 𝑨𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 𝒇; ∀𝒎𝒊 ∈ 𝐌, ∀𝒇 ∈ 𝐅𝐍  (4) 

Where 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 for each application module = {CPU, Ram, Bandwidth} and the fog node 

capacity = {CPU, Ram, Bandwidth}. Constraint (4) ensures that the total required capacity of all 

application modules should not exceed the available capacity of the fog node in which they should 

be placed. In iFogSim, if the capacity required to place application modules exceeds the available 

capacity of fog nodes, the system will iterate through upper tiers fog computing system until it 

reaches the cloud and places these application modules. The CPU required for an application 

module is calculated as following: 

 𝑪𝑷𝑼 = 𝑵𝑽 ∗ (𝑹𝒂𝒕𝒆 ∗ 𝑻𝒂𝒔𝒌𝑪𝑷𝑼) (5) 

Where NV is the total number of connected vehicles to a fog node, and TaskCPU is the task CPU 

length which is the number of instructions contained in each task in Million Instructions Per 

Second (MIPS). Rate is calculated as: 

 𝑹𝒂𝒕𝒆 =
𝟏

𝑻𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏 𝑻𝒊𝒎𝒆 𝒊𝒏 𝒎𝒔
 (6) 

The placement of application modules in iFogSim is done before running the system and starting 

the emission of tasks. If the number of vehicles increases, this will impact the required CPU 

capacity for an application module. In this case the number of connected vehicles for each fog 

node is limited as constraint (7). 

 ∑ 𝒗𝒊

𝑽

𝒊=𝟎

𝒇𝒋 ≤  𝑴𝑨𝑿𝒗𝒆𝒉𝒊𝒄𝒍𝒆 𝒏𝒖𝒎𝒃𝒆𝒓;  ∀ 𝒗𝒊 ∈ 𝑽, ∀ 𝒇𝒋 ∈  𝑭𝑵 (7) 
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3.2.2 Connection between Fog nodes 

This section describes the waiting queue for fog nodes in which the offloading decision is 

determined, how fog nodes communicate and the selection criteria for the best neighbouring fog 

node.  

• Fog nodes’ waiting queue  

Each fog node maintains a waiting queue into which tasks are placed upon their arrival at the fog 

node. Fog nodes process one task at a time. Once the execution of that task is completed the fog 

node will check its waiting queue and process the next task according to its scheduling policy, i.e. 

first come, first served. This process continues until no tasks are in the waiting queue.  Following 

the work [11], the waiting queue time triggers the decision to start computational offloading to 

neighbouring fog nodes. To start sharing workloads, the queue waiting time (𝑻𝑸𝒖𝒆𝒖𝒆) should exceed 

the offloading threshold, e.g. 50ms, 100ms or 200ms. 

 𝑻𝑸𝒖𝒆𝒖𝒆  > 𝑴𝒂𝒙𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 (8) 

 

𝑇𝑄𝑢𝑒𝑢𝑒  is calculated as  

 𝑻𝑸𝒖𝒆𝒖𝒆 =  ∑ 𝑻𝒊 ∗  𝑻𝒊
𝒑𝒓𝒐𝒄𝒆𝒔𝒔

+ ∑ 𝑻𝒛 ∗  𝑻𝒛
𝒑𝒓𝒐𝒄𝒆𝒔𝒔

; ∀ 𝒊, 𝒛  ∈ 𝑻 (9) 

Where Ti and Tz are the total number of tasks of the type i and z, e.g. priority or non-priority. T is 

all tasks and 𝑇𝑖
𝑝𝑟𝑜𝑐𝑒𝑠𝑠 is the expected execution time of a specific task and calculated as 

 𝑻𝒑𝒓𝒐𝒄𝒆𝒔𝒔 =  
𝑻𝒂𝒔𝒌𝑪𝑷𝑼

𝑭_𝑴𝑰𝑷𝑺 ∗ 𝑵 𝒐𝒇 𝑷𝑺
 (10) 

Where F_MIPS is the total mips available in a fog node and N of PS is the total number of 

processing units allocated in that fog node.  

