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ABSTRACT  
 

The data produced from Earth Observation (EO) satellites has recently become so abundant that 

manual processing is sometimes no longer an option for analysis. The main challenges for 

studying this data are its size, its complex nature, a high barrier to entry, and the availability of 
datasets used for training data. Because of this, there has been a prominent trend in techniques 

used to automate this process and host the processing in massive online cloud servers.  These 

processes include data mining (DM) and machine learning (ML).  The techniques that will be 

discussed include: clustering, regression, neural networks, and convolutional neural networks 

(CNN).  

  

This paper will show how some of these techniques are currently being used in the field of earth 

observation as well as discuss some of the challenges that are currently being faced. Google 

Earth Engine (GEE) has been chosen as the tool for this study. GEE is currently able to display 

40 years of historical satellite imagery, including publicly available datasets such as Landsat, 

and Sentinel data from Copernicus. 
  

Using EO data from Landsat and GEE as a processing tool, it is possible to classify and discover 

historical algal blooms over the period of ten years in the Baltic Sea surrounding the Swedish 

island of Gotland. This paper will show how these technical advancements including the use of a 

cloud platform enable the processing and analysis of this data in minutes. 
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1. INTRODUCTION 
 

Earth observation (EO) has become more prominent in the last decade with more satellites in 
orbit that are capable of observing the Earth every year. The miniaturization of component parts 

has also enabled a new generation of CubeSats that are also adding to the data gained from 

remote sensing (RS).  As RS and EO are often used interchangeably, it is worth defining RS as 
the act of viewing, observing and analysing an object from a given distance.  This paper will 

only be addressing RS data that is observing the Earth, specifically satellite imagery. 

  

The technology providing satellite imagery has improved significantly, with output types 
ranging from simple traditional photographic images to complex spectral graphs. These 

developments increase the amount of data that is collected on a daily basis.  The data in most 

cases is so abundant that manual processing is not an option for analysis of all results.  As such, 
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there has been a prominent trend in techniques used to automate this process and host the 

processing in massive online cloud servers. 
   

These processes include data mining (DM) and machine learning (ML) which will be discussed 

in this individual report. ML has been emphasized in this study as most methods currently being 

used in earth observation fall under the heading of ‘machine learning’.  The types techniques 
that will be discussed include clustering, regression, neural networks, and convolutional neural 

networks (CNNs). 

  
This paper will show how some of these techniques are currently being used in the field of earth 

observation.  Some of the challenges of the tools and environments that are currently used will 

also be discussed.  As a practical exploration of these techniques using historical earth 

observation data, Google Earth Engine (GEE) has been chosen to process and run our scripts on 
publicly available Landsat RS data catalogues. GEE currently is able to display 40 years of 

historical satellite imagery and has a built in JavaScript application programming interface 

(API) that makes geospatial analysis across petabytes of data possible in the Google Cloud [1]. 
Using this RS data, it is possible to use various DM and ML techniques to classify and discover 

historical algal blooms in the Baltic Sea surrounding the Swedish island of Gotland. 

 
The organisation of this paper is as follows: Section 2 will discuss data mining patterns and 

techniques used in EO.  Section 3 will look at some of the challenges that are specific to 

analysing data for EO including discussing training data.  In section 4, a ‘real-world’ example is 

introduced by looking at historical data in the Baltic Sea and using GEE to identify algal blooms 
over a period of ten years.  Discussions and recommendations are found in section 5 followed 

by conclusion of the study in section 6. 
  

2. LITERATURE REVIEW OF DATA MINING PATTERNS AND TECHNIQUES 

IN EARTH OBSERVATION 
 

There are a number of methods that can be used in creating data mining patterns specific to 

Earth Observation. Amongst these are clustering, regression, neural networks and CNNs. These 
will be briefly summarized in the following section. 
 

2.1. Clustering 
 

Clustering, according to Berkhin [2], is “a division of data into groups of similar objects.”  The 
objects within the cluster groups are similar to each other and not similar to objects from other 

groups.  There are a number of clustering algorithms, amongst these are hierarchical, 

partitioning and grid-based methods, constraint-based clustering, scalable clustering, and high 
dimensional data algorithms.  Figure 1 below, is an example of clustering. 

  

 
 

Figure 1.  An example of clustering 
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2.2. Regression 
 
In data mining, as defined by Oracle [3], “Regression is a data mining function that predicts a 

number.” In a regression model, the data set that is used to predict the outcome, has values that 

are known.  The attributes in the data set are called predictors and the outcome is a value which 
is known as the target.   One example of this can be housing cost estimation.  The value of the 

house is the target and the predictors could be attributes as number of rooms, age, location, 

previous sale costs, etc [3]. 

