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ABSTRACT 

 
Knowledge representation learning (KRL) aims at encoding components of a knowledge graph 

(KG) into a low-dimensional continuous space, which has brought considerable successes in 

applying deep learning to graph embedding. Most famous KGs contain only positive instances 

for space efficiency. Typical KRL techniques, especially translational distance-based models, 

are trained through discriminating positive and negative samples. Thus, negative sampling is 

unquestionably a non-trivial step in KG embedding. The quality of generated negative samples 

can directly influence the performance of final knowledge representations in downstream tasks, 

such as link prediction and triple classification. This review summarizes current negative 

sampling methods in KRL and we categorize them into three sorts, fixed distribution-based, 

generative adversarial net (GAN)-based and cluster sampling. Based on this categorization we 

discuss the most prevalent existing approaches and their characteristics.  
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1. INTRODUCTION 
 

A knowledge graph (KG) is essentially a structural approach to tell facts. It refers to a network 
whose nodes are real entities or abstract concepts and edges are their in-between relations. Many 
KGs have gained steady development, such as NELL [1], Freebase  [2] and YAGO [3]. They 
store and express ground-truth facts in the form of a triple (head entity, relation, tail entity) or 
(subject, predicate, object). Inspired by word embedding [4], people turned to distributed 
representation of entities and relations instead of one-hot representation that benefits the storage 
of triples but fails in capturing latent semantics.  
 
Knowledge representation learning (KRL) is also known as knowledge graph embedding (KGE), 
it attempts to embed entities and relations in the KG into low-dimensional vector space. In recent 
years, a variety of KRL models have been successively proposed and deployed. Looking at 
conventional translational distance-based TransE [5], semantic matching-based RESCAL [6] or 
the state-of-the-art attention-based KBAT [7] and GAATs [8], they aim to learn better knowledge 
representations to serve knowledge graph completion tasks. KRL models define their own 
scoring functions on account of different embedding modes, which returns a score to measure the 
plausibility of the given triple. Mikolov et al. [4] simplifies noise contrastive estimation (NCE) 
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[9] to negative sampling with the aim of reducing computational complexity. KRL extends this 
strategy that ranks observed (“positive”) instances higher than unobserved (“negative”) ones [10]. 
As seen in translational distance-based models [5, 11-14], they are optimized through partitioning 
scores of positives and negatives with an adaptive margin. A large number of negative samples 
are required in training KRL models. However, most KGs only store ground-truth triples, for the 
sake of space efficiency. Negative sampling thus plays a pivotal role in the training process. The 
widely-used negative sampling method is uniform sampling[5, 12], which replaces the head or 
tail entity of the positive triple with an entity that is uniformly sampled from the entity set of the 
KG. Nevertheless, such generated negative triples are too obviously incorrect and contribute less 
as the training goes on, in most cases. Bernoulli sampling[11] applies different probabilities in 
head and tail replacement to alleviate the problem of false-negative triples. KBGAN [15] and 
IGAN [16] adversarially train the generator to provide better-quality negatives by applying a pre-
trained KRL model as the discriminator. TransE-SNS [17] and NSCaching [18] carry out 
negative sampling in a more concentrated way. Furthermore, enlightened by CKRL [19], NKRL 
[20] puts forward a confidence-aware negative sampling method. Yang et al. [21] recently 
derives the general form of an effective negative sampling distribution, which is of pioneering 
significance. They are the first to deduce the correlation between positive and negative sampling 
distribution. Trouillon et al. [22] further studies the number of negatives generated for each 
positive triple, and elicits that fifty negative samples per positive is a good choice for balancing 
accuracy and training time. 
 
In this review, we summarize current negative sampling methods and divide them into three 
categories, sampling from fixed distribution, sampling from GAN-based framework and 
sampling from custom cluster. Most KRL research focuses on proposing new embedding 
methods or their applications in downstream tasks, such as knowledge graph completion [23], 
question-answering [24] and recommendation [25]. Little attention is paid to negative sampling, 
although it is an influential and crucial step in KRL model training. In KRL surveys [26, 27], 
negative sampling is mentioned but only in a short space. To the best of our knowledge, this 
review is the first work to systematically and exhaustively overview existing negative sampling 
methods in KRL.  
 
