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ABSTRACT 
 

Classification algorithms to mine data stream have been extensively studied in recent years. 

However, a lot of these algorithms are designed for supervised learning which requires 

labeled instances. Nevertheless, the labeling of the data is costly and time-consuming. 

Because of this, alternative learning paradigms have been proposed to reduce the cost of the 

labeling process without significant loss of model performance. Active learning is one of these 

paradigms, whose main objective is to build classification models that request the lowest 

possible number of labeled examples achieving adequate levels of accuracy. Therefore, this 

work presents the FASE-AL algorithm which induces classification models with non-labeled 
instances using Active Learning. FASE-AL is based on the algorithm Fast Adaptive Stacking 

of Ensembles (FASE). FASE is an ensemble algorithm that detects and adapts the model when 

the input data stream has concept drift. FASE-AL was compared with four different strategies 

of active learning found in the literature. Real and synthetic databases were used in the 

experiments. The algorithm achieves promising results in terms of the percentage of correctly 

classified instances. 
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1. INTRODUCTION 
 

In the last years, special attention has been given to classification algorithms. In particular, the 

algorithms that manipulate data stream in the presence of concept drift have been deepened. 
Several of the early scientific investigations focused mainly on supervised learning. However, in 

many practical situations of supervised learning, labeling instances is often an extremely 

expensive task. Some of these scenarios are the classification of web pages, the detection of 

spam emails and the detection of network fraud. Classifying instances in these scenarios may 
require a lot of time for the experts in each area [1]. 
 

For the analysis of data stream incrementally, the classification task is usually performed in a 

sequence of instances ,...,...,, 21 jeeeS   arriving over time. Each training instance ),( jjj yxe


   

is formed by a vector jx


 and a discrete classification value jy , which is taken from a finite set 

Y named classes. Each vector Xx j


  has the same dimensions. It is assumed that there is an 
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underlying function )( jxfy


  and the main objective is to construct a model from S that 

approximates f as f̂  in order to predict the class of unlabeled instances, so that f̂  maximizes 

the prediction accuracy [2]. 

 

On the other hand, concept drift is categorized into two types according to the number of 
instances that delay the transition from one concept to another. A change is considered gradual 

when the transition period between two concepts contains a certain number of instances and 

abrupt when the transition between consecutive concepts is instantaneous [5]. 
 

Inducing general models from data is much more difficult when the instances come without 

labels. However, due to the time consuming and the resources expended, most of the instances 
of a stream generated every day are not labeled. To face this practical problem, in recent years 

researchers focused on propose learning paradigms that could overcome this shortcoming. They 

pursue paradigms whose main objective is to maintain a high performance of the models 

generated from a reduced number of instances with labels. Two of the paradigms with the best 
results are semi-supervised learning [6] and active learning [7]. The first of these paradigms 

works directly on instances without labels. It tries to group the examples by their similar 

characteristics from the analysis of their possible underlying distributions. The second one 
selects the instances that provide the most significant information to be labeled and used to train 

the model. 

 

Adaptive Stacking of Ensembles (FASE) [8] is an ensemble algorithm designed only for 
supervised learning. That is, it builds models by learning from a data stream where all the 

instances are labeled. This algorithm is able to detect and adapt to the concept drift in the input 

data stream, whether abrupt or gradual. This ensemble has a drift detection method inserted. 
One of the advantages of incorporating this mechanism is to exploit the capacity of the 

ensembles to adapt to the gradual changes, combined with the natural mode of operation of the 

drift detection method during the abrupt changes [2]. FASE has a fixed amount of base learners 
introduced by parameters. This last characteristic of the model allows the use of a meta-learner 

who learns from the intermediate results provided by the base learners. This meta-learner 

combines the partial results returning a general prediction. This paper proposes an adaptation of 

the FASE algorithm that maintains its main characteristics but enabling it to process data 
streams where only a small percentage of the data is labeled. In order to reduce the cost and 

time to obtain the class of unlabeled data, we adapted the FASE algorithm to the paradigm of 

active learning. 
 

