
David C. Wyld et al. (Eds): COMIT, CRBL, BIOM, WiMNeT, SIP, AISO - 2021

pp. 91-100, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.111709

FAST IMPLEMENTATION OF ELLIPTIC CURVE

CRYPTOGRAPHIC ALGORITHM ON GF(3M)

BASED ON FPGA

Tan Yongliang, He Lesheng, Jin Haonan and Kong Qingyang

Information Institute, Yunnan University, Kunming, China

ABSTRACT

As quantum computing and the theory of bilinear pairings continue being studied in depth,
elliptic curves on GF(3m) are becoming of an increasing interest because they provide a higher

security. What’s more, because hardware encryption is more efficient and secure than software

encryption in today's IoT security environment, this article implements a scalar multiplication

algorithm for the elliptic curve on GF(3m) on the FPGA device platform. The arithmetic in finite

fields is quickly implemented by bit-oriented operations, and then the computation speed of

point doubling and point addition is improved by a modified Jacobia projection coordinate

system. The final experimental results demonstrate that the structure consumes a total of 7518

slices, which is capable of computing approximately 3000 scalar multiplications per second at

124 Mhz. It has relative advantages in terms of performance and resource consumption, which

can be applied to specific confidential communication scenarios as an IP core.

KEYWORDS

GF(3m), Elliptic Curve Cryptography, Scalar Multiplication, FPGA, IoT Security

1. INTRODUCTION

Ellipse Curve Cryptography (ECC) has advantages including a relatively short key size, a high

security and the applicability to resource-constrained embedded products, which is widely used as

an Advanced Encryption Standard (AES) in symmetric encryption algorithms[1] and has been a

hot research topic in the application of cryptography in recent years. The current version 1.3 of
the transport layer protocol highlights the growing importance of elliptic curve cryptographic

algorithms[2], and with an increasing demand for security of data privacy in the IoT of modern

network society, the key length of ECC required is getting longer and longer, which makes the
implementation of traditional software more and more difficult while less and less efficient to

achieve. Therefore, in today's IoT environment, software encryption is only applicable to general

network security[3], and hardware encryption has undoubted advantages over software encryption

in some areas that are extremely sensitive to security. According to the current status, the
hardware implementation of the scalar multiplication algorithm on the binary and prime fields has

been relatively well studied, while relatively little work has been done on GF(3m). While

Galbraith[4] experimentally pointed out that for Weil or Tate pairing-based cryptosystems, the
security of GF(3m) is higher in terms of bandwidth efficiency and security. Shen Shao[5] and other

authors also proved that elliptic curves on GF(3m) also had some properties similar to the fast

computation of those on GF(2m) in terms of computational efficiency. Other studies on GF(3m)
have only improved to reduce the computational complexity at the algorithm level[6,7]. Therefore,

due to the lack of research on the hardware implementation of the scalar multiplication algorithm

for elliptic curves on GF(3m), the scalar multiplication algorithm for elliptic curves on GF(3m) is

http://airccse.org/cscp.html
http://airccse.org/csit/V11N17.html
https://doi.org/10.5121/csit.2021.111709

92 Computer Science & Information Technology (CS & IT)

designed and implemented in this paper on the FPGA device platform. The arithmetic is quickly
implemented by bit-oriented operation like binary fields, and a modified Jacobian projection

coordinate system is used to increase the speed of point addition and point doubling. Meanwhile,

point addition and point doubling operation are designed as a whole to improve the resource reuse

rate. The finally implemented scalar multiplication structure has certain advantages over
traditional fields in terms of resource consumption and computing speed, and is suitable for use as

a secure cryptographic algorithm carrier in various communication scenarios. Next, this paper

introduces the relevant theoretical knowledge in the second part, and the third part focuses on the
arithmetic design and implementation over a finite field of characteristic 3. The fourth part

focuses on the general design and implementation of the scalar product structure. And in the fifth

part we find some related work to do the performance comparison analysis. At the end of this
paper, we have made a summary of our work. It also gives directions for further improvement.

