
David C. Wyld et al. (Eds): SPTM, IPPR, AIS, CSIT, DaMi, AMLA - 2020 

pp. 01-16, 2020. CS & IT - CSCP 2020              DOI: 10.5121/csit.2020.100601 

 
FCNNMD: A NOVEL FUSION METHOD 

BASED ON CONVOLUTIONAL NEURAL 

NETWORK FOR MALWARE DETECTION 
 

Jing Zhang1 and Yu Wen2 

 
1Institute of Information Engineering, CAS & School of Cyber Security, 

University of Chinese Academy of Sciences, Beijing, China 
2Institute of Information Engineering, Chinese Academy of Sciences,  

Beijing, China 

 

ABSTRACT 

 
Malicious software are rampant and do great harm. The present mainstream malware detection 

technology has many disadvantages, such as high labour cost, large system overhead, and 

inability to detect new malware. We propose a novel fusion method based on convolutional 

neural network for malware detection (FCNNMD). For the sample imbalance problem faced by 

the convolutional neural network malware detection method, the non-malicious sample is added 

by means of generating anti-network generation, etc., to achieve the same number as the 

malicious sample. For the problem of low accuracy of single model detection, high false 
positive rate and false negative rate, a malware detection model is constructed by means of 

model fusion. The model combines four classical convolutional neural network structures. 

Experiments show that this method can effectively improve the accuracy and robustness of the 

model. Our method does not need actual running software and has high detection efficiency. 
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1.     INTRODUCTION 
 

In recent years, the Internet security reports of major security manufacturers at home and abroad 

show that viruses, worms, trojans and other malicious software are ram-pant and do great harm. 
In addition, the number of malware and variant malware is still growing rapidly, and the network 

security situation is still very serious. The present mainstream malware detection technology has 

many disadvantages, such as high labour cost, large system overhead, easy to be bypassed by 

malware, and inability to detect new malware. 
 

We propose a novel fusion method based on convolutional neural network for malware detection 

(FCNNMD). The basic idea is to use the grayscale image generation algorithm to convert the 
executable file into grayscale images firstly, and then use the convolutional neural network to 

build a grayscale image classification model. By classifying grayscale images, the purpose of 

detecting malware is achieved indirectly. 
 

The detection method of malware based on convolutional neural network cannot only reduce 

human cost and system overhead, improve detection efficiency, but also detect new types of 
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malware. In addition, the detection method of malware based on convolutional neural network 
does not need to rely on artificial features. The main work of this thesis includes: 

 

 For the sample imbalance problem faced by the convolutional neural network malware 

detection method, the non-malicious sample is added by means of generating anti-network 
generation, etc., to achieve the same number as the malicious sample. Experiments show that this 

method can effectively improve the accuracy of the model, reduce the false positive rate and 

false negative rate of the model. 
 

 For the problem of low accuracy of single model detection, high false positive rate and false 

negative rate, a malware detection model is constructed by means of model fusion. The model 
combines four classical convolutional neural network structures. Compared with the single 

model detection, the accuracy of the model is further improved, and the false alarm rate and the 

false negative rate are further reduced. 

 
 Aiming at the shortcomings of high complexity and low detection efficiency of model fusion 

method, a detection model with low complexity and high detection efficiency is designed and 

implemented. The accuracy, false positive rate and false negative rate of the model are passed. 
The model obtained by the model fusion method is basically the same, but the detection 

efficiency is improved by 3.15 times. 

 
The malware detection method proposed in this paper can achieve an accuracy rate of about 

97%, which is about 18% higher than the detection method based on texture fingerprint for 

malicious code variants. The detection method of malware based on convolutional neural 

network does not need actual running software, has high detection efficiency, does not rely on 
the construction of feature database, etc., and can greatly reduce labour cost and maintenance 

cost. 

 
The rest of this paper is organized as follows: we briefly review the related work in Section 2, 

and we describe the proposed method in Section 3. The experimental results and discussion are 

presented in Section 4. Finally, we give conclusion and future work in Section 5. 

 

2.    RELATED WORK 
 

In essence, malware detection technology is divided into two categories: static analysis and 

dynamic analysis. At present, most security manufacturers still rely on signature for malware 
detection, which belongs to static analysis [1]. This method can efficiently detect known 

malware, but it cannot detect new malware [2-4]. Dynamic analysis [5] is mainly based on the 

behaviour of software to detect malware. It usually need to actually run software to determine 

whether a software is malware, the most common practice is to rely on sandboxing programs. 
This detection method [6] has the disadvantages of high overhead, easy to be discovered by the 

defence detection mechanism of malware, and easy to be bypassed by malware. 