The paper is organized as follows. Section 2 covers the works related to the classification of 

stream data with ensembles and active learning. Section 3 presents the active learning algorithm 
adaptation for drifting data streams. In section 4 a spatial and temporal study of the complexity 

of the proposal is made. Section 5 describes the assessment of the results of comparisons made 

with other strategies for active learning. Section 6 summarizes the conclusion and future works. 

 

2. RELATED WORK 
 

2.1. Concept drift in data streams 
 
In general, to address the problem of concept drift two types of strategies are defined [9]; 

strategies in which the learning adapts in a periodic time interval, regardless there is a concept 

drift or not; and strategies in which the concept drift is first detected, then the learning adapts 
according to the change. 
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The ensembles are usually included within the first strategy. This type of model has intrinsic 

mechanisms that allow it to evolve in a regular way without having to directly detect the 

concept drift. However, recent researches propose incorporating change detectors within the 
ensembles. The incorporation of a change detector in the model can enable the ensemble to 

gradually adapt itself to the changes taking the advantage of using the natural mode of operation 

of the detectors during the abrupt changes [2]. 
 

Among the first proposals of ensemble algorithms, the following can be mentioned: Streaming 

Ensemble Algorithm (SEA) [10], Fast Adapting Ensemble (FAE) [2], and Fast Adaptive 

Stacking of Ensembles (FASE) [8]. In addition, other methods were developed for the online 
detection of changes in distribution, among these are: Drift Detection Method (DDM) [9], Early 

Drift Detection Method (EDDM) [11], and Hoeffding-based Drift Detection Method (HDDMA-

test) [12]. 
 

2.2. Active learning 
 
Many real-life situations generate instances without labeling. The process of labeling them can 

lead to excessive expend of resources. Due to this problem, in recent years several learning 

paradigms have been proposed aiming at reducing the cost of labeling without significantly 
compromising the performance of the model. Among the main paradigms that follow this 

objective, it can be found the semi-supervised learning [6] and active learning [7]. Active 

learning focuses primarily on maintaining high levels of correct predictions from a limited 
number of labeled instances. In general, the strategy followed to achieve this purpose is to use a 

function that selects the instances with a greater load of significant information. The next step is 

to obtain the real class of these instances and use them in the training process of the model [1]. 

 
To construct this selection function, the most commonly used idea is to apply the probabilistic 

vector of the predictions of each of the possible classes. Many works propose to use an 

uncertainty function to assess the significance of an instance, where the most valuable examples 
are selected to be labeled and used to train the algorithm [14]. 

 

The Entropy ( EM ) metric is a measure of information retrieval that represents the uncertainty 

taking into account all the probabilistic vector components of the predictions for each class. For 

this reason, it is usually one of the most used functions. Given a prediction hypothesis  of an 

instance jx


the uncertainty can be calculated as (1) [1]: 

 

)|ˆ(log)|ˆ( ji
j

ji xyPxyPEM


                                              (1) 

 

Where iŷ  represents posterior probability of the instance jx


 being a member of the ith class, 

which takes into account all possible labels. Other variants of this same main entropy formula 

have been used in other investigations [15]. 
 

In [16], the authors introduce a framework specialized in the active learning paradigm, the 

manipulation of data streams and the treatment of concept drift. Three strategies are proposed in 

this paper.  
 

i. Random Strategy uses a uniform random variable [0,1] £  to select the instances that 

will be labeled. The instance is selected if B£  is a probabilistic budget initially 

established.  

ii. On the other hand, the objective of the Variable Uncertainty strategy is to select the 
instances uniformly over time. To achieve this a threshold is used, which is adjusted as 
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time progresses. The threshold expands if the uncertainty is low; and on the contrary, 

the threshold is contracted if the uncertainty is high.  

iii. By last, Split Strategy combines the Random Strategy and the Variable Uncertainty 
Strategy. This strategy divides the input data into two streams.  

 

Without losing the generality, the Random strategy is applied to the first stream and the 
Variable Uncertainty Strategy to the second stream. Both sequences are used to train the 

classifier, but only the first one is used to detect the concept drift. 