2. RELATED KNOWLEDGE

The security of elliptic curve cryptosystems is based on the computational Diffie-Hellman
problem in order-n subgroups (ECDLP security) and that in finite fields (MOV security)[8]. The

Weierstrass equation[9] for an elliptic curve is an elliptic curve E(K) defined over a field K with

the following expression:

2 3 2

1 3 2 4 5y a xy a y x a x a x a
 (1)

When K = GF(3m), we call E(K) an elliptic curve defined on GF(3m). An abelian Group can be

formed based on the set of all solutions on an elliptic curve E(K) plus one infinity point, and the
algorithm in the exchange group formed should satisfy the basic theory of groups. The following

describes the group operators on elliptic curves defined on field K and char (K) = 3. The

expression of E(K) is given in equation (2):

2 3() {(,) | } { }E K x y K K y x ax b (2)

Set 1 1(,)P x y
, 2 2(,)Q x y

 as two points on the elliptic curve, and according to the definition

of group theory, there are , 1 1(,)P x y
 and P P P . Therefore, the

expression of the third point obtained by adding two points on the elliptic curve on GF(3m) has
the following operating rules.

1) Point Addition 2) Point Doubling

2
3 1 2

3
3 1 2

{
x x x

y y y

,

2 1

2 1

=
y y

x x

2
3 1

3
3 1

{
x x

y y

, 1

a

y

3. DESIGN AND IMPLEMENTATION ALGORITHMS ON GF(3M)

3.1. Addition and Subtraction

In binary fields, hardware implementation of addition and subtraction operation among
polynomial elements is simply a matter of dissimilarity by corresponding bits. So, in order to

improve the performance of the algorithm in the finite fields of characteristic there, the

coefficients of each polynomial element in GF(3) are stored as two values q2 and q1, of which q2

Computer Science & Information Technology (CS & IT) 93

stores the higher of the polynomial coefficients, while q1 stores the lower of them. q1 and q2
increase in size as the number of polynomials increases. By saving the high and low bits of each

coefficient as two separate values, it is possible to perform arithmetic operation that is directly

bit-oriented as arithmetic operation in the binary fields, and this basic logic is easy for FPGAs to

implement, improving the efficiency of operation. For example, the polynomial element
2x6+x5+x3+2x2+2x+1 is represented in Figure 1.

1
0
0
0
1
1
0

0
1
0
1
0
0
1

q2 q1

62 x
51 x
40 x
31 x
22 x
12 x
01 x

Figure 1. Polynomial element representation

The arithmetic operation of adding two polynomial elements with their coefficients is done in

field GF(3), and the operation of adding two polynomials expressed through the above new
method can be done using the basic operating logic. For example, the specific hardware flow

implementation of adding polynomial A(x) to polynomial B(x) to obtain C(x) is shown in Figure

2.

c2 c1

B(b2,b1) A(a2,a1)

C(c2,c1)

Figure 2. Hardware structure of addition

3.2. Multiplication

Multiplication in finite field is the most critical module in the entire design. Its operation is based

on the principle of multiplying two polynomials and then taking the modulus P(x). P(x) is an

irreducible polynomial defined in a finite field. A fully parallel modulo multiplier was initially
considered to be implemented in this design, but the area and power consumption would be far

more than expected, which would not be suitable for most practical cryptographic applications.

So, an all-bit serial design was used to implement the multiplication operation. Repeatedly shifted

94 Computer Science & Information Technology (CS & IT)

the multiplicative polynomial down to one place while shifting the multiplied polynomial up to
the other to perform the multiplication operation. Then, a corresponding bit of the multiplied

polynomial was added or subtracted from the output value in each iteration depending on whether

the lowest significant bit in multiplicative polynomial q1 or q2 was set as 1. This is shown in

Figure 3.

Multiplicative
polynomial

Multiplied
polynomial

000101001 1

011000110 0

1

0

011110001

000001100

1

0

ADD/ SUB
010001001

010001001

1

0

Accumulator

Figure 3. Multiplication of polynomial illustration

The advantage of this all-bit serial approach is that it does not require large intermediate storage,

and a large amount of shift operation is more suitable for FPGAs to implement. Using a basic

iterative structure and simple logic cells, neither a direct multiplier nor addition circuits are

required, saving hardware resources. However, its disadvantage is that the calculation speed is
relatively slow.