 
Detection techniques based on machine learning and deep learning can detect new malware [34-

36]. The detection method based on machine learning [7-9] mainly starts with the text structure 

of malware and extracts artificial features from many angles. [10] mainly identified malware by 
clustering, it first analysed the API of a large number of malware calls and used these API to 

form the dataset, then it extracted the subject from this dataset to cluster, and identified malware 

similar to known malware in the dataset. This method is obviously powerless against new 

malware [16]. Hyrum S et al. constructed an open source, large-scale PE format file data set, 
modeled and analysed the data set with the methods of machine learning and deep learning. The 

accuracy is about 95% [11]. The accuracy of detection method based on machine learning is 
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usually low, and the number of samples used is very small, mostly between hundreds and 
thousands, and the robustness of the model is not high. 

 

Deep learning [18] outperforms machine learning in many fields. In recent years, many 

researchers at home and abroad have shifted their research focus to malware detection based on 
deep learning [12-14]. Most of these methods are based on convolutional neural network [19-21] 

and recurrent neural network. Among them, the detection methods based on recurrent neural 

network structure are mostly based on software API call sequences to construct data sets. The 
accuracy of this kind of detection method is about 97%, but this kind of detection method has the 

problem of low detection efficiency, at the same time, because the sample is difficult to collect, 

most of them have the problem of small number of samples and low robustness of the model. 
The approach of [15] is to obtain the API call sequence of the software and consider the return 

value of each API. Finally, the classification model is established using the recurrent neural 

network. In [16], it obtains the API call sequence of the software and the API call sequence of 

the C language library, and then uses the recurrent neural network and echo state network to 
establish the classification model. The approach of [33] converts binary executable file into 

grayscale image, then extracts texture fingerprint based on grayscale image, it proposes a 

malicious code variant detection method based on texture fingerprint. Edward Raff et al. use 
convolutional neural network model that based on the bytecode sequence of the whole 

executable file, and a relatively high detection rate is also obtained, but the main problem is that 

the hardware requirements are too high, the computation is very large, and the model is relatively 
simple [17]. 

 

We propose a novel fusion method based on convolutional neural network for malware detection 

(FCNNMD). This method does not need to construct the malicious code feature library, but 
trains a grayscale image classification model through convolution neural network, which greatly 

reduces the labour cost and maintenance cost. Importantly, our model can detect new viruses. 

Compared with other methods of using machine learning to detect malware, the method does not 
need to rely on artificial features, but rely on convolutional neural network to automatically slave 

image species to extract features. This method does not need the actual running software, the 

detection efficiency is high, and the accuracy rate is about 97%. At the same time, samples are 

relatively easy to collect. This method can improve the accuracy and robustness of the model 
based on large sample training model. 

 

3.     PROPOSED METHODOLOGY 
 
The overall process of our method consists of two parts: the classification part and the detection 

part (see Figure 1). First, we need to collect a large number of executable files containing 

malicious programs and a large number of executable files that do not contain malicious 

programs to build an executable file set. Then all files in the executable file set are converted to 
grayscale images using grayscale image generation algorithm to get a grayscale image set, and 

then we use convolutional neural network to train a classification model based on this grayscale 

image set, which can then be used in the detection process to detect whether an executable file 
contains malicious programs. 
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Figure 1. The overall flow of malware detection based on convolutional neural networks 
 

3.1 Grayscale Image Conversion 
 

Among the malware detection methods based on convolutional neural network, the executable 

file should be converted to grayscale image first, then the malware is detected based on the 

texture features in the grayscale image. B2M grayscale image generation algorithm is usually 
used when converting an executable file to a grayscale image [33]. The algorithm is to read any 

binary file every 8 bits as an unsigned integer (range between 0~255), and then set a fixed row 

width directly according to experience, so that after the whole file reading is finished, a two-
dimensional array of unsigned integers will be obtained. Grayscale images of executable files 

containing the same family of malicious programs have similar texture features. Grayscale 

images of different executable files contained in the same software have similar texture features. 
The previous work does not specify the height and width of the grayscale image. This paper 

proposes that the form of the grayscale image should meet the following two conditions: 

 

 The width of grayscale images should not be greater than the input width of convolutional 
neural networks. This ensures continuity of the header information and information of the 

executable file as much as possible while training the model. The header of the executable file is 

a key part of judging whether an executable file contains malicious programs. Experiments show 
that the accuracy can be increased about 2 percentage points by ensuring that the header 

information of the executable file is not lost. 