 
Regression can be linear or non-linear.  A linear regression is based on the ability to 

approximate the relationship between the target and the predictors with a straight line. In non-

linear regression a relationship is unable to be approximated by a straight line, so a more 
complex equation has to be defined.  In figure 2, a graph with a single predictor is shown for 

linear regression. The y axis is the target and x is the predictor. The error, also known as the 

residual, is a measure of the difference between the predicted and the expected value [3]. 
  

 
 

Figure 2. An example of linear regression 

 

2.3. Neural Networks 
 
Neural networks were originally designed to be an analogue of the computation of biological 

neurons.  It has been described by Han, Kamber, and Pei [4], as, “…a set of connected 

input/output units in which each connection has a weight associated with it.” As the network 

learns, it adjusts the weights of inputs and adjusts accordingly in order to predict classes.   This 
generally involves a long training time and there are criticisms that it is very hard to interpret 

where the weights come from and what the hidden units are in the network. Neural networks 

can be described as a ‘black box’ in that inputs go in and an output is given, but it is unknown 
what exactly happens inside the box to get to the output. The advantage of neural networks is 

that they are very tolerant of data that is ‘noisy’.  They are also very good for classifying 

patterns that have not been trained and where there is little known about the attributes and 

classes and the relationships between them [4]. 
 

Below in figure 3 can be seen a basic node of a neuron for a neural network. The inputs are 

given and weights are attached to each.  The inputs are then summed and then go through an 
activation function to determine if the signal should progress further.  If the neuron is activated, 

it is able to contribute to the overall outcome.  The outcome can be the function of adding the 

object to class or participating in a classification.   
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Figure 3: Diagram of a neural network node [5] 

 

Multiple nodes together make a layer and the layer subsequently contributes to the next layer.  

In this model, there are at least three layers, an input layer, a hidden layer, and an output layer 

[6]. Neural networks can be classified into three categories, a supervised neural network, an 

unsupervised neural network and a reinforcement neural network. In a supervised neural 
network, the network relies on training data. In an unsupervised neural network, there is no 

training data provided, the network tries to creates the correlations on its own and uses these to 

classify new data. In a reinforcement neural network, the network learns by means of penalties 
and rewards for right and wrong decisions. [7] 

   

A basic three-layer network can be seen on the left side of the diagram in figure 4. 
 

2.4. Convolutional Neural Networks 
 
A subset of neural networks that has gained much attention in visual recognition is the 

convolutional neural network.  The structure of CNNs allows for the learning of abstract feature 

detectors and allows mapping of these features into representations.  These representations 
enhance performance of future classifiers [8]. 

 

CNNs have an architecture with multiple stages that each contain three layers.  These layers 

include a convolutional layer, a pooling layer and an output layer (fully-connected layer). The 
convolutional layer is where the primary processing is done by having a spatially small filter 

slide, or convolve, over the full volume. This in turn produces an activation map that is two 

dimensional. The pooling layers main functions are to reduce the spatial size, number of 
parameters and control overfitting.  The output or fully-connected layer contains the final scores 

of the classification [6]. CNNs have become specifically useful with RS data for scene 

understanding, target recognition and pixel classification [8].   
 

Convolutional networks deal with tensors, which are in essence nested arrays.  The layers of 

CNNs are arranged in three dimensions that also include depth.  Images are defined as three 

dimensional objects which include colour encoding.  In figure 4, is a CNN (right side) compared 
to a regular three-layer neural network (left side). The image input in the CNN is shown as the 

red block with the dimensions of the image being the height and width.  The Red-Green-Blue 

(RGB) channels make up the depth.  
 

 
 

Figure 4: Comparative diagram of a three-layer neural network (left) vs a CNN (right) [6] 
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3. CHALLENGES INHERENT TO EARTH OBSERVATION AND REMOTE 

SENSING 
 

According to Kanevski et al. [9], geospatial data in general, has very specific characteristics or 
‘particularities’ that complicate analysis and prevent modelling via traditional geostatistical 

models.  Amongst these are nonlinearity, spatial and temporal non-stationarity, multi-scale 

variability, presence of noise and extremes/outliers, and a multivariate nature [9]. 
 

Additionally, Ball, Anderson, and Chan [10] after reviewing 57 survey papers in DL and RS 

and 205 RS applications papers compiled a list of nine challenges for DL in RS.  The issues 
they identified are below in table 1. 

  

One of the issues listed below by Ball, Anderson, and Chan [10], is a “high barrier to entry” as a 
challenge for the RS community.  Until a few years ago, most ML tools were made by software 

developers for software developers.  These tools also use a variety of programming languages 

and proficiency in the language is typically a requirement to use them. It is only in the last few 

years that there has been a focus on making tools easier to use for non-developers. 
 

