
David C. Wyld et al. (Eds): SPTM, IPPR, AIS, CSIT, DaMi, AMLA - 2020

pp. 01-16, 2020. CS & IT - CSCP 2020 DOI: 10.5121/csit.2020.100601

FCNNMD: A NOVEL FUSION METHOD

BASED ON CONVOLUTIONAL NEURAL

NETWORK FOR MALWARE DETECTION

Jing Zhang1 and Yu Wen2

1Institute of Information Engineering, CAS & School of Cyber Security,

University of Chinese Academy of Sciences, Beijing, China
2Institute of Information Engineering, Chinese Academy of Sciences,

Beijing, China

ABSTRACT

Malicious software are rampant and do great harm. The present mainstream malware detection

technology has many disadvantages, such as high labour cost, large system overhead, and

inability to detect new malware. We propose a novel fusion method based on convolutional

neural network for malware detection (FCNNMD). For the sample imbalance problem faced by

the convolutional neural network malware detection method, the non-malicious sample is added

by means of generating anti-network generation, etc., to achieve the same number as the

malicious sample. For the problem of low accuracy of single model detection, high false
positive rate and false negative rate, a malware detection model is constructed by means of

model fusion. The model combines four classical convolutional neural network structures.

Experiments show that this method can effectively improve the accuracy and robustness of the

model. Our method does not need actual running software and has high detection efficiency.

KEYWORDS

Malware Detection, Grayscale Image, Convolutional Neural Networks, Model integration

1. INTRODUCTION

In recent years, the Internet security reports of major security manufacturers at home and abroad

show that viruses, worms, trojans and other malicious software are ram-pant and do great harm.
In addition, the number of malware and variant malware is still growing rapidly, and the network

security situation is still very serious. The present mainstream malware detection technology has

many disadvantages, such as high labour cost, large system overhead, easy to be bypassed by

malware, and inability to detect new malware.

We propose a novel fusion method based on convolutional neural network for malware detection

(FCNNMD). The basic idea is to use the grayscale image generation algorithm to convert the
executable file into grayscale images firstly, and then use the convolutional neural network to

build a grayscale image classification model. By classifying grayscale images, the purpose of

detecting malware is achieved indirectly.

The detection method of malware based on convolutional neural network cannot only reduce

human cost and system overhead, improve detection efficiency, but also detect new types of

http://airccse.org/cscp.html
http://airccse.org/csit/V10N06.html
https://doi.org/10.5121/csit.2020.100601

2 Computer Science & Information Technology (CS & IT)

malware. In addition, the detection method of malware based on convolutional neural network
does not need to rely on artificial features. The main work of this thesis includes:

 For the sample imbalance problem faced by the convolutional neural network malware

detection method, the non-malicious sample is added by means of generating anti-network
generation, etc., to achieve the same number as the malicious sample. Experiments show that this

method can effectively improve the accuracy of the model, reduce the false positive rate and

false negative rate of the model.

 For the problem of low accuracy of single model detection, high false positive rate and false

negative rate, a malware detection model is constructed by means of model fusion. The model
combines four classical convolutional neural network structures. Compared with the single

model detection, the accuracy of the model is further improved, and the false alarm rate and the

false negative rate are further reduced.

 Aiming at the shortcomings of high complexity and low detection efficiency of model fusion

method, a detection model with low complexity and high detection efficiency is designed and

implemented. The accuracy, false positive rate and false negative rate of the model are passed.
The model obtained by the model fusion method is basically the same, but the detection

efficiency is improved by 3.15 times.

The malware detection method proposed in this paper can achieve an accuracy rate of about

97%, which is about 18% higher than the detection method based on texture fingerprint for

malicious code variants. The detection method of malware based on convolutional neural

network does not need actual running software, has high detection efficiency, does not rely on
the construction of feature database, etc., and can greatly reduce labour cost and maintenance

cost.