 

 Grayscale images corresponding to executable files of similar size should also have similar 
image sizes. Executable files containing the same family of malicious programs are usually 

similar in size, because these executable files have similar functions, there is a great similarity 

between files. When converting these executables into grayscale images, it is ensured that the 
grayscale images have similar sizes, which ensures that the corresponding grayscale images of 

these executables have similar textures. 
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3.2 Sample Imbalance 
 

In order to solve the problem of sample imbalance, after we get the grayscale image set, we 

adopt the following two ways to increase the number of grayscale image corresponding to the 

executable file without malicious program in the grayscale image set: 
 

By cutting, flipping, flipping, etc. It is a more common method of data enhancement and can play 

a role on most data sets; 
 

We use the grayscale image corresponding to the executable file without malicious program to 

train a generative adversarial network [32] model that can generate the grayscale image 

corresponding to the executable file without malicious program. First, we create a set of 
executable files that do not contain malicious programs, and convert all executable files into 

grayscale images to get a grayscale image set, then we select the image from the grayscale image 

set and input it into discriminator to let the discriminator judge whether the picture is generated 
by the generator. In addition, we randomly generate a set of noise data and input noise data into 

the generator to generate the image, then we input generated image into the discriminator to let 

the discriminator judge whether the image is generated by the generator. Finally the model 
adjusts the parameters in the generator and discriminator according to the judgment result of the 

discriminator, and continuously improve the generator's generating ability and discriminator's 

discriminant ability. After training, we use the generator to generate images to add to the dataset. 

Figure 2 shows the images of generator generated. 
 

 

 
 

Figure 2. The images of generator generated 

 

The structure diagram of the generator and discriminator in the generative adversarial network is 

shown in Figure 3. 
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Figure 3. Generator structure diagram (a)   Discriminator structure diagram (b) 
 

Through the above two ways, we increase the original grayscale image set without malicious 
program executable corresponding to the number of grayscale image set to get the new grayscale 

image set, we delete part that contains malicious program executable file corresponding to the 

grayscale image, so that the number of two kinds of images in the data set is the same. 

 

3.3 Model fusion 
 
The model based on VGG16 [25], Inception-v3 [26-29], Xception [31] and ResNet50 [22] [30] is 

analyzed in detail by experiments (section 4). The following conclusions were drawn: VGG16 

can effectively improve the accuracy of the model and reduce the false alarm rate; deep separable 

convolution layer in Xception can effectively reduce the failure rate of the model; the model with 
the least time overhead is the Incepiton-v3 model and its detection efficiency is highest. Based on 
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the above conclusions, this paper designs and implements a complete model from bottom up, as 
shown in Figure 4. 
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Figure 4. Custom model structure diagram 
 
The input of the model is a grayscale picture, and a preprocessing layer is added after the input 

layer. The preprocessing layer is responsible for filling the grayscale picture with height or width 

less than 512 pixels, while scaling all the pixel values in the picture to between 0 and 1. 
 

The main part of the model is mainly composed of 4 convolution pooling modules, each 

convolution pooling module is composed of multiple convolution layers and 1 pooling layer, the 

size of the convolution kernel of all convolution layers is 3*3, the step size is 1 and the padding 
mode is same padding. This part mainly takes into account that the accuracy and false positives 

of VGG16 in all single models are the lowest, so the trunk part adopts a structure similar to the 

VGG16 to ensure that the model has high accuracy and low false alarm rate. 
 

The left branch of the model is mainly composed of 4 deep separable convolution layers, it 

mainly takes into account that the missing rate of Xception in all single models is the lowest, and 
then it is speculated that the Xception deep separable convolution structure has a role in reducing 

the missing rate of the model. At the same time, to reduce the complexity of the model, multiple 

deep separable convolution layers are used as branches to further extract features based on the 

first three convolution pooling modules of the trunk part, it is expected to reduce the missing rate 
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of the model. Finally, the batch standardization layer is added to the left branch to accelerate the 
model convergence and prevent overfitting. 

 

The right branch of the model contains multiple branch structures, it mainly draw lessons from 

the idea of Inception Module. First, 1*1 convolution is used in multiple branches .1*1 
convolution can organize information across channels. Secondly, after each 1*1 convolution 

operation, the convolution results are nonlinearly calculated using the ReLU activation function. 