• Coverage Method  

To achieve area coverage, several fog nodes are required. Fogs can also overlap to achieve 

maximum coverage as in  [28] see Figure. 3. 

 

Figure 3: Overlapping Fog Nodes. 

• Selecting the Best Neighbouring Fog Node 

The process of selecting the best neighbouring fog node follows the work in  [11]. It happens 

when a fog node reaches its offloading threshold, e.g. 50ms, 100ms or 200ms waiting queue time, 

for each upcoming task that is generated from vehicles in the coverage range of this fog node. 
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The neighbouring fog nodes of a fog node are the fog nodes that are located within the coverage 

radius of the fog node itself. This is shown in constraint (11) 

 𝒅𝒊𝒋 ≤  𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆𝒓𝒂𝒅𝒊𝒖𝒔;  ∀ 𝒊, 𝒋 ∈  𝑭𝑵 (11) 

Where dij is the distance between fog nodes i and j. In Figure. 3, FOG 2 and FOG 3 are the 

neighbouring fog nodes for FOG 1. Also, FOG 1, FOG 4, FOG 5 are the neighbouring fog nodes 

for FOG 3. The criteria for selecting the best neighbouring fog node depends on two factors. First, 

the neighbouring fog node should be within the communication range of the primary fog node. 

Second, and most importantly, a neighbouring fog node should have the minimum sum of waiting 

queue time plus propagation delay amongst all available neighbours.  

 𝑴𝒊𝒏  ∑ 𝑻𝑸𝒖𝒆𝒖𝒆 + 𝑷𝑫 (12) 

PD is calculated as 

  𝑷𝑫 =  
𝑫𝒇,𝒇′ 

𝑷𝑺
 (13) 

 

(𝑫𝒇,𝒇′) is the distance between fog nodes f and f’and it is calculated similar the distance between 

a vehicle and a fog node (𝑫𝒗,𝒇) and propagation speed PS is equal to the speed of light, its value 

3×108, this done similar to the work in [27]. 

3.2.3 Between Fog Nodes and the Cloud  

When fog nodes finish the processing of non-urgent tasks the results are sent to the cloud for 

further analysis and processing by the application module named Global Road Monitor. In the 

current work, the cloud is the least to be considered in sharing the workload of fog nodes when 

they reach the offloading threshold. This is due to the availability of neighbouring fog nodes and 

in order to get maximum usage of the available resources in the fog system. However, if all 

neighbours reach their offloading threshold, the primary fog node will determine to send the task 

to the cloud if its queue waiting time is higher than transmission delay caused by sending the task 

for processing to the cloud and getting the results back. Due to the powerful computational 

capabilities at the cloud server compared to fog nodes, queueing delay is neglected so tasks are 

processed upon their arrival [29-31] . 

4. PROBLEM FORMULATION 

The optimisation problem of minimising the delay and the energy consumption has been 

decomposed into two sub-problems: the delay minimisation problem and the energy saving 

problem. 

4.1 Delay Minimization Problem 

The response time includes the round-trip time for transmitting the workload between a user and 

the associated fog node. It includes the transmission delay, propagation delay, queuing delay and 

processing delay. If the workload is processed by the vehicle’s primary fog node then the service 

latency is calculated as  

 𝑻 =  𝑻𝒔𝑻𝒗  + 𝟐 𝑿 (𝑻𝒗𝑻𝒇
𝑻𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒊𝒐𝒏  + 𝑷𝑫𝒗𝑻𝒇 ) + 𝑻𝑸𝒖𝒆𝒖𝒆  +  𝑻𝒑𝒓𝒐𝒄𝒔𝒔 + 𝑻𝒗𝑻𝒂 (14) 