 

Also, in [16], three indispensable requirements are defined to construct strategies for a labeling 
process that efficiently manipulates the concept drift. (i) The available budget should never be 

exceeded. That is, the balance of the examples labeled overtime must be maintained. (ii) To 

detect any type of concept drift, it must be guaranteed that all the space of the instances must be 
analyzed. (iii) It must be ensured that the initial distribution of input data is preserved.   

 

2.3. FASE: Fast adaptive stacking of ensembles 
 

The FASE algorithm is the starting point for the proposal of this paper. FASE is an ensemble 

designed to learn from non-stationary data streams. Only two parameters are necessary to 
configure it [8]; the confidence level, used in the strategy to detect changes; and the base learner 

number, fixed quantity of basic classifiers that will be part of the ensemble. 

 
FASE associates methods of detection of changes to each of its base learners. That is, it actively 

manages the concept drift. First, the concept drift is detected and then takes actions to modify 

the old learning models. FASE uses the model proposed in [12] (HDDMA-test) as a change 

detector. HDDMA-test offers mathematical guarantees for false positive and false negative 
rates. FASE has a fixed number of base classifiers, and it uses a meta-learner to unify the 

intermediate predictions [8]. Its architecture can be seen in Figure 1. 

 

 
 

Figure 1. Scheme of FASE algorithm 

 

FASE constructs meta-instances to train its meta-learner using a test-then-train proposal [13]. 

Thus, for each example of training ),( jjj yxe


  from the original stream a meta-instance 
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),ˆ,...,ˆ,ˆ( 21 yyyym nj  is generated. Each attribute value nŷ  of the meta-instance jm  corresponds 

to the prediction from the base classifier i for the original training instance. For this meta-

instance jm  he value iy


 is the class label predicted by the base classifier. Each meta-instance   

jm  has as class the same class that accompanied the original training instance [8].  

 

3. FASE-AL: FAST ADAPTIVE STACKING OF ENSEMBLES WITH ACTIVE 

LEARNING 
 

FASE-AL is an adaptation of the FASE algorithm to work under the paradigm of active 

learning. The new algorithm has the ability to perform in a scenario where only a part of the 

training instances is labeled. To achieve this, a variant of the “Split Strategy” has been added 
to the meta-instance level, inside the "Selection Strategy" box, as showed in Figure 2. The 

“Split Strategy” was selected because it has important characteristics described in section 2.2. 

 
Analyzing figures 2 and 3 we can see that the FASE and FASE-AL algorithms basically differ 

in the strategy of selection of instances. This strategy is responsible for processing and selecting 

unlabeled instances. In this way, more relevant information is incorporated into the induced 
model. A characteristic of the FASE-Al algorithm is that it incorporates the selection strategy at 

the level of the meta-instances. This feature differentiates it from other models of the active 

learning paradigm.    
 

 
 

Figure 2. Scheme of FASE-AL algorithm 

 

Concerning the original Split Strategy [16] mentioned in section 2.2, a small modification has 
been added by replacing the Least Confident Metric to the Entropy Metric. This was done due 

to the fact that, according to the authors of [1], the Entropy Metric is a measure of information 

retrieval that represents the uncertainty taking into account all the components of the 

probabilistic vector of the class predictions. Unlike the Least Confident Metric which only takes 
into account the maximum posterior probability component. Therefore, in lines 2 and 3 of 

Algorithm 2, the Least Confident Metric was replaced by the Entropy Metric formula (EM: 

Formula 1). 
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The vector ty


 (line 2 Algorithm 2) is formed with the values of probabilities that each class is 

predicted. This vector is calculated from the meta-instance and it is used for the calculation of 
entropy (lines 2 and 3 Algorithm 2). As explained in the FASE description, the meta-instance is 

formed by each of the classes predicted by the base classifier. Then it is possible to calculate the 

probability percentage for each of the classes. These percentages constitute the vector whose  
dimension is equal to the total number of classes. Algorithms 1 and 3 are exactly those 

described in [16]. However, Algorithm 2 has the modification described above. 
 