Around twelve negative sampling techniques applied in KRL are summarized in our work. 
Definitions and notations, as well as two necessary assumptions before modelling, are briefly 
covered in Section 2. Developments in KRL are presented in Section 3, in which we sort KRL 
models from four perspectives as is routine. Negative sampling is elaborated in Section 4 and this 
presents our main contribution. Finally, this review finishing with a conclusion and future 
research directions.  
 

2. DEFINITIONS, NOTATIONS AND ASSUMPTIONS  
 

In a standard KG, � represents the set of entities, ℝ represents the set of relations. �� and �� are 
sets of the positive triples �� = �ℎ, �, � and the counterpart negative triples respectively. The 
following formula sets out the components of the set ��. In general cases, one KRL model can 
be explained by its own-defined scoring function ���ℎ, �  where ℎ  and �  belong to �  and � 
belongs to ℝ. The relation � maps the head entity ℎ to its tail entity �. The plausibility of each 
possible triple is measured by the scoring function. The higher the plausibility is, the more 
probability for the triple being a piece of truth.  
 

�� ∈ �� 
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�� = ��ℎ’, �, ��ℎ’ ∈ �	�	ℎ’ ≠ ℎ�	�ℎ, �, � ∈ ��� 																				
∪	 ��ℎ, �, �’��’ ∈ �	�	�’ ≠ ��	�ℎ, �, � ∈ ��� 	
∪	��ℎ, �’, ���’ ∈ �	�	�’ ≠ ��	�ℎ, �, � ∈ ��� 

 
KRL models are trained under the open world assumption (OWA) [28] or the closed world 
assumption (CWA) [29]. The CWA states that facts that are not observed in �� are false, while 
the OWA is relaxed to assume that unobserved facts can be either missing or false. Most models 
prefer the OWA due to the incompleteness nature of KGs. The CWA has two main drawbacks, 
worse performance in downstream tasks and scalability issues caused by tremendous negative 
samples [26].  
 

3. KRL MODELS 
 

The goal of KRL is to embed triples �ℎ, �, � into a low-dimensional continuous vector space. A 
scoring function ���ℎ, �is manually defined to calculate the credibility score for the given triple. 
Different models embed semantic information into the vector representation of the KG in 
different ways [26]. By convention, there are mainly two types of KRL models, the Translational 
Distance-based and the Semantic Matching-based. In recent years, neural networks and additional 
information (entity type, path, text, etc.) have also been considered.  
 
Translational distance-based models. The main idea of the translation-based models is to 
measure the distance between the head entity and the tail entity after triples in the KG are 
vectorized. Inspired by translation invariance in word vectors, TransE [5] considers the relation 
vector as a transition from the head to the tail, i.e. ℎ + � ≈ �. A short distance between ℎ + � and 
� reflects high credibility of the given triple. TransH [11] improves TransE to make it more 
applicable for modeling complex relations, like one-to-many and many-to-many. Some other 
variants extend TransE by projecting the embedding vectors of entities into various spaces, such 
as TransR [12], TransD [13] and TransG [14].  
 
Semantic matching-based models. Compared to translational distance-based models, semantic 
matching-based models pay more attention to the latent semantics embodied in vectorized entities 
and relations. They are also called matrix decomposition models. RESCAL [6] is one of the 
earlier works that defines the scoring function based on semantic matching, in which, the relation 
vectors compose the mapping matrix M� between the head and the tail, and the matrix product 
ℎM�� is used to measure the plausibility of triples. DistMult [30] simplifies RESCAL by limiting 
M� to be a diagonal matrix, while ComplEx [22] extends DistMult to the complex field to build 
an antisymmetric-relation model.  
 
Neural network-based models. Applying neural networks in KRL has also seen steady 
progresses. MLP [31] feeds entities and relations into a fully-connected layer to encode semantic 
matching. ConvE [32] attempts to fit the scoring function using 2D convolution. By 
distinguishing relations and entities, RSN [33] introduces a recurrent skip mechanism. KG-BERT 
[34] is based on Transformer (BERT) to integrate KRL and language model pre-training. 
Referring to graph neural networks (GNNs), R-GCN [35] is the pioneer to encode relational data 
with the graph convolutional network framework.   
 
Auxiliary-dependent models. Some work suggests incorporating additional information for 
improvement. Guo et al. [36] considers the entity type to be an extra piece of information and 
assumes that entities of the same type ought to be closer in vector representation. PTransE [37] 
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attempts to describe multi-hop relations between entities through addition, multiplication and 
RNN rules so that the relation paths between entities can be represented by the vector 
calculations of relations. In addition, Wang et al. [38] introduces a joint model adding the text 
information in the embedding process, and Guo et al. [39] comes up with a rule-based KRL 
model combining some rule information. 
 