Where 𝑻𝒔𝑻𝒗 and 𝑻𝒗𝑻𝒂 is the latency time between a vehicle and its sensor, and between the vehicle 

and its actuator, respectively. 𝑻𝒗𝑻𝒇
𝑻𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒊𝒐𝒏 is transmission delay between the vehicle and its 
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primary fog node. It is based on the network length of the task and the bandwidth, and it is 

calculated as 

 𝑻𝑻𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒊𝒐𝒏 =  
𝑵𝒆𝒕𝒘𝒐𝒓𝒌 𝑳𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝑻𝒂𝒔𝒌

𝑩𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉 
 (15) 

If the primary fog node decides to offload the workload to one of its neighbours, then the latency 

is calculated as  

 
𝑻 =  𝑻𝒔𝑻𝒗 + 2 x ( 𝑻𝒗𝑻𝒇

𝑻𝒓𝒂𝒏𝒔𝒎𝒔𝒊𝒊𝒐𝒏 +  𝑷𝑫𝒗𝑻𝒇 )+ 2 x (𝑻𝒇𝑻𝒇
𝑻𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏 + 𝑷𝑫𝒇𝑻𝒇) + 𝑻𝑸𝒖𝒆𝒖𝒆+ 

𝑻𝑷𝒓𝒐𝒄𝒆𝒔𝒔 + 𝑻𝒗𝑻𝒂 
(16) 

If the primary fog node decides to send the task to the cloud, then the latency is calculated as 

 𝑻 =  𝑻𝒔𝑻𝒗 + 2 x ( 𝑻𝒗𝑻𝒇
𝑻𝒓𝒂𝒏𝒔𝒎𝒔𝒊𝒊𝒐𝒏 +  𝑷𝑫𝒗𝑻𝒇 )+ 2 x (𝑻𝒇𝑻𝒄

𝑻𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏 ) + 𝑻𝑷𝒓𝒐𝒄𝒆𝒔𝒔 + 𝑻𝒗𝑻𝒂 (17) 

 4.2 Energy Saving Problem 
By minimising the power consumption of fog nodes, the overall cost of electricity consumption 

and environmental impact is reduced. Each fog node has two power modes: idle and busy. The 

fog node’s power is said to be in idle mode when the fog node is not doing any task processing 

and in busy mode when the fog node is busy processing tasks. The energy consumed is the power 

spent when a fog node is processing workload and when the fog node is switched ON and not 

doing any processing. The total energy consumption in iFogSim is calculated as in [32] as  

 𝑬 = 𝑷𝑹 + (𝑻𝑵 − 𝑳𝑼𝑻) ∗ 𝑳𝑼𝑷 (18) 

Where PR is previous total energy consumed in this fog node, TN is the time now which is the 

time that the updateEnergyConsumption () is called when utilising this fog node, LUT is the last 

time this fog node has been utilised and finally LUP which is the fog node last utilization power 

status, which is idle power or busy power, the value of this is based on the predefined parameters 

when creating a fog node. The problem of minimizing delay and energy is formulated as follows: 

Min ∑ 𝑻  & ∑ 𝑬 

s.t.   (1), (7), (4) 
 

𝑻𝑸𝒖𝒆𝒖𝒆  ≤ 𝑴𝒂𝒙𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅        (19) 

                                                   𝑷𝑭  + 𝑷𝑵 = 𝟏, 𝑷 𝑭 & 𝑷 𝑵  =  {𝟎, 𝟏}        (20) 

Equation (1) ensures the connection between a fog node and a vehicle that is located within its 

communication range. Equation (7) ensures the number of vehicles connected to one fog node 

does not exceed the threshold number. Constraint (4) ensures the placement of application 

modules at fog nodes. Equation (19) ensures the stability of fog nodes’ queues so that, to process 

its upcoming tasks, the waiting queue time should not exceed its threshold. In constraint (20), PF 

and PN mean that if the task is processed in its primary fog node, then PF = 1 and PN = 0 and 

vice versa. Therefore, the task is either processed in the primary fog node or one of its neighbours. 