 Algorithm 1: SPLIT 

Require: incoming example Xt, trained classifier L, 

threshold adjustment step s ∈ (0,1], 

proportion of random labeling δ ∈ (0,1), budget B 

Ensure: labeling ∈ {true, false} 

1: Initialize: labeling threshold θ ← 0 

and store the latest value during operation 

2: if η < δ, where η ~ U [0,1] is random then 

3:     if change detected then 

4:         cut the training window 

5:     end if 
6:     return (labeling ← RANDOM (B)) 

7: else 
8:       return (labeling ← VAR_UNCERTAINTY (Xt, L, s)) 

9: end if 

 

 
Algorithm 2: VAR_UNCERTAINTY 

Require: incoming example Xt, trained classifier L, 

threshold adjustment step s ∈ (0,1] 

Ensure: labeling ∈ {true, false} 

1: Initialize: labeling threshold θ ← 1 

2: Calculate ty


and EM  // vector of the probabilities of each class 

and entropy.  It is obtained from Xt (meta-instance) 

3: if  EM1  then 

//uncertainty below the threshold 

4:     decrease the uncertainty region θ ← θ (1 − s); 

5:     return (labeling ← true) 

6: else 
//certainty is good 

7:       uncertainty region wider θ ← θ (1 + s); 

8:       return (labeling ← false) 

9: end if 

 
Algorithm 3: RANDOM 

Require: Xt : incoming example, B: budget 

Ensure: labeling ∈ {true, false} 

1: generate a uniform random variable ξ ∈ [0,1]; 

2: return (labeling ← true (ξ ≤ B)) 

 

 

4. SPATIAL AND TEMPORAL COMPLEXITY ANALYZIS 
 
To perform a spatial and temporal study is particularly more relevant when the learning process 

is done online in a data stream, where it is possible to have non-ending datasets. In this paper, 
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the complexity analysis of the proposed algorithm was done using the Naive Bayes (NB) as 

base learner. To identify the complexity using other base learners a similar study should be 

done. 
 

In terms of spatial complexity, it will depend mainly on the number n of base classifiers that 

belonged to the ensemble. The theoretical space complexity for NB algorithm is O(𝑛attr⋅ nvalue⋅ 
nclass), where 𝑛attr  is the number of attribute, nvalue is the number of values per attribute and nclass 

is the alternative values for the class [17]. If we assume that the ensemble is defined by a finite 

number of base learners n the spatial complexity of FASE-AL algorithm is O(n⋅nclass⋅𝑛attr⋅nvalue). 

 
Regarding the temporal complexity, as FASE-AL is tailored for continuous running on a data 

stream, we will measure the running time for each example. Therefore, to carry out the analysis, 

three different situations must be taken into account. 
 

i. Create a new base learner. The temporal complexity depends on the temporal 

complexity of the selected base classifier. In this case, NB requires constant time to 

process each example. The theoretical time complexity for NB classifier is O(N⋅𝑛attr) 

where N is the number of training examples and 𝑛attr is the number of attributes of each 

example [17], that for an example is, O(𝑛attr) (N=1).  

ii. Update the base learners. In the updating process, each example must be tested with 

each base learner in order to detect the concept drift. The theoretical time complexity 

for Hoeffding Drift Detection Method (HDDMA-test) [12] is O(1). Then, in the worst-

case scenario the temporal complexity is O(n⋅ 𝑛attr), where n is the number of base 
learners. 

iii. Update the meta-learner. The meta adaptive learner is also an NB algorithm. It is trained 

with the meta-instances. These meta-instances have as many attributes as learners in the 
ensemble. Therefore, the temporal complexity of meta adaptive learner is O(n). The 

time complexity of the strategy of selection of instances whose label is not known only 

depends on the number of attributes of the meta-instance. Therefore, as this number 
coincides with the number of base learners from the ensemble, its temporal complexity 

is O(n). 