All the above models require negative samples during training. Before explaining the necessity of 
negative sampling in KRL, its roles in word embedding ought to be mentioned. Both word 
embedding and KGE belong to the scope of unsupervised learning. The softmax function has 
conventionally served as the training objective that approximately maximizes its log probability 
by normalizing with respect to all words in the dictionary, which is highly inefficient and 
computationally expensive. Negative sampling is proposed to simplify the computation. Instead 
of estimating the probability distribution based on the whole dictionary, the final representations 
can be obtained through distinguishing the positive sample from a few negative samples that are 
generated by perturbing the positive one. In view of random walk over graphs, graph structured 
data is similar to natural language, where nodes are as words and links as context. KRL adopts 
negative sampling that is trained by discriminating from a preset number of negative samples, 
rather than modelling conditional on all nodes.  
 
It is noticed that poor negative samples can be easily discriminated and helpless for training. 
However, most KRL studies center on embedding modes and simply apply uniform sampling to 
generate negative training triples [26]. At present, only a few works have been devoted to 
improving the quality of negatives. We outline these methods with the aim of gaining more 
attention to this field. Besides, conventional and the state-of-the-art KRL models, their 
applications and future trends, can be found in the representative surveys [26, 27, 40].  
 

4. NEGATIVE SAMPLING 
 
Negative sampling was first proposed in neural probabilistic language models and labelled as 
importance sampling [41]. Mikolov et al. [4] emphasizes it as a simplified version of NCE [9] to 
benefit the training of word2vec. Extended by word embedding, KGE also takes negative 
sampling as the prerequisite for the model training. Poor or too obviously false negatives are hard 
to capture for latent semantics in the KG and easily cause the zero loss problem as well. 
Conversely, generating better-quality negative triples will facilitate both the smooth running of 
the training and the learned embeddings getting desired performance in assessment tasks. 
Recognising the importance, benefit and standard of negative sampling, many methods have been 
proposed and many approaches have been tested. We survey the existing strategies and present 
them in the following schema.  
 
4.1. Fixed distribution-based sampling 
 
Negative sampling methods of this category are broadly used due to their simplicity and 
efficiency. However, the ignorance of changes over the negative sample distribution can easily 
result in the vanishing gradient problem and impede the model training.  
 
4.1.1. Uniform sampling 

 
Uniform sampling [5]is the earliest, easiest and most widely-used negative sampling method in 
KRL. It refers to constructing negative triples by replacing either the head ℎ or the tail � of a 
positive triple with the entity randomly sampled from the entity set � according to uniform 
distribution. However, in most cases, the uniformly sampled entity is unrelated with the corrupted 
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positive triple, then the formed negative triple is too wrong to facilitate the training. Taking the 
triple (London, locatedIn, UnitedKingdom) as an example, its tail entity UnitedKingdom needs to 
be replaced to produce counterpart negative triples. Under the uniform sampling schema, the 
generated negatives could be (London, locatedIn, apple) or (London, locatedIn, football). These 
low-quality triples will be easily discriminated by the KRL model merely in terms of different 
entity types, which can slow down the convergence [42]. Similarly, IGAN emphasizes the zero 
loss problem in the random sampling mode, and explains the little contribution made by the low-
quality negatives. Translation-based KRL models prefer adopting a marginal loss function with a 
fixed margin to distinguish positive triples from negative ones. Unreliable negatives tend to be 
out of the margin, which easily results in zero loss. Another severe drawback of uniform 
sampling lies in false-negative samples. After replacing the head in (DonaldTrump, Gender, 

Male) with JoeBiden, (JoeBiden, Gender, Male) is still a true fact (false negative). 
 
4.1.2. Bernoulli sampling 

 
To alleviate the false negatives problem, Bernoulli negative sampling [11] suggests replacing 
head or tail entities with different probabilities according to the mapping property of relations. 
That is, to give more chance of replacing the head in one-to-many relations and the tail in many-
to-one relations. Gender is a typical many-to-one relation. Replacing the tail in (DonaldTrump, 

Gender, Male) with high probability unlikely cause false negative triples. If setting constraints on 
entity type, it may generate high-quality negatives. Zhang et al. [43] extends Bernoulli sampling 
by considering relation replacement following the probability � = 	 � �� + �⁄ , here �  is the 
number of relations and � is the number of entities. The rest 1 − � is divided by head entity 
replacement and tail entity replacement according Bernoulli distribution. Such changes enhance 
the ability of KRL models in relation link prediction.  
 