The size of the data is also restrictive for most independent or student researchers to process on 

personal computers as processing generally requires systems with multiple graphic processing 
units (GPUs). 
 

Table 1.  Challenges for deep learning in remote sensing [10] 

 

 Challenge  Details 

1 Limited data 
sets/limited 

training data 

In all the papers surveyed, there were five commonly used data sets. 
They showed that overall accuracies can not necessarily be trusted 

based on the number of training samples for each paper. They also 

showed that the data sets are saturated. They recommend that new data 

sets are required. 

In RS, there is only a small set of imagery with samples labelled for 

training. 

2 Models for RS 

applications are 

often very 

complicated 

RS models can have very intricate relationships and can be inaccurate if 

the input data does not take this into account. Low temporal resolution 

can be a challenge as well. The recommendation is to focus on more 

complex features instead of pixel-level and spatial patterns 

3 Big data Algorithms need to be streamlined and there needs to be better 

processing power. There is a focus on being able to combine different 

types of data.  

4 Non-traditional 
data sources 

Using sources such as social media photos and videos or tweets with 
geo-location data for real-time analysis.  

5 DL 

architectures 

Complex RS problems may not be solvable with current DL 

architectures.  

6 Transfer 

learning 

Current challenges include, transfer when endmembers are not the 

same, transfer of low to midlevel features, especially those from 

different domains, transfers for imagery collected in different 

atmospheric conditions and times.  

7 An improved 

understanding 

of DL systems 

New DL methods, both practical and theoretical need to be explored to 

go deep. There should be improved training and generalization 

capabilities.  

8 High barriers to 

entry 

Hardware restrictions and multiple software development requirements 

can create a steep learning curve for DL. Many RS tasks are not 

included in standard libraries.  

9 Training and 

optimizing the 

DL 

There are many ways to train a DL system and it can be difficult. DL 

systems can also have millions of parameters.  
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Below in table 2, is a summary of some of the RS applications from twenty additional papers 

that were surveyed by Ball, Anderson, and Chan [11].  This paper’s aim was to, “showcase what 
has been done, what is being done, and what big questions remain and need to be tackled by the 

community.” [11]. They identified CNNs as being one of the primary algorithms used for 

remote sensing data, often deep neural networks. They also found it was common to use non-

remote sensing pre-trained data as well as transfer data to assist in classification. 
 

Table 2.  Challenges and contributions in RS applications [11] 

 

RS Application  Challenges Example Contributions 

Synthetic 

Aperture Radar 

(SAR) processing  

Traditional SAR 

processing methods use 

features crafted by hand 

• CNNs for feature extraction allow for change 

detection and classification  

• Algorithms that require no prior processing or 

segmentation 

Ocean processing Ships are very small, 

cloud interference, wave 

interference 

• Deep CNN to extract features and detect ships  

• Provided bounding boxes for recognition of 

ocean fronts 

Classification and 

labelling  

Large size of imagery, 

multiple resolutions, 
image matching 

• CNNs for the recognition of dust, smoke, 

hurricanes, etc.  
• Deep CNNs for detection buildings from 

orthoimages 

Multimodal 

(mixed 

techniques) 

Combining multiple 

technologies 

• CNN detector for golf courses, augmented with 

temporal data  

• Hyperspectral and visible images combined with 

CNN for feature extraction later also combined 

with spectral, statistical and spatial data 

Spectral-spatial 

processing 

Anomalies in 

hyperspectral data  

• Stacked denoising autoencoder for hyperspectral 

anomaly detection 

• Deep stacked sparse autoencoder for feature 

learning in hyperspectral images 

Object tracking 

and recognition 

Large spatial areas, 

drifting in long term 

tracking  

• Dual correlative deep networks for aircraft 

recognition 

• CNN spatial clustering and chip detection for the 

identification of surface-to-air missile sites 

Architectural 
studies 

Determining if shallow 
CNNs are sufficient for 

feature recognition 

• For remote scenes, greater CNN depth is 
essential for identifying features 

• Over time, CNNs have become deeper  

 

3.1. Training data 
 

The size of the data is also a major factor in being able to train a system effectively.  Ball, 

Anderson, and Chan [10], identified the challenges associated with training for DL systems 

which deal with vast amounts of RS data. 
   