 

At this point, it is important to highlight that the time complexity of the algorithms within the 
active learning paradigm will depend to a great extent on the time required to obtain the real 

class of the selected instances. This, in turn, will greatly depend on the type of problem.  

Assuming that the complexity of obtaining the real class of each instance unlabeled is O(1), then 

the temporal complexity of the FASE-AL algorithm is O(n⋅𝑛attr). 

 

5. EXPERIMENTAL STUDY AND RESULTS ASSESSMENT 
 

The main objective of the following experimental study is to verify that the FASE-AL algorithm 
obtains promising results in a semi-supervised learning environment. In addition, check that 

FASE-AL maintains the ability of FASE to detect and adapt to possible concepts drift, both 

abrupt and gradual.  
 

All the experiments described below were performed in the Massive Online Analysis 

framework (MOA) [18]. MOA is a framework specialized in the mining of data streams. This 

framework groups a set of learning algorithms, evaluation tools and generators of data streams. 
In this section, the FASE-AL was compared with four different strategies of active learning 

found implemented in MOA. These four strategies are adaptations of the three strategies that 
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were proposed in [16], already described in previous sections. The four strategies for active 

learning were implemented within a general model called AL-Uncertainty. 

 

 

5.1. Datasets and algorithms configuration 
 
Table 1 shows the main characteristics of the datasets used in the experiments. These ones were 

selected trying to guarantee a high diversity in terms of types of attributes, number of attributes, 

number of classes and number of instances. Both artificial and real datasets were used to 
perform the experiments. Within the artificial data sets were included characteristics such as 

abrupt changes, gradual changes and artificial noise.  

 
The experiments were divided into four different scenarios in order to check the performance of 

the algorithms in different situations. For the first scenario, five synthetic databases were 

generated. In this scenario, the concept is always stable (there is no concept drift). For scenarios 

two and three, five synthetic databases were also generated. In each database of the second 
scenario, abrupt concept drifts were inserted and in the third scenario, gradual concept drifts 

were inserted. All the synthetic databases were built with 1000000 instances, Table 1.A. In 

addition, each one has a 10 % noise inserted randomly; this is a MOA framework option to 
achieve a greater similarity with real situations. In the fourth scenario, the five real databases 

shown in Table 1.B were used. 

 
Table 1: Principal characteristics of the datasets used in the experiments. 

 

Dataset Attributes Number of 

Name Acronym Numeric Nominal Instances Classes 

 A. Artificial datasets 

SEA SEA 3 0 1000000 2 

STAGGER STA 0 3 1000000 2 

LED Display LED 0 24 1000000 10 

Agrawal AGR 6 3 1000000 2 

Hyperplane HYP 10 0 1000000 2 

 B. Real datasets 

Spam SPA 0 500 9323 2 

Weather WEA 8 0 18159 2 

Electricity ELE 7 1 45312 2 

Connect-4 CON 0 21 67557 3 

Poker Hand POK 0  10 1000000 10 

 

FASE-AL was configured to use the Naive Bayes (NB) algorithm as both base classifier and the 

meta-learner. The significant level 1−λ of HDDMA-test was configured to λ = 0.005 for the 

warning status and to λ = 0.001 for the drift status. The number of base classifiers was 

configured to 10. The values of the parameters for the selection strategy were: s = 0.01 

(recommended value); δ = 0.05; and B = 0.05. 

 

The four strategies for active learning were implemented within a general model called AL-
Uncertainty. The four strategies are recognized with the following names in MOA: Fixed-

Uncertainty, Var-Uncertainty, Rand-Uncertainty, and Sel-Sampling.  

 
The values of the main parameters were adjusted to: budget = 0.1; fixed threshold = 0.9 and 

step = 0.01. The rest of the parameters took their values for defects. All the algorithms were 

evaluated by an Active-Learning-Prequential-Evaluation-Task. This evaluation strategy was 
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implemented in MOA within the environment for active learning to evaluate the algorithms 

following the test-then-train strategy. 