The rest of this paper is organized as follows: we briefly review the related work in Section 2,

and we describe the proposed method in Section 3. The experimental results and discussion are

presented in Section 4. Finally, we give conclusion and future work in Section 5.

2. RELATED WORK

In essence, malware detection technology is divided into two categories: static analysis and

dynamic analysis. At present, most security manufacturers still rely on signature for malware
detection, which belongs to static analysis [1]. This method can efficiently detect known

malware, but it cannot detect new malware [2-4]. Dynamic analysis [5] is mainly based on the

behaviour of software to detect malware. It usually need to actually run software to determine

whether a software is malware, the most common practice is to rely on sandboxing programs.
This detection method [6] has the disadvantages of high overhead, easy to be discovered by the

defence detection mechanism of malware, and easy to be bypassed by malware.

Detection techniques based on machine learning and deep learning can detect new malware [34-

36]. The detection method based on machine learning [7-9] mainly starts with the text structure

of malware and extracts artificial features from many angles. [10] mainly identified malware by
clustering, it first analysed the API of a large number of malware calls and used these API to

form the dataset, then it extracted the subject from this dataset to cluster, and identified malware

similar to known malware in the dataset. This method is obviously powerless against new

malware [16]. Hyrum S et al. constructed an open source, large-scale PE format file data set,
modeled and analysed the data set with the methods of machine learning and deep learning. The

accuracy is about 95% [11]. The accuracy of detection method based on machine learning is

Computer Science & Information Technology (CS & IT) 3

usually low, and the number of samples used is very small, mostly between hundreds and
thousands, and the robustness of the model is not high.

Deep learning [18] outperforms machine learning in many fields. In recent years, many

researchers at home and abroad have shifted their research focus to malware detection based on
deep learning [12-14]. Most of these methods are based on convolutional neural network [19-21]

and recurrent neural network. Among them, the detection methods based on recurrent neural

network structure are mostly based on software API call sequences to construct data sets. The
accuracy of this kind of detection method is about 97%, but this kind of detection method has the

problem of low detection efficiency, at the same time, because the sample is difficult to collect,

most of them have the problem of small number of samples and low robustness of the model.
The approach of [15] is to obtain the API call sequence of the software and consider the return

value of each API. Finally, the classification model is established using the recurrent neural

network. In [16], it obtains the API call sequence of the software and the API call sequence of

the C language library, and then uses the recurrent neural network and echo state network to
establish the classification model. The approach of [33] converts binary executable file into

grayscale image, then extracts texture fingerprint based on grayscale image, it proposes a

malicious code variant detection method based on texture fingerprint. Edward Raff et al. use
convolutional neural network model that based on the bytecode sequence of the whole

executable file, and a relatively high detection rate is also obtained, but the main problem is that

the hardware requirements are too high, the computation is very large, and the model is relatively
simple [17].

We propose a novel fusion method based on convolutional neural network for malware detection

(FCNNMD). This method does not need to construct the malicious code feature library, but
trains a grayscale image classification model through convolution neural network, which greatly

reduces the labour cost and maintenance cost. Importantly, our model can detect new viruses.

Compared with other methods of using machine learning to detect malware, the method does not
need to rely on artificial features, but rely on convolutional neural network to automatically slave

image species to extract features. This method does not need the actual running software, the

detection efficiency is high, and the accuracy rate is about 97%. At the same time, samples are

relatively easy to collect. This method can improve the accuracy and robustness of the model
based on large sample training model.

3. PROPOSED METHODOLOGY

The overall process of our method consists of two parts: the classification part and the detection

part (see Figure 1). First, we need to collect a large number of executable files containing

malicious programs and a large number of executable files that do not contain malicious

programs to build an executable file set. Then all files in the executable file set are converted to
grayscale images using grayscale image generation algorithm to get a grayscale image set, and

then we use convolutional neural network to train a classification model based on this grayscale

image set, which can then be used in the detection process to detect whether an executable file
contains malicious programs.