5. PROPOSED ALGORITHMS 

An approach that combines two algorithms has been proposed to solve the above stated 

problem. The first algorithm is called dynamic task allocation and the second is called dynamic 

resource saving. In this paper, both stated algorithms need to work together to achieve the 

intended outcome.  
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5.1 Dynamic Task Scheduling (DTS): 

The aim of this algorithm is to minimise delay by allowing cooperation between fog nodes in 

terms of workload sharing, to maximise the resource utilization and maximise throughput. The 

fog controller is not involved in the selection of the best neighbouring fog node, it is mainly 

involved in the DEC algorithm. Also, in regards to DTS algorithm, if the best neighbour is 

switched OFF, the fog controller will send a signal to switch ON the selected best neighbour, this 

is further explained in section 5.2.   

The process of offloading a task based on the queue waiting time of the fog nodes was originally 

proposed by [11]. In [11], the task can be offloaded multiple times, which means that if the 

primary fog node decides to offload the upcoming task to its neighbour i, by the time this task 

arrives at fog node i, fog node i might have reached its offloading threshold. Then fog node i will 

select fog node j to offload this task to, resulting in offloading this task multiple times and adding 

additional transmission and propagation delay. As stated by [11], multiple task offloading will 

increase the delay compared to only allowing the task to be offloaded one time, and this is applied 

to the current work. The technique is shown in Figure. 4.  

When a fog node receives a task, if this task is the first task in its queue it will immediately process 

it, if not, it will check its queue waiting time. If its queue did not reach its offloading threshold, 

e.g. 50ms, 100ms or 200ms, the task will be added to its queue, but if the queue reaches its 

threshold the fog node will check if the task has been offloaded by another fog node. If it has, 

then it will add this task to its queue. If it has not been offloaded by another fog node it will select 

the best neighbour to offload this task to, according to the criteria described in section 3.2.2. If 

the best neighbour reaches its offloading threshold during the selection process and before 

offloading the task, then the primary fog node will make the decision whether to offload the task 

to the cloud for processing or process the task locally. This is determined when comparing the 

transmission delay caused by sending the task for processing to the cloud and getting the results 

back with the queuing delay of the fog node itself. if the queueing delay is higher, then the fog 

node will send the task for processing to the cloud, else, the task will be processed locally at the 

primary fog node. 

 

Figure 4: Flowchart of Dynamic Task Scheduling Algorithm. 
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5.2 Dynamic Energy Control (DEC) 

The need for 24/7 availability of fog nodes poses a challenge on energy efficiency and cost since 

the fog provider needs to maintain available resources that may be used but are not continuously 

needed. If a fog node is not needed it should be turned off to save energy. Dynamic energy control 

(DEC) has been proposed in order to optimise resource utilisation by dynamically deciding when 

to switch off an active fog node(s) and conserve overall system energy. The pseudo code of our 

proposed algorithm is given in Algorithm 1. 

In this system, the ON and OFF switching of fog nodes is carried out by the fog controller which 

runs algorithm 1 each time it receives information about the system. Fog nodes update the fog 

controller with their information so that fog controller can make the appropriate decision to save 

energy. At the beginning of the simulation, all fog nodes are switched OFF. 

Algorithm 1 Dynamic Energy Controlling 

Input: System Data: 1- current waiting time; 2- current processing states; 3- if 

awaiting task/s 

Output: Sending signals to switch ON/OFF determined FNs 

1: Fog Controller receives System data 

2: for all FNs do: 

3:   if (FN. status ==OFF) 

4:     if (FNQueueSize! = 0) 

5:       Send Signal ON 

6:     else 

7:   else 

8:     if (processingStatus =1) //fog node is not processing task/s 

9:       Send Signal OFF 

10:     else  

11:   end if 

12: end for 

6. PERFORMANCE EVALUATION 

In this section, we first provide the details of the simulations, then we investigate the performance 

of our two comined algorithms.  