The training issues they identified include:  
 

• DL systems can have millions of parameters 

• RS data may not be labelled 

• Hyperspectral data is a very large data cube with many layers, while DL algorithms 
are typically trained from very small RGB images  

• Light detection and light detection and ranging (LiDAR) have insufficient literature 

as the data is not an image, but a point cloud 
• Gridded searches or random methods are required for optimization which can be 

very time consuming [10] 
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Helber et al. [12], have also emphasized the importance of having a high-quality dataset for 

training and classification.  They state that one of the challenges to creating these training sets 
has been access to ground truth datasets that are reliably labelled.  In response to this challenge, 

they created a dataset called EuroSAT from Sentinel-2 images.  Their dataset consists of 27,000 

images consisting of 10 different classes which can be seen in figure 12. For instance, in the 

river, and sea and lake classes, they have tried to accommodate the various colours, locations 
and bodies of water.  Each of the 10 classes contain 2000 to 3000 images. Each image measures 

64x64 pixels and is at a 10 m per pixel resolution. 

  
Approximately 1.6TB of data in the form of compressed images comes from the Sentinel-2 

constellation every day. Each of these 27,000 images had to be manually checked and sorted 

multiple times in order to get an acceptable accuracy for their training set [12]. 
 

 
 

Figure 5: EuroSat training dataset from Sentinel-2 images [12] 

 

4. REAL WORLD EXAMPLE: DISCOVERING ALGAL BLOOMS WITH DATA 

MINING AND MACHINE LEARNING IN EARTH OBSERVATION 
 

4.1. Phytoplankton, cyanobacterial and algal blooms, eutrophication 
 

The photo below in figure 6, which is of Gotland, a Swedish island in the Baltic Sea, is called 
‘Van Gogh from Space’.  It is a part of the United States Geological Survey (USGS) ‘Earth as 

Art’ image gallery [13]. Aside from being a beautiful image, the image also has the significance 

of showing a ‘phytoplankton bloom’.  This image was taken on the 13th of July, 2005 from 

Landsat-7. The phytoplankton biomass is caused by an increase in nutrients, generally 
associated with rising nitrogen concentrations. These occurrences are often called algal blooms 

and are also associated with cyanobacteria blooms, which have the potential to be toxic or 

harmful.  They can be natural and seasonal or caused by pollution originating from densely 
populated areas or industrial runoffs [14]. The red arrows in figure 6 show these algal blooms.  

The image below is a colour enhanced image and the blooms are seen in bright green. Landsat-7 

bands and the appearance of colours in feature properties will be discussed in section 4.2.  
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Figure 6: Gotland Island on 13 July, 2015.  Red arrows indicate algal blooms [13] 

 

A bloom occurring because of related pollution is known as eutrophication. The blooms are also 

correlated with an increase in chlorophyll a which contributes to the green color of the blooms 
[14]. The seasonal variations of these blooms in the Baltic Sea are seen generally during July 

and August when the water is warmer [15].  In the Gotland Sea, these seasonal blooms have 

also been known to occur in the autumn months from October through December [14]. Signs of 
blooms outside the seasonal windows can be possible indications of eutrophication.  

 

Up until the 1960s, most blooms which were the result of eutrophication were recorded only in 

coastal waters.  After the 1960’s it became common to see these blooms occurring in the open 
areas of the Baltic Sea [16]. 

 

4.2. Tools and methodology: Google Earth Engine 
 

The Google Earth Engine has been chosen as the tool for this study. GEE currently is able to 

display 40 years of historical satellite imagery, including publicly available Landsat-7 RS data 
catalogues, and has a built in JavaScript API that makes geospatial analysis across petabytes of 

data possible in the Google Cloud Platform [17].  This means that a local installation is not 

necessary and all computations can be executed in the cloud.  As these are extremely large 

datasets, this is one of the major advantages and reasons for choosing GEE.  GEE also has a 
Python API that is equipped with Cloud Datalab which allows it to be run with Jupyter 

notebooks.  The JavaScript API is available in the GEE coding editor and is an online Integrated 

Development Environment (IDE) which allows for immediate visualization and rapid 
prototyping [17]. The IDE can be seen in figure 7.  
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Figure 7: Earth Engine IDE. Shown is the JavaScript editor (top left), console with a chart in the console 

output (top right), and map visualization layer (bottom) 

 

Earth Engine, although relatively new, has already seen hundreds of scientific papers published 

making use of the tool for a variety of applications such as medical studies, vegetation and 
forestry, wetlands and hydrology, agriculture, urban studies and disaster management [18]. 

 

4.3. Landsat-7 data catalogue in Earth Engine 
 

Landsat-7 was launched on the 15th of April, 1999 and is currently still operating today. At the 

time of submission of this report, Landsat-7 will be celebrating its 20th year anniversary in 
orbit, but is expected to be replaced by Landsat-9 late 2020 [19]. Landsat-7’s system 

capabilities include high volume, high resolution and multispectral resolution while averaging 

250 scenes per day. It was designed for a 705 km, sun synchronous orbit with a 16-day mapping 

cycle. It also has an internal cloud cover prediction mechanism and only captures sunlit areas 
which prevent it from collecting data that is unusable [20]. 