More nonlinear operations are introduced for the model to enhance the fitting ability of the 
model. Using this structure can also further increase the width of the model and the adaptability 

to the scale of the network, so there is multi-scale information inside. Moreover, the efficiency of 

this structure is relatively high. The whole right side branch of the model is mainly responsible 
for extracting more features in a more efficient way to further improve the performance of the 

model. 

 

Finally, both the trunk part and the left and right side branches obtain a one-dimensional vector 
through a global average pooling layer. These three one-dimensional vectors are connected, then 

the grayscale image through the output layer is the probability of the grayscale image 

corresponding to the executable file containing the malicious program. 
 

4.    EXPERIMENTS 
 

4.1. Experimental Settings 
 

4.1.1. Datasets 

 
We collect a large number of executable files containing malicious programs and executable files 

without malicious programs through various channels. Executable files that do not contain 

malicious programs are mainly from the mainstream Windows operating system, and executable 

files that contain malicious programs are mainly from sites that specifically collect malware. The 
composition of the data sets is shown in Figure 5: 

 

verification set V  training set A  training set B

2000 7822 5000 2000 8000 5000

9822 grayscale images 15000 grayscale images

9822 executable files  without malicious 
programs

15000 executable files  with malicious 
programs

generation

 
 

Figure 5. The division of data sets 
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Figure 5 shows that a total of 9822 executable files without malicious programs and 15000 
executable files containing malicious programs participated in the construction of the data set. 

First, all the executable files are transformed into grayscale images using the improved B2M 

grayscale image generation algorithm. Then, based on 9822 grayscale images corresponding to 

executable files that do not contain malicious programs, 5000 grayscale images are generated 
using the method mentioned above. Then 9822 grayscale images of executable files that do not 

contain malicious programs were divided into two parts, one containing 2000 and the other 

containing 7822. Meanwhile, 15000 grayscale images of executable files containing malicious 
programs are divided into 3 parts. Finally, the verification set V, training set A and training set B 

are constructed according to the graph. 

 

4.1.2. Metrics 

 

For evaluating the performance of each model on the verification set V, the main evaluation 

indexes are accuracy, false alarm rate, missing report rate and time overhead. Time overhead is 
the time taken by each model to evaluate 4000 grayscale images V the validation set. 

Accuracy: 

 

 cc= 100%



  

TP TN
A

TP TN FN FP
                                              (1) 

 

False alarm rate: 
 

                  100% 


FN
False alarm rate

TP FN
                                             (2) 

 
Missing report rate: 
 

    100% 


FP
Missing report rate

FP TN
                                           (3) 

 

4.1.3. Detailed Implementation 

 

In this paper, the operating system used in the experiment is Linux system (Ubuntu 16.04), the 
width and height of grayscale images are defined as 512 pixels. DCGAN [32] is adopted in this 

paper. In our model, batch size is 8, epoch number is 20, and Adam is the optimization algorithm 

used. In order to prevent overfitting, the early stop strategy is also used. 
 

4.2. Performance Comparison 
 

4.2.1. Single Model Comparison 

 

VGG, Inception, ResNet, Xception are four classical convolutional neural network structures. 
Most of the convolutional neural network structures are based on the further combination and 

improvement of these network structures, so in this paper, we first select these four classical 

convolutional neural networks to evaluate the performance, then we try to construct a better 

model based on the performance of these four convolutional neural networks. 
 

We have modified the network structure by adding a preprocessing layer before the input layer, 

which will fill images with height and width less than 512 pixels in the form of nearest neighbor 
interpolation. The preprocessing layer will also scale all pixel values of images to between 0 and 

1, which can accelerate model convergence. 
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Figure 6. Loss curve (training set A, verification set V) 

 

 
 

(a) VGG                                                (b) Inception 

 

   
(c) ResNet                                             (d) Xception 

 

Figure 7. Loss curve (training set B, verification set V) 
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Table 1. The evaluation result of each model on training set A and verification set V 
 

Model accuracy 
false  

alarm rate 

missing  

report rate 
time overhead 

VGG16 95.92% 3.46% 4.59% 58s 

ResNet50 94.40% 6.26% 4.94% 54s 

Xception 95.16% 6.87% 2.80% 62s 
Inception-v3 94.20% 5.95% 5.65% 47s 

average 94.92% 5.64% 4.50% / 

 
Table 2. The evaluation result of each model on training set B and verification set V 

 