6.1 Simulation Environment Settings 

iFogSim has been used to simulate the environment. It is a toolkit developed by Gupta et. al [33], 

which is an extension of the CloudSim simulator. It is a toolkit allowing the modelling and 

simulation of IoT and fog environments and is capable of monitoring various performance 

parameters, such as energy consumption, latency, response time, cost, etc. For this research, the 

three-tier fog system was established first as shown by the simulation in Figure. 1. The simulation 

was run with one cloud server, seven fog nodes, the fog controller, and a total of 50 vehicles. Two 

fog nodes connected to 25 vehicles, but the other five fog nodes are not connected to any vehicles. 

This is done to vary the workload amongst fog nodes because if all fog nodes have the same 

workload then offloading will not be beneficial [11]. Each vehicle transmits two different tasks 

every 3ms. The parameter values used in the simulation is in Tables 1 - 5. 
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Table 1: Application Modules Requirements. 

Module CPU (mips/vehicle) BW (Mbps) Ram (GB) 

Process priority task 333.33 1000 10 

Road Monitor 300 1000 10 

Global Road Monitor 99.99 1000 10 

 

Table 2: Tasks details. 

Task Type Processed module CPU length (MIPS) Network Length 

(Mbps) 

Request (urgent) Process priority task 1000 1000 

Sensor (nonurgent) Road Monitor 900 500 

Statistical traffic data Global Road Monitor 300 500 

 

Table 3: Entity Configurations in iFogSim. 

Characteristics Vehicle Fog nodes Cloud servers 

CPU (MIPS) 0.0 15100 448000 

RAM (MB) 0 40000 40000 

Uplink BW (Mbps) 1000 1000000 1000000 

Downlink BW 

(Mbps) 

1000 1000000 1000000 

Rate Per MIPS 0.0 0.001 0.01 

Level 2 1 0 

 

Table 4: Power Consumption with ON/OFF. 

Device Power Consumption (W) when 

device is ON 

Power Consumption (W) when 

device is OFF 

Idle Busy Power 

Fog Node 83.4333 107.339 0.0 

Cloud Server 16*103 16*83.25 No 

 

Table 5: Latency values between entities. 

Between Link latency (ms) 

Cloud Fog node 100 ms 

Fog node Neighboring FN 2 ms 

Vehicle Fog node [1-5] depends on location 

Sensor/Actuator Vehicle 1 ms 

 

6.2 Experiments  

The conducted experiments are shown in Table 6. The metrices used to measure the 

performance are: 

• Service latency as the average round trip time for all tasks processed in the fog environment 

• Throughput, which is measured as the total number of processed tasks within a time window. 

• Total Energy Consumption in fog environment 
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Table 6: Set of Conducted Experiments Details. 

Experiment Dynamic Task Scheduling Dynamic Energy 

Controlling no name Yes/No When 

1 No offloading no - No 

2 no - Yes 

3 Offloading-50 yes 50 ms No 

4 yes 50 ms Yes 

5 Offloading-100 yes 100 ms No 

6 yes 100 ms Yes 

7 Offloading-200 yes 200 ms No 

8 yes 200 ms Yes 

6.2.1 Average round trip time 

There are two control loops in the simulation: 

• Sensor → Process Priority Tasks → Actuator. This control loop represents the path of the 

priority requests, and it is called Control loop A. 

• Sensor → Road Monitor → Global Road Monitor. This control loop represents the path pf the 

non-priority requests, and it is called Control loop B. 

 

Figure 5: Average Round Trip Time with no-offloading and different Offloading Thresholds 

The aim here is to minimise the average round-trip time for control loop A, in which the result is 

going back to the users, compared to control loop B, in which the user tasks should be processed 

at fog nodes and the results sent to the cloud for further analysis and storage. The results in Figure. 