 

ETM+ has a swath of 185 km, with six spectral bands (1-5, 7), a panchromatic band (8) and a 
thermal band (6).  It has a spatial resolution of 30 m for the spectral bands, the panchromatic 

band has a resolution of 15 m and the thermal band has a 60 m resolution.  All bands have two 

gain settings of high or low [19],[20]. 
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4.3.1. Earth Engine’s implementation of Landsat-7 data  

 
In |GEE, the Landsat-7 data catalogue, which has been acquired from USGS, has designated 10 

bands for use in analysis. This can be seen below in table 3.  The bands are selectable in layers 

of up to three bands to create a composite image in GEE.  In GEE, the gain settings are only 

separated in thermal band 6 as B6_VCID_1 and B6_VCID_2.  Band 6 has also been resampled 
from the original 60 m resolution to 30 m. 

 

The dataset used for this study is the USGS Landsat 7 Collection 1 Tier 1 Raw Scenes 
collection (LANDSAT/LE07/C01/T1).  Tier 1 describes scenes with the highest available data 

quality.  These scenes are appropriate for time-series analysis as they have been calibrated 

across the various Landsat sensors and they have Level-1 Precision Terrain (L1TP) processed 

data [17]. 
 

Table 3.  Landsat-7 Band Details for GEE [19],[20], [21] 

 

Band Name Resolution Wavelength Description 

B1 30 m 0.45 - 0.52 µm Blue 

B2 30 m 0.52 - 0.60 µm Green 

B3 30 m 0.63 - 0.69 µm Red 

B4 30 m 0.77 - 0.90 µm Near infrared  

B5 30 m 1.55 - 1.75 µm Shortwave infrared 1 

B6_VCID_1 Resampled from 60 

m to 30 m 

10.40 - 12.50 µm Low-gain Thermal Infrared 1 

B6_VCID_2 Resampled from 60 

m to 30 m 

10.40 - 12.50 µm High-gain Thermal Infrared 2 

B7 30 m 2.08 - 2.35 µm Shortwave infrared 2 

B8 15 m 0.52 - 0.90 µm Panchromatic 

BQA   Landsat Collection 1 QA 

Bitmask 

 

4.4. Recognizing algal blooms with remote sensing data from Landsat-7 
 
The measures for computing a body of water as eutrophic include secci-disk transparency 

(SDT), total phosphorus (TP) and chlorophyll-a (Chl-a).  Chl-a measurements are not 

influenced by sediment or acids and correlate with the volume of phytoplankton concentration 

in a body of water. The increase in Chl-a is a good indicator for detecting blooms specifically 
with RS data [22]. 

 

Fuller, Aichele, and Minnerick [22], determined in Landsat 7 images, that to detect Chl-a, 
“…the combination of band 2 (Green), band 3 (Red), and band 7 (short wave infrared) produced 

the highest R2 values.”  R2 is the coefficient of determination and gives a statement about the 

error or the residual, as shown in chapter 2.2.3.6, between the predicted and the expected value. 
The higher the value is the better the prediction is. 

 

Therefore, the recognizing of chlorophyll-a (variable Chl-a) from Landsat-7, for Fuller, Aichele, 

and Minnerick [22], can be seen in equation 1, where the variables a, b, c and d are the derived 
coefficients from the regression equation.  For the purposes of identifying this configuration of 

bands, it has been labelled it as ‘FAMChl’. 

 

      (1) 
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Weber [23], has specified that in order to identify cyanobacteria specifically, and not green 

algae, a 620 µm band is necessary.  This falls in between band 2 and band 3 and is not covered 
by the instrumentation on Landsat-7.  Therefore, any detections with Landsat-7 are assumed to 

only be algal blooms and make no assumptions about corresponding cyanobacteria levels. 