Model accuracy 
false  

alarm rate 

missing  

report rate 
time overhead 

VGG16 96.85% 2.80% 3.47% 58s 

ResNet50 95.34% 5.02% 4.30% 54s 
Xception 96.64% 3.97% 2.75% 62s 

Inception-v3 96.30% 3.80% 3.42% 47s 

average 96.28% 3.90% 3.49% / 

 
The following conclusions can be drawn by observing the above figure and tables: 

 

 The evaluation results of the four models on the validation set V using the training set B are 

better than that using the training set A. This proves that the scheme used in this paper can 
improve the model performance and enhance the generalization ability of the model. In order to 

solve the problem of sample imbalance, we use the generative adversarial network generation 

network as one of the ways to expand the data set, and the generative adversarial network 
generates samples with similar distribution but not exactly the same as the original sample, so we 

can consider using the generative adversarial network to further expand the data set. 

 
 For VGG16, the false alarm rate is the lowest and the accuracy is the highest, which shows 

that the VGG16 structure can effectively improve the accuracy of the model and reduce the false 

alarm rate of the model; 

 
 Whether using training set A or training set B training model, the underreporting rate of 

Xception validation set is obviously lower than that of other models, which indicates that the 

deep separable convolution layer in Xception can effectively reduce the missing rate of the 
model. 

 

 The model with the least time overhead is the Incepiton-v3 model, which shows that the 

Inception-v3 model is the most efficient. 
 

4.2.2. Fusion Model Comparison 

 
First, we design a simple model fusion method. Using previously trained network structures 

VGG16, Xception, ResNet50 and Inception-v3 to extract features, a one-dimensional vector of a 

certain length can be obtained through a global average pooling operation after passing through 
the intermediate structure of each network, then all one-dimensional vectors are connected into a 

long vector as the input of the fully connected layer. The output layer outputs the probability that 

if the grayscale image corresponds to the executable file containing the malicious program. 
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The model FCNNMD was finally trained on the training set B and the model performance was 
evaluated on the validation set V. 

 

 
 

Figure 8. Loss and accuracy curve of custom model (training set B, verification set V) 
 

The left figure of Figure 8 shows that with the increase of the number of epoch, the loss value of 

the model on the training set B and the verification set V shows a downward trend. From the 

right figure, we can see that the accuracy of the model on the training set B and the verification 
set is increasing with the increase of the number of epoch. In the 16th epoch, the model has the 

lowest loss value and the highest accuracy. 

 
Table 3. The evaluation result of fusion model on verification set V 

 

Metric training set A training set B 

accuracy 96.65% 97.70% 

false alarm rate 3.21% 3.06% 

missing report rate 3.49% 1.54% 

time overhead 230s 230s 

 

The comparison with the results of single model shows that the performance of the model can be 
further improved by model fusion (Table 3), and the generalization ability of the model can be 

enhanced. The model obtained by model fusion has higher accuracy rate, lower false alarm rate 

and missing alarm rate. 

 
Table 4. The evaluation result on training set B 

 

Metric Simple Fusion FCNNMD 

accuracy 97.70% 97.8% 

false alarm rate 3.06% 3.05% 

missing report rate 1.54% 1.35% 

time overhead 230s 73s 

 

As can be seen from Table 4, the simple fusion model has high complexity and low detection 
efficiency, and the time overhead of the model is basically equal to the sum of the time overhead 

of the four single models. FCNNMD complexity is greatly reduced, and the detection efficiency 

of the model is greatly improved, and the overall improvement is 3.15 times. The reason why the 
efficiency of model detection is greatly improved is that the number of parameters in the model 

is greatly reduced and the model is simplified by optimization.  
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In our method, when adjusting parameters in reverse, only the parameters in full connection layer 
are adjusted without changing the parameters in each network structure, which weakens the 

effect of model fusion. Sufficient hardware resources allow all models to be loaded into memory. 

When adjusting parameters in reverse, the parameters of some layers in each network structure 

can be fine-tuned according to the results of model fusion. 
 

5.     CONCLUSION AND FUTURE WORK 
 

In this paper, we propose a novel fusion method based on convolutional neural network for 
malware detection. The model combines four classical convolutional neural network structures 

and its experimental results show that this method can effectively improve the accuracy and 

robustness of the model. The malware detection method based on convolutional neural network 

can avoid complex feature code extraction work, reduce labor costs, reduce system overhead, 
improve detection efficiency and detect new viruses. The training of the generative adversarial 

network in our model is difficult. In the future, we would like to research a more structured 

generation adversarial network training model to generate higher quality data. 
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