6 show that when a fog node is not offloading its tasks to the neighbouring fog nodes, the average 

round trip time for all the processed tasks for control loop A is 203.01ms. This is due to the long 

queuing delay. However, the average round trip is minimised when the offloading threshold is set 

to 50ms. This is because more neighbours are involved in the process of executing tasks. With a 

50ms threshold, the average latency of the control loop was reduced by 80.79% compared to the 

no-offloading case.  
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6.2.2 Throughput Evaluation 

According to the results in Figure. 7, when the offloading threshold is set to 50ms the number of 

executed tasks is increased by almost 40.88% compared to the no-offloading method. As with the 

no-offloading method, many tasks are waiting to be executed in the queue compared to when the 

offloading threshold is set to 50ms, the threshold where fog node cooperation is allowed and 

workloads (tasks) are shared. 

 

Figure 6:Number of executed Tasks in Fog Nodes with no offloading and different Offloading 

Thresholds 

6.2.3 Total Energy Consumption 

In cases where a dynamic energy control algorithm is not applied the highest energy consumption 

in the fog environment occurs when the offloading threshold is set to 50ms. This is because more 

fog nodes are involved in the execution process and are in their busy mode power mode. This 

compares to the no-offloading method where only two fog nodes are busy processing tasks while 

the rest of the fog nodes are not doing any processing and are in their idle power mode (see Figure 

8). In the no-offloading method, DEC saves around 66.39% of power. This power was spent 

powering on unused fog nodes, which cause a wastage in resources. Applying the DEC algorithm 

helps to minimise the total energy consumed in the fog environment by 2.59%, 3.84% and 6.37% 

with the various offloading thresholds of 50ms, 100ms and 200ms, respectively. The reason for a 

low energy saving with various offloading thresholds compared to a high energy saving with the 

no-offloading approach is that the workload of the primary fog nodes is high, thus sharing some 

of their workloads with their neighbours. As a result, neighbours staying ON most of the time 

helps to process these tasks.  
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Figure 7: Total Energy Consumed in the fog environment with no offloading and different 

offloading thresholds with and without Dynamic Energy Controlling (DEC) algorithm 

Varying the offloading threshold of the queuing delay, such as 50ms, 100ms and 200ms does 

improve service latency and throughput. However, this is not the case with energy consumption 

because more energy is spent by the fog system when the offloading threshold is set to 50ms. This 

is because more fog nodes are involved in the execution process and therefore require more power 

to work efficiently. However, after applying the DEC algorithm, energy consumption was 

reduced. Varying the offloading threshold has not been addressed before in other publications, 

but it does have a positive impact on overall results. However, this technique depends on the 

number of neighbouring fog nodes that are willing to help and the availability of these fog nodes. 

This will be addressed in future work.  

7. CONCLUSION  

In this paper, we studied the problem of minimising service latency and power consumption in 

fog computing systems and proposed a combination of two efficient and effective algorithms: 

dynamic task scheduling (DTS) and dynamic energy control (DEC). 

In future work, latency and energy overhead caused by activating switched off fog nodes should 

be considered, and their impact on the system should be addressed. This is because fog nodes are 

operational devices that require time and energy to boot up in contrast to previous work that 

powers on switched off datacentres without considering latency and energy overhead. Also, 

frequent switching ON and OFF of edge devices might lead to edge device failure in the long 

term and shorten the life of edge devices. Therefore, the frequency of switching fog nodes on and 

off should be considered and minimised. 

 

 

 

 

637363.05

740,192.61 743,653.03 745,143.30

214187.92

693,064.78
715,109.38 725,877.23

0

150000

300000

450000

600000

750000

No offloading Offloading-200 Offloading-100 Offloading-50

To
ta

l E
n

e
rg

y 
C

o
n

su
m

e
d

 a
t 

Fo
g 

N
o

d
e

s

total Energy consumption without DEC total Energy consumption with DEC

Computer Science & Information Technology (CS & IT) 155



REFERENCES 

[1] H. R. Arkian, A. Diyanat, and A. Pourkhalili, "MIST: Fog-based data analytics 

scheme with cost-efficient resource provisioning for IoT crowdsensing 

applications," Journal of Network and Computer Applications, vol. 82, pp. 152-

165, 2017. 