3.3. Inversion

Inverse is the most time and resource consuming operation in finite fields. Since the extended

Euclidean algorithm effectively avoids the division operation, the use of this algorithm for
inversion can effectively improve the calculation speed. The pseudocode for computing the

inversion in hardware using the extended Euclidean algorithm is shown in Figure 4.

Computer Science & Information Technology (CS & IT) 95

A(X)

 A(X)
-1

1. S:=P(x); R:=A(x); U:=1; V:=0; d:=0;

2. q= S[`MOST]/R[`MOST]

3. FOR i:=1 to 2m DO

4. IF R[`MOST]=0

5. THEN R:=x*R; U:=(x*u)modP(x)；d:=d+1；
6. ELSE IF d[0]=0

7. THEN R:=x*(S-q*R); S:=R;

8. U:=x*(V-qU)modP(x) V:=U; d:=d+1;

9. ELSE IF d[0]!=0

10. THEN S:= x*(S-q *R); V:=V-q*U;

11. U:=(U/x)modP(x); d:=d-1;

12. END;

13. (A(X)
-1

=U/R[`MOST])

Figure 4. Algorithm for inversion in GF(3m)

4. SCALAR MULTIPLICATION STRUCTURE DESIGN AND IMPLEMENTATION

The most central operation on elliptic curves is the calculation of C*P, which can be expressed as

 c P P P P c times
. So, the scalar product is actually a multiplication of the same point

on the elliptic curve, which can be implemented through the algorithm shown in Figure 5.

1. B O, A P;

2. WHILE C>0 DO{

3: IF c is odd THEN B B+A

4: A A+A

5: C floor(C/2)

6: }

7: RETURN B

Figure 5. Scalar multiplication algorithm

Because the scalar multiplication algorithm calls point operation in every loop, in order to avoid
the time-consuming inverse operation, the point doubling and point addition operation can be

done using a projection coordinate system to increase the speed. At the beginning of the

calculation, it is necessary to convert point (x, y) in the affine coordinate system to point (X, Y,
Z) on the Jacobian projection coordinates, and the conversion process is as follows.

96 Computer Science & Information Technology (CS & IT)

1X x Y y Z ， ，

Thus, at the end of the scalar multiplication operation, we only need to convert the projection

coordinates to affine coordinates, which requires only one inverse operation, as follows.

2 3/ , /x X Z y Y Z

In this paper, a modified Jacobia projection coordinate system[10] is used for point addition and

point doubling calculation, in which a quadratic representation of (x, y) transformed into
(X,Y,Z,aZ4) is used. Because the modified Jacobia projection coordinate system can further

improve the overall arithmetic performance. Figure 6 and 7 show the specific computation

process and data flow of the designed point addition and point doubling operation as well as the

data dependencies among each operation. The quadrilateral represents cubic operation, the ellipse
represents multiplication operation, and the rectangle represents addition and subtraction

operation. We can see that in this way there is no inverse operation in each loop of the scalar

multiplication, and only one inverse operation is needed at the end of the calculation to transfer
the points back to the affine coordinate system. On the other hand benefits from the fact that the

cubic operation on GF(3m) is much faster than the multiplication operation, largely reducing the

computational complexity compared to the paper[11] where the cubic result is computed by two
multiplication steps, thus making the overall scalar multiplication algorithm run much faster.

3

2 1=Z

2 2B=Y

2

1 1=Z

2 1A=X

1C=A-X 1D=B-Y

3 1Z =Z C

3

3=C

2

5 =D

6 3=C

4 4

3 1 5()aZ aZ

2

4 =C

8 1 4=X

7 1 3=Y
3 5 3 8X = -(+2)

9 8 3= X

10 9=D

3 10 7Y =

Figure 6. Point addition steps and data flow

Computer Science & Information Technology (CS & IT) 97

2

1 1=Y
2

3 1=X3

2 1=Y

4 1 1=X
5 2 1= Y

44A
58B

4

3 13 ()C aZ

2

6 =C

3 6 2X A 7 3A X

8 7=C
4

9 1= ()B aZ

3 8Y B
4

3 92Z

10 1 1=Y Z

3 102Z

Figure 7. Point doubling steps and data flow

The general structure of the scalar multiplication module is given in Figure 8. The master

controller is designed to control the final scalar multiplication operation by judging whether the
input signal is valid or not. All intermediate variables are stored in the register heap, and because

they will be read frequently, dual-port registers are used for the maximum reuse of hardware

resources. The data after operation is stored in the data unit.