 
 

5.2. Results and Discussions 
 
Tables 2 and 3 show the results of the experiments obtained from the four scenarios. Each of the 

algorithms was applied 10 times to each synthetic and real dataset. Two averages appear in each 

cell. The first value is the percentage of correctly classified instances (accuracy) and the second 
value is the execution time in seconds (runtime). 

 
Table 2: Percentage of correctly classified instances (accuracy) and runtime of the studied algorithms on 

the synthetic datasets. A) Synthetic datasets without concept drift. B) Synthetic datasets with abrupt 

concept drifts. C) Synthetic datasets with gradual concept drift.  

 

Bases/ 

Algorithms 

SEA STA LED AGR HYP 

A) Without Concept Drift 

FASE-AL 87,84 
13,65 

100 
5,85 

74,00 
20,59 

93,73 
8,79 

94,14  
6,69 

Fixed-Uncertainty 64,32 

12,79 

99,99 

4,53 

9,97 

18,08 

49,66 

4,57 

93,55 

3,28 

Var-Uncertainty 86,81 

12,40 

99,98 

4,83 

73,89 

19,66 
94,05 

2,96 

94,22 
3,53 

Rand-Uncertainty 87,68 

12,95 

99,99 

4,72 

73,88 

19,83 

92,25 

3,17 

94,16 

3,45 

Sel-Sampling 87,47 

12,76 
100 

4,83 

73,83 

19,56 

92,83 

3,78 

94,39 

3,57 

B) Abrupt Concept Drift 

FASE-AL 87,27 
14,06 

100 
6,21 

74,22 
22,15 

81,97 

27,32 
94,63 
36,13 

Fixed-Uncertainty 61,04 

11,68 

65,76 

3,25 

10,06 

17,71 

48,48 

24,12 

49,82 

32,74 

Var-Uncertainty 86,37 

12,97 
100 

3,06 

73,72 

17,15 

81,47 

23,40 

94,37 

34,01 

Rand-Uncertainty 85,14 

12,03 
100 
3,11 

73,71 

18,26 

79,79 

23,39 

94,02 

33,99 

Sel-Sampling 86,59 

12,11 
100 
3,25 

73,70 

17,76 
83,84 
23,48 

94,52 

34,12 

C) Gradual Concept Drift 

FASE-AL 88,95 
14,15 

99,70 
6,32 

73,91 
21,33 

81,94 

27,74 

94,52 

36,13 

Fixed-Uncertainty 61,13 
12,93 

65,773,
28 

10,05 
17,82 

48,47 
24,07 

49,80 

32,73 

Var-Uncertainty 86,92 

12,87 

99,61 

3,12 

73,42 

17,11 

79,12 

23,34 

94,41 

33,06 

Rand-Uncertainty 83,20 

12,03 

99,68 

3,17 

72,96 

17,11 

78,17 

23,31 

94,05 

34,04 

Sel-Sampling 87,86 

12,93 

99,683,

25 

72,91 

19,51 
83,67 
23,49 

94,53 
34,12 

 

Table 2.A shows the results achieved by the algorithms in the first scenario (synthetic datasets 

without change). Empirically we can verify that the algorithms Var-Uncertainty and FASE-AL 
have the most promising results in terms of the percentage of correctly classified instances. The 
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results of the rest of the algorithms can be considered inferior. These three other algorithms 

never get the best accuracy. 

 
Table 2.B and Table 2.C show the results achieved by the algorithms where abrupt and gradual 

concept drifts have been inserted, respectively. Each of these synthetic datasets has three points 

of change inserted. The first point is always around the 250000 instances, the second is around 
the 500000 instances and the third is around the 750000 instances. The datasets of the second 

experimentation scenario have inserted abrupt concepts drifts (0 transition instances from one 

concept to another). The datasets of the third scenario have inserted gradual concept drifts (1000 

transition instances from one concept to another). 
 

In the last two scenarios analysed (Table 2.B and Table 2.C), we can establish empirically that 

the FASE-AL algorithm has the most promising results in terms of the percentage of correctly 
classified instances. In 7 of the 10 cases studied, this algorithm obtains the highest values in 

comparison with the results of the other algorithms. 