[2] P. Hu, S. Dhelim, H. Ning, and T. Qiu, "Survey on fog computing: architecture, 

key technologies, applications and open issues," Journal of network and 

computer applications, vol. 98, pp. 27-42, 2017. 

[3] K. Ma, A. Bagula, C. Nyirenda, and O. Ajayi, "An iot-based fog computing 

model," Sensors, vol. 19, no. 12, p. 2783, 2019. 

[4]  Y. Xiao and M. Krunz, "QoE and power efficiency tradeoff for fog computing 

networks with fog node cooperation," in IEEE INFOCOM 2017-IEEE 

Conference on Computer Communications, 2017: IEEE, pp. 1-9.  

[5] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya, "Fog 

computing: Principles, architectures, and applications," in Internet of things: 

Elsevier, 2016, pp. 61-75. 

[6] H. F. Atlam, R. J. Walters, and G. B. Wills, "Fog computing and the internet of 

things: a review," big data and cognitive computing, vol. 2, no. 2, p. 10, 2018. 

[7] B. Jamil, M. Shojafar, I. Ahmed, A. Ullah, K. Munir, and H. Ijaz, "A job 

scheduling algorithm for delay and performance optimization in fog computing," 

Concurrency and Computation: Practice and Experience, vol. 32, no. 7, p. 

e5581, 2020. 

[8] Q. Wang and S. Chen, "Latency‐minimum offloading decision and resource 

allocation for fog‐enabled Internet of Things networks," Transactions on 

Emerging Telecommunications Technologies, p. e3880, 2020. 

[9] X. Gao, X. Huang, S. Bian, Z. Shao, and Y. Yang, "Pora: Predictive offloading 

and resource allocation in dynamic fog computing systems," IEEE Internet of 

Things Journal, 2019. 

[10] R. Mahmud, R. Kotagiri, and R. Buyya, "Fog computing: A taxonomy, survey 

and future directions," in Internet of everything: Springer, 2018, pp. 103-130. 

[11]  A. Yousefpour, G. Ishigaki, and J. P. Jue, "Fog computing: Towards 

minimizing delay in the internet of things," in 2017 IEEE international 

conference on edge computing (EDGE), 2017: IEEE, pp. 17-24.  

[12] Q. Tang, R. Xie, F. R. Yu, T. Huang, and Y. Liu, "Decentralized Computation 

Offloading in IoT Fog Computing System With Energy Harvesting: A Dec-

POMDP Approach," IEEE Internet of Things Journal, 2020. 

[13] Z. Zhao et al., "On the design of computation offloading in fog radio access 

networks," IEEE Transactions on Vehicular Technology, vol. 68, no. 7, pp. 

7136-7149, 2019. 

[14] H. Sun, H. Yu, G. Fan, and L. Chen, "Energy and time efficient task offloading 

and resource allocation on the generic IoT-fog-cloud architecture," Peer-to-Peer 

Networking and Applications, vol. 13, no. 2, pp. 548-563, 2020. 

[15] M. Chen and Y. Hao, "Task offloading for mobile edge computing in software 

defined ultra-dense network," IEEE Journal on Selected Areas in 

Communications, vol. 36, no. 3, pp. 587-597, 2018. 

[16] M. Mukherjee, M. Guo, J. Lloret, R. Iqbal, and Q. Zhang, "Deadline-aware Fair 

Scheduling for Offloaded Tasks in Fog Computing with Inter-fog Dependency," 

IEEE Communications Letters, 2019. 

Computer Science & Information Technology (CS & IT)156



[17] M. A. H. Monil, R. Qasim, and R. M. Rahman, "Energy-aware VM 

Consolidation Approach Using Combination of Heuristics and Migration 

Control." 