4 Computer Science & Information Technology (CS & IT)

classification

Training classification
model with CNN

executable files

executable files
with malicious

programs

detection

software

predicted results

malicious software/benign software

Classification
model

executable files scan

executable files
without malicious

programs

Gray images

Figure 1. The overall flow of malware detection based on convolutional neural networks

3.1 Grayscale Image Conversion

Among the malware detection methods based on convolutional neural network, the executable

file should be converted to grayscale image first, then the malware is detected based on the

texture features in the grayscale image. B2M grayscale image generation algorithm is usually
used when converting an executable file to a grayscale image [33]. The algorithm is to read any

binary file every 8 bits as an unsigned integer (range between 0~255), and then set a fixed row

width directly according to experience, so that after the whole file reading is finished, a two-
dimensional array of unsigned integers will be obtained. Grayscale images of executable files

containing the same family of malicious programs have similar texture features. Grayscale

images of different executable files contained in the same software have similar texture features.
The previous work does not specify the height and width of the grayscale image. This paper

proposes that the form of the grayscale image should meet the following two conditions:

 The width of grayscale images should not be greater than the input width of convolutional
neural networks. This ensures continuity of the header information and information of the

executable file as much as possible while training the model. The header of the executable file is

a key part of judging whether an executable file contains malicious programs. Experiments show
that the accuracy can be increased about 2 percentage points by ensuring that the header

information of the executable file is not lost.

 Grayscale images corresponding to executable files of similar size should also have similar
image sizes. Executable files containing the same family of malicious programs are usually

similar in size, because these executable files have similar functions, there is a great similarity

between files. When converting these executables into grayscale images, it is ensured that the
grayscale images have similar sizes, which ensures that the corresponding grayscale images of

these executables have similar textures.

Computer Science & Information Technology (CS & IT) 5

3.2 Sample Imbalance

In order to solve the problem of sample imbalance, after we get the grayscale image set, we

adopt the following two ways to increase the number of grayscale image corresponding to the

executable file without malicious program in the grayscale image set:

By cutting, flipping, flipping, etc. It is a more common method of data enhancement and can play

a role on most data sets;

We use the grayscale image corresponding to the executable file without malicious program to

train a generative adversarial network [32] model that can generate the grayscale image

corresponding to the executable file without malicious program. First, we create a set of
executable files that do not contain malicious programs, and convert all executable files into

grayscale images to get a grayscale image set, then we select the image from the grayscale image

set and input it into discriminator to let the discriminator judge whether the picture is generated
by the generator. In addition, we randomly generate a set of noise data and input noise data into

the generator to generate the image, then we input generated image into the discriminator to let

the discriminator judge whether the image is generated by the generator. Finally the model
adjusts the parameters in the generator and discriminator according to the judgment result of the

discriminator, and continuously improve the generator's generating ability and discriminator's

discriminant ability. After training, we use the generator to generate images to add to the dataset.

Figure 2 shows the images of generator generated.

Figure 2. The images of generator generated

The structure diagram of the generator and discriminator in the generative adversarial network is

shown in Figure 3.

6 Computer Science & Information Technology (CS & IT)

Batch Standardization->Deconvolution layer

Batch Standardization->Deconvolution layer

Batch Standardization->Deconvolution layer

Batch Standardization->Deconvolution layer

Batch Standardization->Deconvolution layer

Batch Standardization->Deconvolution layer

Batch Standardization->Deconvolution layer

Fully Connected layer

Reshape

Batch Standardization->Deconvolution layer

Input layer

Tensor(512,512,1)

Vector(100 dimension)

Computer Science & Information Technology (CS & IT) 7

Convolution layer->Batch Standardization

Flatten

Fully Connected layer

Convolution layer->Batch Standardization

Convolution layer->Batch Standardization

Convolution layer->Batch Standardization

Convolution layer->Batch Standardization

Convolution layer

Convolution layer->Batch Standardization

Convolution layer->Batch Standardization

Input layer

True/Fake

Grayscale images(512,512,1)

Output layer

Figure 3. Generator structure diagram (a) Discriminator structure diagram (b)

Through the above two ways, we increase the original grayscale image set without malicious
program executable corresponding to the number of grayscale image set to get the new grayscale

image set, we delete part that contains malicious program executable file corresponding to the

grayscale image, so that the number of two kinds of images in the data set is the same.