4.1.3. Probabilistic sampling  

 

Kanojia et al. [44]proposes probabilistic negative sampling to address the issue of skewed data 
that commonly exists in knowledge bases. For relations with less data, Uniform or Bernoulli 
random sampling fails to predict the missing part of golden triplets among semantically possible 
options even after hundreds of epochs of training. Probabilistic negative sampling speeds up the 
process of generating corrupted triplets by bringing in a tuning parameter " known as train bias 
that determines the probability by which the generated negative examples are complemented with 
early-listed possible instances. Kanojia et al. evaluates probabilistic negative sampling (PNS) 
over TransR in link prediction, and elicits that TransR-PNS achieves 190 and 47 position gains in 
Mean Rank on benchmark datasets WN18 and FB15K [5] respectively compared to TransR using 
Bernoulli sampling.  
 
4.2. GAN-based sampling 
 
GAN is short for Generative Adversarial Network [45]. In the GAN-based framework, the 
generator is responsible for providing negative samples and the discriminator is the target KRL 
model. Adversarial training is going on between the generator and the discriminator to optimize 
final knowledge representations. Reinforcement learning is required for training GAN [18]. The 
framework can be performed on various KRL models as it is independent of the specific form of 
the discriminator [16]. GAN is capable of modelling dynamic distribution, its generator has 
advantages in providing negative samples with better quality consistently. However, potential 
risks (training instability and model collapse) embodied in reinforcement learning should not be 
neglected.  
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4.2.1. KBGAN 

 
KBGAN [15] is the first work to adapt GAN to negative sampling in KRL. It considers selecting 
one of two translational distance-based KRL models (DistMult [30], ComplEx [22]) as the 
negative sample generator and one of two semantic matching-based KRL models (TransE [5], 
TransD [13]) as the discriminator for adversarial training. The generator produces a probability 
distribution over a candidate set of negatives and selects the one with highest probability to feed 
into the discriminator. The discriminator minimizes the marginal loss between positive and 
negative samples to learn the final embedding vectors. KBGAN combines four Generator-
Discriminator pairs that show better performance than baselines, which reflects the strength of 
the adversarial learning framework.  
 
4.2.2. IGAN 

 
Different from that of KBGAN [15]which considers probability-based, log-loss KRL models as 
the generator, IGAN [16] applied a two-layer fully-connected neural network as its generator to 
supply better quality negative samples. The discriminator is still the desired KRL model. The 
embedding vectors of the corrupted positive triple are fed into the neural network and followed 
by non-linear activation function ReLU. The softmax function is added after to calculate the 
probability distribution over the whole entity set � instead of a small candidate set in KBGAN. 
The quality of the formed negative is measured by the scoring function of the discriminator. 
IGAN can mine negative samples with relatively high quality during adversarial training but 
suffers from high computational complexity.  
 
Comparison between GAN-based and self-adversarial sampling. Adversarial Contrastive 
Estimation (ACE) [46] introduces a general adversarial negative sampling framework for NCE 
that is commonly used in NLP. RotatE [47] thinks that such adversarial framework is difficult to 
optimize since it needs to train the discrete negative sample generator and the embedding model 
simultaneously, which costs a lot in computation. GAN-based sampling has no advantage in 
efficiency. In order to reduce the risk of training instability caused by reinforcement learning, 
both KBGAN and IGAN requires to be pre-trained, which gives rise to extra costs. Therefore, 
RotatE proposes a self-adversarial sampling method based on self-scoring function and avoids 
the requirement of reinforcement learning. Meanwhile, it outperforms KBGAN in link prediction.  
 
4.3. Custom cluster-based sampling 
 
Sampling from custom clusters means that the desired negative sample is selected from a handful 
of candidates rather than sampled from the whole entity set. For example, domain sampling [48] 
suggests to sample from the same domain, and affinity dependent sampling relies on the 
closeness of entities that are measured by cosine similarity. Two more sampling methods, 
TransE-SNS and NSCaching, are elaborated in this section. Reducing the sampling scope makes 
the target of negative sampling more clear, which gains efficiency. Because KGs grow rapidly 
and update frequently, the constant renewal of custom clusters is essential and skilled.  
 