[18] A. Mosa and N. W. Paton, "Optimizing virtual machine placement for energy 

and SLA in clouds using utility functions," Journal of Cloud Computing, vol. 5, 

no. 1, p. 17, 2016. 

[19] S. Mahadevamangalam, "Energy-aware adaptation in Cloud datacenters," ed, 

2018. 

[20]  M. A. H. Monil and R. M. Rahman, "Implementation of modified overload 

detection technique with VM selection strategies based on heuristics and 

migration control," in 2015 IEEE/ACIS 14th International Conference on 

Computer and Information Science (ICIS), 2015: IEEE, pp. 223-227.  

[21] M. A. H. Monil and R. M. Rahman, "VM consolidation approach based on 

heuristics, fuzzy logic, and migration control," Journal of Cloud Computing, vol. 

5, no. 1, p. 8, 2016. 

[22] M. A. Marsan and M. Meo, "Queueing systems to study the energy consumption 

of a campus WLAN," Computer networks, vol. 66, pp. 82-93, 2014. 

[23] F. Li, X. Wang, J. Cao, R. Wang, and Y. Bi, "A State Transition-Aware Energy-

Saving Mechanism for Dense WLANs in Buildings," IEEE Access, vol. 5, pp. 

25671-25681, 2017. 

[24] Q. Zhu, B. Si, F. Yang, and Y. Ma, "Task offloading decision in fog computing 

system," China Communications, vol. 14, no. 11, pp. 59-68, 2017. 

[25] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, "Multiobjective 

optimization for computation offloading in fog computing," IEEE Internet of 

Things Journal, vol. 5, no. 1, pp. 283-294, 2017. 

[26]  S. F. Abedin, M. G. R. Alam, N. H. Tran, and C. S. Hong, "A Fog based system 

model for cooperative IoT node pairing using matching theory," in 2015 17th 

Asia-Pacific Network Operations and Management Symposium (APNOMS), 

2015: IEEE, pp. 309-314.  

[27] S. A. Soleymani et al., "A secure trust model based on fuzzy logic in vehicular 

ad hoc networks with fog computing," IEEE Access, vol. 5, pp. 15619-15629, 

2017. 

[28]  F. T. Zohora, M. R. R. Khan, M. F. R. Bhuiyan, and A. K. Das, "Enhancing the 

capabilities of IoT based fog and cloud infrastructures for time sensitive events," 

in 2017 International Conference on Electrical Engineering and Computer 

Science (ICECOS), 2017: IEEE, pp. 224-230.  

[29]  G. Lee, W. Saad, and M. Bennis, "An online secretary framework for fog 

network formation with minimal latency," in 2017 IEEE International 

Conference on Communications (ICC), 2017: IEEE, pp. 1-6.  

[30]  S. El Kafhali, K. Salah, and S. B. Alla, "Performance Evaluation of IoT-Fog-

Cloud Deployment for Healthcare Services," in 2018 4th International 

Conference on Cloud Computing Technologies and Applications (Cloudtech), 

2018: IEEE, pp. 1-6.  

[31] L. Liu, Z. Chang, and X. Guo, "Socially aware dynamic computation offloading 

scheme for fog computing system with energy harvesting devices," IEEE 

Internet of Things Journal, vol. 5, no. 3, pp. 1869-1879, 2018. 

Computer Science & Information Technology (CS & IT) 157



[32]  D. Rahbari and M. Nickray, "Scheduling of fog networks with optimized 

knapsack by symbiotic organisms search," in 2017 21st Conference of Open 

Innovations Association (FRUCT), 2017: IEEE, pp. 278-283.  

[33] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, "iFogSim: A toolkit 

for modeling and simulation of resource management techniques in the Internet 

of Things, Edge and Fog computing environments," Software: Practice and 

Experience, vol. 47, no. 9, pp. 1275-1296, 2017. 
 

 

 

 

  

Computer Science & Information Technology (CS & IT)158

© 2020 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

http://airccse.org