3.3 Model fusion

The model based on VGG16 [25], Inception-v3 [26-29], Xception [31] and ResNet50 [22] [30] is

analyzed in detail by experiments (section 4). The following conclusions were drawn: VGG16

can effectively improve the accuracy of the model and reduce the false alarm rate; deep separable

convolution layer in Xception can effectively reduce the failure rate of the model; the model with
the least time overhead is the Incepiton-v3 model and its detection efficiency is highest. Based on

8 Computer Science & Information Technology (CS & IT)

the above conclusions, this paper designs and implements a complete model from bottom up, as
shown in Figure 4.

concat

output layer

Global average
pooling

Convolution layer4

Convolution layer4

Convolution layer4

Convolution layer3

Convolution layer3

Convolution layer3

pooling layer3

pooling layer1

Convolution layer2

Convolution layer2

pooling layer2pooling layer2

Preprocessing layer

Convolution layer1

Convolution layer1

Input layer

Global average
pooling

Batch
standardization

activation layer

Convolution layer

Batch
standardization

activation layer

Convolution layer

Batch
standardization

activation layer

Convolution layer

pooling layer

Convolution layer

Convolution
layer(1*1)

Convolution
layer(1*1)

Convolution
layer(3*3)

Convolution
layer(1*1)

Convolution
layer(1*1)

Convolution
layer(3*3)

Convolution
layer(3*3)

Convolution
layer(1*1)

Convolution
layer(1*1)

Convolution
layer(3*3)

concat

Global average
pooling

concat

Figure 4. Custom model structure diagram

The input of the model is a grayscale picture, and a preprocessing layer is added after the input

layer. The preprocessing layer is responsible for filling the grayscale picture with height or width

less than 512 pixels, while scaling all the pixel values in the picture to between 0 and 1.

The main part of the model is mainly composed of 4 convolution pooling modules, each

convolution pooling module is composed of multiple convolution layers and 1 pooling layer, the

size of the convolution kernel of all convolution layers is 3*3, the step size is 1 and the padding
mode is same padding. This part mainly takes into account that the accuracy and false positives

of VGG16 in all single models are the lowest, so the trunk part adopts a structure similar to the

VGG16 to ensure that the model has high accuracy and low false alarm rate.

The left branch of the model is mainly composed of 4 deep separable convolution layers, it

mainly takes into account that the missing rate of Xception in all single models is the lowest, and
then it is speculated that the Xception deep separable convolution structure has a role in reducing

the missing rate of the model. At the same time, to reduce the complexity of the model, multiple

deep separable convolution layers are used as branches to further extract features based on the

first three convolution pooling modules of the trunk part, it is expected to reduce the missing rate

Computer Science & Information Technology (CS & IT) 9

of the model. Finally, the batch standardization layer is added to the left branch to accelerate the
model convergence and prevent overfitting.

The right branch of the model contains multiple branch structures, it mainly draw lessons from

the idea of Inception Module. First, 1*1 convolution is used in multiple branches .1*1
convolution can organize information across channels. Secondly, after each 1*1 convolution

operation, the convolution results are nonlinearly calculated using the ReLU activation function.

More nonlinear operations are introduced for the model to enhance the fitting ability of the
model. Using this structure can also further increase the width of the model and the adaptability

to the scale of the network, so there is multi-scale information inside. Moreover, the efficiency of

this structure is relatively high. The whole right side branch of the model is mainly responsible
for extracting more features in a more efficient way to further improve the performance of the

model.