4.3.1. TransE-SNS 

 
Qin et al. [17] puts forward entity similarity-based negative sampling (SNS) to mine valid 
negatives. Inspired by the observation that smaller distance between two entity vectors imply 
their higher similarity in the embedding space, the K-Means clustering algorithm [49] is used to 
divide all entities into a number of groups. An entity is uniformly sampled from the same cluster 
of the replaced head entity to complete the corrupted positive triple and when necessary, the tail 
entity is replaced in the same manner. The negatives generated in a such way should be highly 
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similar to the given positive triple. Adapting SNS to TransE (TransE-SNS) and then evaluating in 
link prediction and triple classification, demonstrates that SNS enhances the ability of TransE. 
 
4.3.2. NSCaching 

 
High-quality negative samples tend to get high plausibility measured by scoring functions.  
Motivated by the skewed score distribution of negative samples, Zhang et al. [18]attempts to only 
track helpful and rare negatives of high plausibility with cache. NSCaching can be considered to 
be in the same group of GAN-based methods since they all parametrize the dynamic distribution 
of negative samples. To be precise, NSCaching is a distilled version of GAN-based methods, 
because it has fewer parameters, it does not need to be trained through reinforcement learning, 
and it also avoids the model collapse problem brought by GAN. After storing the high-quality 
negative triples in cache, NSCaching uniformly samples from the cache and applies importance 
sampling to update it. With more concentrated sampling and more concise training, NSCaching 
performs better than GAN-based methods in terms of efficiency and effectiveness. 
 
4.4. Other novel approaches 
 
We find that there are some novel negative sampling methods that cannot be simply classified 
into the above three categories, such as confidence-aware negative sampling [20] and Markov 
chain Monte Carlo negative sampling [21].  
 
4.4.1. NKRL  

 
Since human knowledge is innumerable and changeable, bypassing crowdsourcing and manual 
efforts in building KGs is the mainstream. Noise and conflicts are inevitably involved due to the 
auto-construction, explosive growth and frequent updates of typical KGs. Xie et al. [19] initially 
proposes a novel confidence-aware KRL framework (CKRL), and Shan et al. [20]extends this 
idea to negative sampling in noisy KRL (NKRL). CKRL detects noises but applies uniform 
negative sampling that easily causes zero loss problems and false detection issues. NKRL 
proposes a confidence-aware negative sampling method to address these problems, and the 
concept of negative triple confidence it introduces is conducive to generate plausible negatives by 
measuring their quality. NKRL also modifies the triple quality function defined in CKRL with 
the aim of alleviating the false detection problems and improving noise detection ability. Both 
CKRL and NKRL are performed on translation-based KRL models, and NKRL outperforms 
CKRL in link prediction task.  
 
4.4.2. MCNS 

 
Yang et al. [21] creatively derives that a nice negative sampling distribution that should be 
positively but sub-linearly correlated to the positive sampling distribution, and raises Markov 
chain Monte Carlo negative sampling (MCNS). In the proposed SampledNCE framework, the 
depth first search (DFS) algorithm is applied to traverse the graph to obtain the Markov chain of 
the last node, from which negative samples are generated. MCNS uses the self-contrast 
approximation to estimate positive sampling distribution, and the Metropolis-Hastings algorithm 
[50] to speed up negative sampling. Embedding vectors are updated by minimizing the hinge loss 
after inputting the positive sample and the generated negative sample into the encoder of the 
framework. The importance of negative sampling is proved in the formula derivation. 
Experiments exhibit that MCNS performs better than all baselines in downstream tasks and wins 
in terms of efficiency. The proposal of MCNS is based on graph structure models without 
limitation to KRL, which is a generic solution.  
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5. CONCLUSIONS 
 

In this short paper we have reviewed negative sampling in KRL. We sketched out existing well 
known negative sampling methods in three categories. We aimed to provide a basis for selecting 
the proper negative sampling method to train a KRL model to its best. The majority of KRL 
studies focus on defining new scoring functions to model multi-relational data in KGs, thus 
simply selecting the random mode for negative sampling. Nevertheless, as another momentous 
perspective of KRL, negative sampling is of the same significance with positive sampling. We 
hope that this review can be of some help to those who are interested in negative sampling. 
Subsequent work lies in comparing the methods mentioned here by performing link prediction on 
benchmark datasets. Besides, proposing a new strategy for negative sampling is a challenging 
attempt but is also under consideration.  
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