 

4.5. Visualization of band configurations 
 

A number of other configurations were looked at for band optimization. Images from the 

visualization of the following band composites can be seen in figure 8. These include the 
following:  

 

• RGB ‘True Color’ – (B3,B2,B1) 
• False Color – (B4,B3,B2) 

• Short-Wave Infrared (SWIR) – (B7,B4,B2) 

• FAMChl – (B3,B2,B7) 
• Custom Color – (B3, B4, B7) 

 

 
 

Figure 8: Visualizations of band combinations tested for detecting algal blooms 

 

The artefact lines that can be seen in the images figure 9 are part of a Scan Line Corrector 
(SLC) failure that happened on Landsat-7 on May 31st, 2003.  Despite the SLC fault, a USGS 

report found that the data was still excellent quality for at least 86% of the pixels when 

augmented with interpolation [24].  All Landsat-7 images have been processed with the SLC in 
‘off’ mode since the fault. 
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Figure 9: Visualizations of band combinations tested for detecting algal blooms 

 

The colour of primary features such as vegetation or water changes significantly 

depending on the combination of bands chosen.  This is visually significant, but also 

significant when sampling data at the pixel level for scene analysis. Feature colours can 

be seen in the table in figure 10 for true colour, false colour and SWIR.  
 

 
 

Figure 10: The colour of feature display in composite images [25] 

 

4.6. Historical remote sensing and ground truth comparisons 
 

Since 2002, the Swedish Meteorological and Hydrological Institute (SMHI) has been 
monitoring algae levels in the Baltic Sea.  They are now, since 2009, supplementing traditional 

water sampling methods with satellite data from ENVIronment SATellite (ENVISAT) and 

Earth Observing System Aqua (EOS-AQUA) using the MEdium Resolution Imaging 
Spectrometer (MERIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors 

respectively [26].  The sensors are only able to detect surface level algae which have a high 

reflectance.  They are not able to see algal blooms currently through clouds or at night [26]. 

Hansson and Hakansson [27] described the ‘Baltic Algae Watch System’ which monitored 
cyanobacterial blooms from 1997-2006.  They processed images from the National Oceanic and 

Atmospheric Administration (NOAA) - Advanced Very High-Resolution Radiometer 

(AVHRR) (NOAA-AVHHR) based on a supervised classification algorithm in near infrared and 
thermal channels.  The NOAA-AVHHR data, however, has a poor resolution at ~1 km2 which 

made costal detection difficult [27]. 
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In 2005, there were 13 Cholorphyll-a measurements taken at the ‘BY15 GOTLANDSDJ’ 

(Gotland Station).  The station is marked by the red x in figure 11. This number of samples 
varies from year to year.  For instance, there were 11 samples taken in 2016 [28]. 

 

 
 

Figure 11: Location of SMHI Chlorophyll-a sampling (SMHI, 2019b) 

 

The data for these measurements is publicly available on the SMHI Swedish Sea 

Archives/Svenskt HavsARKiv (SHARK).  The SHARKweb has data collected by SMHI that 

goes back to 1893 for numerous marine biological, chemical, and physical parameters [29]. 
The 13 samples for Chl-a that were taken in 2005 can be seen in figure 12.  It should be noted 

that the dates of sampling do not necessarily correspond with the dates of blooms or the dates 

that Landsat-7 was acquiring data.   
  

 
 

Figure 12: Chlorophyll-a levels sampled from Gotland station in 2005, from the SMHI database for use in 
the ground-truth comparison 
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4.7. Mean reduction by geometry region in Earth Engine  
 
GEE has the ability to define specific geometry objects to areas on the map that are to be used 

for analysis.  For the purposes of this study, a rectangle around Gotland Island was defined.  

This can be seen in light blue in figure 20.  The darker blue around it is the result of returned 
Landsat-7 data for that day.  Multiple swaths can be in the image depending on the angle that 

the image was acquired.  In figure 20, there is only one swath of 185 km in width.  The area of 

the Gotland Island geometry is ~32,000 km, the area of the bloom geometry is ~100 km.   

The sample size of ocean was approximately 10km2 as seen in red in figure 13.  A test was also 
done by increasing the number of sample blocks to three, however the accuracy decreased 

significantly.  All further tests were done using one sample block. 

 

 
 

Figure 13: Geometry objects used for analysis in GEE.  (Light blue) Gotland Island (Red) bloom 

sampling location 

 

The ee.Reducer is a way to get pixel statistics of a geometry or region.  The reducer will take an 
area in the image and compute a value for each of the bands. If it is a true colour image with 

RGB bands, it will return three numbers, one for each band.  In each of the band combinations 

above, there are three bands, so what has been done is to take the mean of the pixels and 

between the bands. All bands must be specified to be sampled at the same resolution, in this 
case, the sampling was done at 30 m as the bands all have this spatial resolution. This is 

especially useful when comparing spectral values over a time series.  It is worth noting that the 

maximum pixels that the reducer can compute is 10 million, so large areas, such as the whole 
island cannot be computed.  This will work with smaller areas such as the bloom area. There is 

also a function to only use the maximum number of pixels.  The result from this will be a 

random selection of pixels up to 10 million. A diagram of how ee.Reducer is used with the 
workflow can be seen in figure 14. 
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Figure 14: Workflow of ee.Reducer being applied to Landsat-7 with an area geometry filter and a spatial-

temporal filter. [29] 