Finally, both the trunk part and the left and right side branches obtain a one-dimensional vector
through a global average pooling layer. These three one-dimensional vectors are connected, then

the grayscale image through the output layer is the probability of the grayscale image

corresponding to the executable file containing the malicious program.

4. EXPERIMENTS

4.1. Experimental Settings

4.1.1. Datasets

We collect a large number of executable files containing malicious programs and executable files

without malicious programs through various channels. Executable files that do not contain

malicious programs are mainly from the mainstream Windows operating system, and executable

files that contain malicious programs are mainly from sites that specifically collect malware. The
composition of the data sets is shown in Figure 5:

verification set V training set A training set B

2000 7822 5000 2000 8000 5000

9822 grayscale images 15000 grayscale images

9822 executable files without malicious
programs

15000 executable files with malicious
programs

generation

Figure 5. The division of data sets

10 Computer Science & Information Technology (CS & IT)

Figure 5 shows that a total of 9822 executable files without malicious programs and 15000
executable files containing malicious programs participated in the construction of the data set.

First, all the executable files are transformed into grayscale images using the improved B2M

grayscale image generation algorithm. Then, based on 9822 grayscale images corresponding to

executable files that do not contain malicious programs, 5000 grayscale images are generated
using the method mentioned above. Then 9822 grayscale images of executable files that do not

contain malicious programs were divided into two parts, one containing 2000 and the other

containing 7822. Meanwhile, 15000 grayscale images of executable files containing malicious
programs are divided into 3 parts. Finally, the verification set V, training set A and training set B

are constructed according to the graph.

4.1.2. Metrics

For evaluating the performance of each model on the verification set V, the main evaluation

indexes are accuracy, false alarm rate, missing report rate and time overhead. Time overhead is
the time taken by each model to evaluate 4000 grayscale images V the validation set.

Accuracy:

 cc= 100%

TP TN
A

TP TN FN FP
 (1)

False alarm rate:

 100%

FN
False alarm rate

TP FN
 (2)

Missing report rate:

 100%

FP
Missing report rate

FP TN
 (3)

4.1.3. Detailed Implementation

In this paper, the operating system used in the experiment is Linux system (Ubuntu 16.04), the
width and height of grayscale images are defined as 512 pixels. DCGAN [32] is adopted in this

paper. In our model, batch size is 8, epoch number is 20, and Adam is the optimization algorithm

used. In order to prevent overfitting, the early stop strategy is also used.

4.2. Performance Comparison

4.2.1. Single Model Comparison

VGG, Inception, ResNet, Xception are four classical convolutional neural network structures.
Most of the convolutional neural network structures are based on the further combination and

improvement of these network structures, so in this paper, we first select these four classical

convolutional neural networks to evaluate the performance, then we try to construct a better

model based on the performance of these four convolutional neural networks.

We have modified the network structure by adding a preprocessing layer before the input layer,

which will fill images with height and width less than 512 pixels in the form of nearest neighbor
interpolation. The preprocessing layer will also scale all pixel values of images to between 0 and

1, which can accelerate model convergence.

Computer Science & Information Technology (CS & IT) 11

(a) VGG (b) Inception

(c) ResNet (d) Xception

Figure 6. Loss curve (training set A, verification set V)

(a) VGG (b) Inception

(c) ResNet (d) Xception

Figure 7. Loss curve (training set B, verification set V)

12 Computer Science & Information Technology (CS & IT)

Table 1. The evaluation result of each model on training set A and verification set V

Model accuracy
false

alarm rate

missing

report rate
time overhead

VGG16 95.92% 3.46% 4.59% 58s

ResNet50 94.40% 6.26% 4.94% 54s

Xception 95.16% 6.87% 2.80% 62s
Inception-v3 94.20% 5.95% 5.65% 47s

average 94.92% 5.64% 4.50% /

Table 2. The evaluation result of each model on training set B and verification set V