Master
Controller

Register
Heap

GF(3m)
Computing

UnitData
Unit

c

control

state

GF(3m)
Computing
Controller

Arithmetic
read/write
control

data

data

data

control

state

state
control

state
Non-arithmetic read/write control

Figure 8. General framework of scalar multiplication

98 Computer Science & Information Technology (CS & IT)

5. EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS

5.1. Experimental Results

The choice of the hyperelliptic curve y2=x3-x+1 is defined on GF(3m). Compared with the

conventional elliptic curve cryptosystem, the Hyperelliptic Curve Cryptosystem (HCC)[12] has a
higher security in the context of the general trend of quantum computer development and

quantum attacks. Simulate and verify the elliptic curve with base field on GF(397) on the target

device. The results of the inputs and outputs associated with the scalar multiplication module at a

system clock frequency of 124Mhz are shown in Figure 9, where c is selected as the parameter of
the order of this curve. To ensure the accuracy of the experimental results, we implemented the

arithmetic on GF(397) through the Linux platform with reference to the software of literature[13],

and did comparison as well as verification of the results with the same elliptic curve and input
parameters, and finally the results obtained from the simulation verification in VIVADO 2018.3

were consistent with those obtained from Linux. The hardware platform we use is the XILINX-

Xc7z020 device. Finally, we know through simulation that it takes only 0.335ms to calculate a

scalar multiplication.

Figure 9. Simulation results.

The main arithmetic in the scalar multiplication structure implemented is then simulated

separately, the specific performance at a maximum frequency of 124Mhz and the resources

occupied are shown in Table 1.

Table 1. GF(397)- Major arithmetic performance and resource usage

GF(3
97

)-Arithmetic Time/us Resources/slices

multiplication 0.225 811

inversion 1.785 1373

Point addition 2.785 3201

Point doubling 2.325 2578

5.2. Performance Analysis and Comparison

Finally, in order to demonstrate that the scalar multiplication structure implemented in this paper
has certain advantages in terms of both resource consumption and operational performance, the

performance of scalar multiplication structures implemented in related conventional fields

hardware is compared in this paper. Direct comparisons are difficult due to different platforms
used, different algorithms defined and the variability of bit widths. Therefore, to ensure the

Computer Science & Information Technology (CS & IT) 99

relative fairness of the comparison, some conventional fields with similar bit widths are selected
for it.

Table 2. Performance comparison with conventional fields of similar bit width

Design Hardware

platform

Bit width/

fields

Resources

(Slices)

Frequency

(MHz)

Time

(Ms)

Number of

Cycles(K)

[14] Virtex-4 192 7080 21.55 15.87 342

[15] Virtex-4 192 8590 48 2.3 110

[16] XC4VLX GF(2163) 9308 12.5 195.09 2438

[17] Virtex-5 GF(2163) 9670 147.5 0.283 41.7

This paper Xc7z020 194 7518 124 0.335 41.5

From Table 2, it can be seen that the scalar product structure designed and implemented in this
paper consumes the least number of clock beats to compute one scalar result [14-16], which is

slightly inferior to the computing performance of the design by Anissa[17], but saves about 22% in

terms of resources. The comparison fully illustrates that the scalar product structure designed in
this paper does have some advantages. However, the scalar multiplication structure implemented

in this paper also has some shortcomings. If triple point arithmetic is used to implement the scalar

multiplication algorithm, the performance will be better, but it will consume more resources, so

how to improve the computing performance to a large extent without consuming too many
resources is worthy of further study.

6. CONCLUSIONS

In this paper, we propose and implement a scalar product structure for elliptic curves on a base

field of GF(3m) based on the theory of elliptic curve cryptography methods. It is demonstrated by

experimental comparison that the arithmetic performance of the implementation is sufficiently

comparable to that of the conventional fields that have been extensively studied so far. This
structure can be used as an IP core in some communication fields with higher security

requirements. For finite fields of other bit widths, this can be achieved simply by modifying the

design parameters, so it also has some generality. How to improve the inverse operation on finite
field and scalar multiplication algorithm to increase the calculation speed is worthy of further

study.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (No. U1631121).
Thanks to all the contributors who have worked on this paper.