 
The following four figures show the particular accuracy results of the algorithms on the LED 

data set with gradual changes. As described earlier, this dataset has three points of concept drift 

inserted. The first change occurs around instance 250000, the second change around instance 

500000 and the last change around instance 750000. When analyzing Figures 3-6 we can be 
observed how all algorithms have a decrease in the percentage values of accuracy in the 

environment of the points of the concept drift. This result is expected because a new concept 

begins to arrive. However, we can see that this fact occurs less markedly for the FASE-AL 
algorithm. 

 

 
 

Figure 3. Scheme of FASE-AL algorithm Percentage of correctly classified instances of the algorithms 

FASE-AL and Sel-Sampling on LED dataset with gradual changes. Concept drifts occur every 250.000 

instances. 
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Figure 4. Scheme of FASE-AL algorithm Percentage of correctly classified instances of the algorithms 

FASE-AL and Var-Uncertainty on LED dataset with gradual changes. Concept drifts occur every 250.000 

instances. 

 
 

Figure 5. Scheme of FASE-AL algorithm Percentage of correctly classified instances of the algorithms 

FASE-AL and Rand-Uncertainty on LED dataset with gradual changes. Concept drifts occur every 

250.000 instances. 
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In Figure 3 we can see how the Sel-Sampling algorithm markedly lowers its accuracy values 

when analyzing the instances in the vicinity of the change points 2 and 3; that is, around 

instances 500000 and 750000. A similar result is shown in Figure 4 for the Var-Uncertainty 
algorithm. This algorithm lowers its accuracy values around changes points 1 and 2; that is, 

around instances 250000 and 500000. On the other hand, Figure 5 shows that the Rand-

Uncertainty algorithm fails to recover its accuracy values after the last point of change, that is, 
after instance 750000. Finally, it is necessary to highlight that the fixed-uncertainty algorithm 

obtained very bad results on the LED data set, Figure 6. 

 

Similar results of the algorithms could be observed, regarding the accuracy values, with respect 
to the rest of the synthetic data sets. This happens both in scenarios with abrupt changes, as well 

as in scenarios with gradual changes.  

 

 
 

Figure 6. Scheme of FASE-AL algorithm Percentage of correctly classified instances of the algorithms 

FASE-AL and Fixed-Uncertainty on LED dataset with gradual changes. Concept drifts occur every 

250.000 instances. 

 

Table 3 shows the performance of the five algorithms assessed with real datasets. Once again, 
we can establish that the results of the FASE-Al algorithm are the most promising. In 4 of the 5 

cases studied, FASE-AL had the best results. 

 

The results of the FASE-AL algorithm were compared with the results of the rest of the 
algorithms. This comparison was made using the Wilcoxon signed-rank test. The test showed a 

significant difference with the algorithms FixedUncertainty, VarUncertainty and 

RandUncertainty. However, it did not provide sufficient evidence to affirm a significant 
difference with the SelSamplingL algorithm. Finally, with respect to runtimes, the FASE-AL 

algorithm has lower values in the experiments. The other four algorithms obtain similar results 

in terms of runtime. 
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Table 3: Percentage of correctly classified instances (accuracy) and runtime of the studied algorithms on 

the real datasets. 

 

 

 

6. CONCLUSIONS 
 

In the present paper, the main characteristics of the algorithm ensemble called FASE-AL are 

detailed. FASE-Al is an adaptation of the known FASE algorithm to the active learning 

paradigm. This new algorithm is capable of learning online from a data stream with the presence 
of concept drift. Both synthetic data and real data were used in the design of the experiments. In 

the synthetic data, the presence of noise and the existence of abrupt and gradual concept drift 

were modeled. For comparison with four other strategies, also designed to work on the active 
learning paradigm, two evaluation parameters used very frequently were taken into account: the 

percentage of correctly classified instances and the execution time. For the first of these 

parameters, FASE-AL achieved very promising results on both real and synthetic datasets. On 

the other hand, the results of the new algorithm were much more discrete when analyzing the 
execution time. 
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