 

The band mean spectral values for CustomColor, TrueColor, FalseColor, FAMChl and SWIR 

were calculated by using ee.Reducer.mean.  The values for Chl-a levels as well as the band 

mean spectral value were plotted seen in figure 15.  The results of this exercise also showed that 
the sampling dates for Chl-a and the collection date for the Landsat-7 images were non 

concurrent.  There were 13 sample dates for Chl-a and 9 dates for Landsat-7 data.  Of these, 

only one date perfectly matched.  In the end, only 19 sample dates were used as there was no 

Landsat-7 data for Jan, Nov or Dec.  There are many reasons for why this data was missing.  
Landsat-7 is meant to have a 16-day return cycle, but it is also meant to discard any scenes with 

cloud cover or any night time scenes. It is also possible for scenes to be discarded where there 

are system faults or calibration errors.  
 

In the case of algal blooms in the Baltic Sea, they are often seasonal and can last an extended 

period of time, so an assumption was made that the last sampling or collection value would 

remain until the next one was received.  This could lead to an uncertainty for a detailed analysis 
of time periods with an offset to a certain data point. For instance, it would be incorrect if a Chl-

a sample was taken when there were no blooms and a bloom only appeared a few days after 

when the satellite passed the region. This method did, however, allow for a rough trend to be 
seen when plotted and a preferred band was chosen as a result.  A more accurate regression 

model/curve would be possible with more row data and more data points. 
 

 
 

Figure 15: The lack of concurrent sampling points from SMHI and Landsat-7 image data means that data 

over a larger period is needed 

 

As a backup to the method above, all bands were also plotted individually. By doing this, it was 
shown that bands 1 and 2 were preferred over band 3.  As such, for all future analysis only band 

1 (blue) and band 2 (green) were used for analysis.   This can be seen in figure 16.  
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According to Pitarch et al., [31] there are two types of algorithms presently being used to 

measure Chl-a via remote sensing.  This includes an empirical method using a blue/green 
reflectance ratio, as we have identified above.  The other method is a semi-analytical method, 

where the water type is more complex in the possible colorations found.  Case I waters are 

generally found in open waters where as Case II waters can be anywhere the water is 

discoloured.  They have considered the Baltic Sea to be a “challenging test bed for remote 
sensing” with a high concentration of coloured dissolved organic matter (CDOM). The standard 

algorithm that is provided for Chl-a detection, generally by the space agencies, is one that is 

specific to global applications and does not take into account these discolorations specific to 
certain regions [31]. 

 

4.8. Results: Analysis with blue and green bands 
 

Since Landsat-7 launched in 1999, it was decided to do a ten-year initial analysis through to 

2009.  After 2009, the SMHI changed the way they observed Chl-a via remote sensing, so a 
comparative analysis by year is challenging beyond this period.  For a more recent analysis, the 

years of 2010-2019 can be also studied together, however, that is out of scope for this paper. 

Nevertheless, the results in this paper can be used for further analysis and studies of the earlier 

period. 
 

The numbers for band 1 and 2 returned from the initial test are shown in figure 16. The chart is 

a sample of the charts included in the GEE IDE.   As seen in this plot, there are a number of 
spikes above 100.  These were cross checked to bloom dates with SMHI and did not 

correspond. Also, in all the tests with the 2005 data, there were never any points above 90. 

 

 
 

Figure 16: Landsat-7 band 1 and 2 spectral values for the bloom geometry with abnormal spikes above 

100 (1999-2009) 

 

The individual spectral values were exported and evaluated against visual representations of the 
plotted days in question. Anything over 100 was considered an anomaly and in most cases, 

when cross checked visually, was due to cloud cover or what appeared to be instrument errors.   

There was also a very basic preliminary comparison of the number of days of known 
cyanobacterial blooms for the period of 1999-2009.  For this, the spectral values have been 

compared with heat maps from SMHI with the number of days with cyanobacterial blooms [26]. 

   

The next evaluation that was done was to attempt to match days with data points for both Chl-a 
sampling and satellite imagery.  For the period of 1999-2009, there were 137 days with Chl-a 

data samples.  For Landsat-7, there were 145 days.  These were matched with an interval of +/-7 

days.  This left 96 days over the ten-year period.  Because there were some unexplained 
discrepancies in data around 2006, possibly due to recalibration, it was decided to focus on the 

years of 2001-2005 (minus SLC fault data).  The final analysis contained 45 days and can be 

seen in figure 27.  
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The SCL fault occurred on the 31st of May, 2003 and data from the satellite became temporarily 

unavailable. The data became available again in July, but a second product with the gaps filled 
in via interpolation was not available until May 10, 2004 [20]. All data points from this time 

were also removed as seen on the x-axis in figure 17. 