Model accuracy
false

alarm rate

missing

report rate
time overhead

VGG16 96.85% 2.80% 3.47% 58s

ResNet50 95.34% 5.02% 4.30% 54s
Xception 96.64% 3.97% 2.75% 62s

Inception-v3 96.30% 3.80% 3.42% 47s

average 96.28% 3.90% 3.49% /

The following conclusions can be drawn by observing the above figure and tables:

 The evaluation results of the four models on the validation set V using the training set B are

better than that using the training set A. This proves that the scheme used in this paper can
improve the model performance and enhance the generalization ability of the model. In order to

solve the problem of sample imbalance, we use the generative adversarial network generation

network as one of the ways to expand the data set, and the generative adversarial network
generates samples with similar distribution but not exactly the same as the original sample, so we

can consider using the generative adversarial network to further expand the data set.

 For VGG16, the false alarm rate is the lowest and the accuracy is the highest, which shows

that the VGG16 structure can effectively improve the accuracy of the model and reduce the false

alarm rate of the model;

 Whether using training set A or training set B training model, the underreporting rate of

Xception validation set is obviously lower than that of other models, which indicates that the

deep separable convolution layer in Xception can effectively reduce the missing rate of the
model.

 The model with the least time overhead is the Incepiton-v3 model, which shows that the

Inception-v3 model is the most efficient.

4.2.2. Fusion Model Comparison

First, we design a simple model fusion method. Using previously trained network structures

VGG16, Xception, ResNet50 and Inception-v3 to extract features, a one-dimensional vector of a

certain length can be obtained through a global average pooling operation after passing through
the intermediate structure of each network, then all one-dimensional vectors are connected into a

long vector as the input of the fully connected layer. The output layer outputs the probability that

if the grayscale image corresponds to the executable file containing the malicious program.

Computer Science & Information Technology (CS & IT) 13

The model FCNNMD was finally trained on the training set B and the model performance was
evaluated on the validation set V.

Figure 8. Loss and accuracy curve of custom model (training set B, verification set V)

The left figure of Figure 8 shows that with the increase of the number of epoch, the loss value of

the model on the training set B and the verification set V shows a downward trend. From the

right figure, we can see that the accuracy of the model on the training set B and the verification
set is increasing with the increase of the number of epoch. In the 16th epoch, the model has the

lowest loss value and the highest accuracy.

Table 3. The evaluation result of fusion model on verification set V

Metric training set A training set B

accuracy 96.65% 97.70%

false alarm rate 3.21% 3.06%

missing report rate 3.49% 1.54%

time overhead 230s 230s

The comparison with the results of single model shows that the performance of the model can be
further improved by model fusion (Table 3), and the generalization ability of the model can be

enhanced. The model obtained by model fusion has higher accuracy rate, lower false alarm rate

and missing alarm rate.

Table 4. The evaluation result on training set B

Metric Simple Fusion FCNNMD

accuracy 97.70% 97.8%

false alarm rate 3.06% 3.05%

missing report rate 1.54% 1.35%

time overhead 230s 73s

As can be seen from Table 4, the simple fusion model has high complexity and low detection
efficiency, and the time overhead of the model is basically equal to the sum of the time overhead

of the four single models. FCNNMD complexity is greatly reduced, and the detection efficiency

of the model is greatly improved, and the overall improvement is 3.15 times. The reason why the
efficiency of model detection is greatly improved is that the number of parameters in the model

is greatly reduced and the model is simplified by optimization.

14 Computer Science & Information Technology (CS & IT)

In our method, when adjusting parameters in reverse, only the parameters in full connection layer
are adjusted without changing the parameters in each network structure, which weakens the

effect of model fusion. Sufficient hardware resources allow all models to be loaded into memory.