REFERENCES

[1] Jiang, J. Hou, J., Huang, H., Zhao, Y., Feng, X., & Science, S. O. (2019) Research on area-efficient

low-entropy masking scheme for AES. Journal on Communications.

[2] RESCORLA E, MOZILLA. (2020) The transport layer security (TLS) proto-col version 1.3:

RFC8446[S]. IETF, (2018-08).

[3] Yao T, Cao BW. (2018) An overview of cyberspace security[J]. China New Communications,

03(v.20): 170-170.

[4] Galbraith S D. (2001) Super singular Curves in Cryptography[C]. International Conference on the

Theory and Application of Cryptology and Information Security.

[5] Shen Shao. (2015) Research on Fast Algorithms for ScalarMultiplication of Elliptic
CurveCryptography over GF (3n)[J]. Computer Science & Application, 04(4): 390-399.

100 Computer Science & Information Technology (CS & IT)

[6] Yeniaras, E., & Cenk, M. (2020). Faster Characteristic Three Polynomial Multiplication and Its

Application to NTRU Prime Decapsulation.

[7] Kim, K. H., Kim, S. I., & Ju, S. C. (2007). New Fast Algorithms for Arithmetic on Elliptic Curves

over Fields of Characteristic Three.

[8] Koblitz, N. (1987) Elliptic curve cryptosystems. Mathematics of Computation, 48(177), 203-209.
[9] El-Tantawy, S. A., Salas, A. H., Alharthi, M. R., & Engineering, M. (2021) On the analytical

solutions of the forced damping duffing equation in the form of weierstrass elliptic function and its

applications. Mathematical Problems in Engineering.

[10] Cohen H. (1998) Efficient Elliptic Curve Exponentiation Using Mixed Coordinates[C].

ASIACRYPTO'98.

[11] Li Fan, Li Yunfeng, Weng Tianheng, Zhang Junjie, (2020) The Rapid Parallel Realization of SM2

Point Operation Based on FPGA [J]. Electronic Measurement Technology,43(15):105-111.

[12] Salam, T., & Hossen, M. S. (2020). HECC (Hyperelliptic Curve Cryptography).

[13] Duanmu QF, Wang YB, Zhang KZ, (2009) GF(3^m)-ECC algorithm and its software

implementation[J]. Computer Engineering, (14): 7-9.

[14] Hu, X., Zheng, X., Zhang, S., Cai, S., & Xiong, X. (2018). A low hardware consumption elliptic

curve cryptographic architecture over gf(p) in embedded application. Electronics, 7(7), 104-.
[15] Javeed K, Wang X. (2016) FPGA Based High Speed SPA Resistant Elliptic Curve Scalar Multiplier

Architecture[J]. International Journal of Reconfigurable Computing, (2016-7-10), 2016, 2016: 2.

[16] Imran, M., Kashif, M., & Rashid, M. (2018). Hardware Design and Implementation of Scalar

Multiplication in Elliptic Curve Cryptography (ECC) over GF(2^163) on FPGA.

[17] Anissa, S., Medien, Z., Chiraz, M., & Mohsen, M. (2017). Design and implementation of low

area/power elliptic curve digital signature hardware core. Electronics, 6(2), 46-.

AUTHORS

Tan Yongliang, Yunnan University, Main research on IoT security and cryptography

He Lesheng, Yunnan University, Associate Professor, Research on IoT security and

embedded systems

Jin Haonan, Yunnan University, Main research on digital signal processing

Kong Qingyang, Yunnan University, China Main research on network security

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	1. Introduction
	2. Related Knowledge
	3. Design and implementation algorithms on GF(3m)
	3.1. Addition and Subtraction
	Figure 1. Polynomial element representation
	Figure 2. Hardware structure of addition

	3.2. Multiplication
	Figure 4. Algorithm for inversion in GF(3m)

	4. Scalar Multiplication Structure Design and Implementation
	Figure 6. Point addition steps and data flow

	5. Experimental Results and Performance Analysis
	6. Conclusions
	Acknowledgements
	References