   

 
 

Figure 17: Bands 1 and 2 plotted as spectral values by date shown with Chl-a sampled levels 

 

While there are a number of correlations between the collected samples and spectral values in 

the blue and green spectrum, more detailed analysis of individual points is necessary.  While we 
have seen that cloud cover should be filtered from the collection, certain outliers were still 

found, and it is possible that a partially clouded scene can be skewing results.  There are a 

number of cloud filtering algorithms that can be explored in future studies. 
 

5. DISCUSSION AND RECOMMENDATIONS FOR FUTURE STUDY 
 

The study of detecting algal blooms via earth observation was chosen because it has been 
identified as having seasonal events that are regularly monitored via satellite. As an added 

benefit, it is also monitored via ground truth methods such as water sampling.  This made it 

possible to test various detection techniques and cross check them with historical results.  

Gotland Island was chosen as there was a very large bloom that extended over a longer period in 
2005.  The algal blooms in this area also have a very high reflectance which can be picked up 

with remote sensing. 

  
There were a number of discoveries in the analysis of the earth observation data.  One of the 

most important ones is that ground sample dates do not necessarily correspond with Landsat-7 

pass over dates.  There is also a chance that the data collected is not useable, such as with heavy 

cloud cover.  Because of this, it is recommended that a future study be done with a satellite or a 
constellation of satellites that have a more frequent revisit time.  Also, in order to study 

cyanobacterial blooms as well as algal blooms, it is recommended to use a 620 µm band which 

Landsat-7 does not have [22]. 
 

The area that was sampled for this study was ~10 km2, which is a very large area.  There was 

also only one sample location as the initial tests with multiple locations showed a decrease in 
accuracy.  This should be further studied with various sample areas and sample methods.  Also, 

other sample methods might be necessary for different bodies of water with other algal types. 

The tested areas should also include coastal areas which can have vastly different colorations 

depending on runoffs and surrounding terrain.  
This exploration was done specifically using the result of single spectral value which was 

calculated for a sample location.  There are also other random sampling methods that could be 
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used and tested for better results.  The algorithms that have been previously packaged in ocean 

observation software are fairly complex and have the need for customization to specific areas 
[31].  One future potential that has arrived from this study could be building a training set of 

historical algal blooms from the data points identified above.   

 

The GEE JavaScript API was excellent for fast prototyping and testing ideas, however, for more 
powerful algorithms, extended libraries should be considered for in depth studies.  The Python 

API is a good candidate for this, and Google is also working on a number of solutions for 

unsupervised learning based on the Weka platform [31]. 
 

It is worth mentioning the computer processing time involved in preforming the analysis over 

multiple years.  In previously used Geographic Information Systems (GIS), such as ArcGIS, this 

type of analysis would have taken hours or even days [23]. Because it is hosted in the Google 
cloud, the processing for ten years of data took a matter of seconds. This is the biggest take 

away from this exploratory study with Google Earth Engine.  The ability to rapidly prototype 

and visualise results across vast datasets, within seconds, has the potential to dramatically 
change earth observation data mining techniques. 

 

6. CONCLUSION 
 
The areas being studied, data mining and machine learning, are wide-ranging fields of study.  In 

EO, there is an increasing focus on machine learning to handle the massive amounts of data that 

are being collected on a daily basis by higher resolution instruments. There are many challenges 
in EO, including the size of data, its variable and complex nature, a high barrier to entry, and the 

datasets used for training the data.  However, as the field grows these challenges are being 

addressed. 
  

Software companies are attempting to combat the barrier to entry by providing easy to use IDEs 

which enable fast prototyping and almost instant visualizations. A new training data set which is 

focused on improving training for deep learning systems, EuroSAT, has been implemented 
In this paper as a real-world example, the island of Gotland in the Baltic sea was studied by 

using GEE. Ten years of Landsat-7 data, along with a dataset from SMHI, for ground truth, was 

analysed to discover historical algal blooms in the Baltic Sea. 
   

One of the biggest take-aways from this study is the speed of processing in GEE, which is 

hosted in the Google cloud. Where previously, this type of analysis would have taken hours or 

days to process, it is now available in a few seconds. While GEE is still very new, there have 
already been hundreds of scientific papers published using it. 

   

Although primarily an exploratory study, this paper has shown the increasing potential for new 
tools and techniques to enhance the analysis of earth observation data for scientific research.   
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