When adjusting parameters in reverse, the parameters of some layers in each network structure

can be fine-tuned according to the results of model fusion.

5. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel fusion method based on convolutional neural network for
malware detection. The model combines four classical convolutional neural network structures

and its experimental results show that this method can effectively improve the accuracy and

robustness of the model. The malware detection method based on convolutional neural network

can avoid complex feature code extraction work, reduce labor costs, reduce system overhead,
improve detection efficiency and detect new viruses. The training of the generative adversarial

network in our model is difficult. In the future, we would like to research a more structured

generation adversarial network training model to generate higher quality data.

REFERENCES

[1] Sami A, Yadegari B, Rahimi H, et al. Malware detection based on mining API calls: ACM

Symposium on Applied Computing, 2010[C].

[2] M. Christodorescu, S. Jha. Static analysis of executables to detect malicious patterns[C].//In

Proceedings of the 12th USENIX Security Symposium, 2003:169–186.

[3] A. Sung, J. Xu, P. Chavez, S. Mukkamala. Static analyzer of vicious executables (save)[C].//In
Proceedings of the 2004 Annual Computer Security Applications Conference (ACSAC), 2004:326–

334.

[4] R. Lo, K. Levitt, R. Olsson. MCF: a malicious code filter[C].\\Computers and Security 14,1995:541–

566.

[5] SANTOS I,BREZO F,UGARTE-PEDRERO X,et al.Opcode sequences as representation of

executables for data-mining-based unknown malware detection[J]. Information

Sciences,2013,231(2013):62-82.

[6] NAKAZATO J,SONG J,ETO M. A novel malware clustering method using frequency of function
call traces in parallel threads[J]. IEICE transactions on information and systems,2011,E94-

D(11):2150-2158.

[7] Sundarkumar G G, Ravi V. Malware detection by text and data mining[C]. IEEE International

Conference on Computational Intelligence and Computing Research. IEEE, 2013:1-6.

[8] Matthew G.Schultz,Eleazar Eskin,Erez Zadok.Data Mining Methods for Detection of New Malicious

Executables [C].IEEE Computer Society,2001:38-49.

[9] Sundarkumar G G, Ravi V, Nwogu I, et.al. Malware detection via API calls, topic et al. Malware

Detection Systems Baesed on API Log Data Mining[C]. IEEE, Computer Software and Applications
Conference. IEEE Computer Society, 2015:255-260.

[10] Fujino A, Murakami J, Mori T, Discovering similar malware samples using API call topics[C].

Consumer Communications and NETWORKING Conference. IEEE, 2015:140-147.

[11] Hyrum S. Anderson, Phil Roth, et al. EMBER: An Open Dataset for Training Static PE Malware

Machine Learning Models[C] Neuroscience School Of Advanced Studies(NSAS), 2018, 4.

Computer Science & Information Technology (CS & IT) 15

[12] DAHL G E, STOKES J W, DENG L, et al. Large-scale malware classification using random

projections and neural networks[C] 2013 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). Vancouver, BC, Canada: IEEE, 2013: 3422-3426.

[13] SAXE J, BERLIN K. Deep neural network based malware detection using two dimensional binary
program features[C] 201510th International Conference on Malicious and Unwanted Software

(MALWARE). Fajardo, Puerto Rico: IEEE, 2015: 11-20.

[14] KOLOSNJAJI B, ZARRAS A, WEBSTER G, et al. Deep learning for classification of malware

system call sequences[C] Australasian Joint Conference on Artificial Intelligence. Hobart, TAS,

Australia: Springer International Publishing, 2016: 137-149.

[15] TOBIYAMA S, YAMAGUCHI Y, SHIMADA H, et al. Malware detection with deep neural network

using process behavior[C] 201640th Annual IEEE Conference on Computer Software and

Applications (COMPSAC). Atlanta, GA, USA: IEEE, 2016, 2: 577-582.

[16] PASCANU R, STOKES J W, SANOSSIAN H, et al. Malware classification with recurrent
networks[C] 2015 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). Brisbane, QLD, Australia: IEEE, 2015: 1916-1920.

[17] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, Charles Nicholas, et al.

Malware Detection by Eating a Whole EXE[C], Neuroscience School Of Advanced Studies(NSAS).

2017, 10.

[18] Goodfellow, I., Bengio, Y., Courville, A.．Deep learning (Vol. 1)．Cambridge：MIT press， 2016.

[19] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, L., Wang,

G.and Cai, J., 2015. Recent advances in convolutional neural networks. arXiv preprint

arXiv:1512.07108.

[20] LeCun, Y. and Bengio, Y., 1995. Convolutional networks for images, speech, and time series. The

handbook of brain theory and neural networks, 3361(10), 1995.

[21] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, L., Wang,

G.and Cai, J., 2015. Recent advances in convolutional neural networks. arXiv preprint

arXiv:1512.07108.

[22] Khan R U, Zhang X, Kumar R. Analysis of ResNet and GoogleNet models for malware detection[J].

Journal of Computer Virology and Hacking Techniques, 2019, 15(1): 29-37.

[23] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document
recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.

[24] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional

neural networks[C]. Proceedings of the 25th International Conference on Neural Information

Processing Systems - Volume 1, 2012 : 1097-1105.

[25] SIMONYAN K, ZISSERMAN A J C. Very Deep Convolutional Networks for Large-Scale Image

Recognition[J], 2015, abs/1409.1556.

[26] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[J], 2015, : 1-9.

[27] IOFFE S, SZEGEDY C. Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift[C]. ICML, 2015 : .

[28] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the Inception Architecture for

Computer Vision[J], 2016, : 2818-2826.

16 Computer Science & Information Technology (CS & IT)

[29] SZEGEDY C, IOFFE S, VANHOUCKE V. Inception-v4, Inception-ResNet and the Impact of

Residual Connections on Learning[C]. AAAI, 2016 : .

[30] HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[J], 2016, : 770- 778.

[31] WANG M, LIU B, FOROOSH H J I I C O C V W. Factorized Convolutional Neural Networks[J],

2017, : 545-553.

[32] RADFORD A, METZ L, CHINTALA S. Unsupervised Representation Learning with Deep

Convolutional Generative Adversarial Networks[J]. CoRR, 2015, abs/1511.06434.

[33] NATARAJ L, KARTHIKEYAN S, JACOB G, et al. Malware images: visualization and automatic

classification[C]. Proceedings of the 8th International Symposium on Visualization for Cyber

Security, 2011 : 1-7.

[34] Rathore H, Agarwal S, Sahay S K, et al. Malware Detection Using Machine Learning and Deep

Learning[C]//International Conference on Big Data Analytics. Springer, Cham, 2018: 402-411.

[35] Sewak M, Sahay S K, Rathore H. Comparison of deep learning and the classical machine learning

algorithm for the malware detection[C]//2018 19th IEEE/ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). IEEE,

2018: 293-296.

[36] Gibert D, Mateu C, Planes J. The rise of machine learning for detection and classification of

malware: Research developments, trends and challenges[J]. Journal of Network and Computer

Applications, 2020: 102526.

AUTHORS

I am a postgraduate student of the Institute of Information Engineering, University of

Chinese Academy of Sciences, Majoring in deep learning and security.

© 2020 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Proposed Methodology
	3.1 Grayscale Image Conversion
	3.2 Sample Imbalance
	3.3 Model fusion

	4. Experiments
	4.1. Experimental Settings
	4.1.1. Datasets
	4.1.2. Metrics
	4.1.3. Detailed Implementation

	4.2. Performance Comparison
	4.2.1. Single Model Comparison
	4.2.2. Fusion Model Comparison

	5. Conclusion and Future Work
	References

