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ABSTRACT 
 

As quantum computing and the theory of bilinear pairings continue being studied in depth, 
elliptic curves on GF(3m) are becoming of an increasing interest because they provide a higher 

security. What’s more, because hardware encryption is more efficient and secure than software 

encryption in today's IoT security environment, this article implements a scalar multiplication 

algorithm for the elliptic curve on GF(3m) on the FPGA device platform. The arithmetic in finite 

fields is quickly implemented by bit-oriented operations, and then the computation speed of 

point doubling and point addition is improved by a modified Jacobia projection coordinate 

system. The final experimental results demonstrate that the structure consumes a total of 7518 

slices, which is capable of computing approximately 3000 scalar multiplications per second at 

124 Mhz. It has relative advantages in terms of performance and resource consumption, which 

can be applied to specific confidential communication scenarios as an IP core. 
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1. INTRODUCTION 
 
Ellipse Curve Cryptography (ECC) has advantages including a relatively short key size, a high 

security and the applicability to resource-constrained embedded products, which is widely used as 

an Advanced Encryption Standard (AES) in symmetric encryption algorithms[1] and has been a 

hot research topic in the application of cryptography in recent years. The current version 1.3 of 
the transport layer protocol highlights the growing importance of elliptic curve cryptographic 

algorithms[2], and with an increasing demand for security of data privacy in the IoT of modern 

network society, the key length of ECC required is getting longer and longer, which makes the 
implementation of traditional software more and more difficult while less and less efficient to 

achieve. Therefore, in today's IoT environment, software encryption is only applicable to general 

network security[3], and hardware encryption has undoubted advantages over software encryption 

in some areas that are extremely sensitive to security. According to the current status, the 
hardware implementation of the scalar multiplication algorithm on the binary and prime fields has 

been relatively well studied, while relatively little work has been done on GF(3m). While 

Galbraith[4] experimentally pointed out that for Weil or Tate pairing-based cryptosystems, the 
security of GF(3m) is higher in terms of bandwidth efficiency and security. Shen Shao[5] and other 

authors also proved that elliptic curves on GF(3m) also had some properties similar to the fast 

computation of those on GF(2m) in terms of computational efficiency. Other studies on GF(3m) 
have only improved to reduce the computational complexity at the algorithm level[6,7]. Therefore, 

due to the lack of research on the hardware implementation of the scalar multiplication algorithm 

for elliptic curves on GF(3m), the scalar multiplication algorithm for elliptic curves on GF(3m) is 

http://airccse.org/cscp.html
http://airccse.org/csit/V11N17.html
https://doi.org/10.5121/csit.2021.111709


92         Computer Science & Information Technology (CS & IT) 

designed and implemented in this paper on the FPGA device platform. The arithmetic is quickly 
implemented by bit-oriented operation like binary fields, and a modified Jacobian projection 

coordinate system is used to increase the speed of point addition and point doubling. Meanwhile, 

point addition and point doubling operation are designed as a whole to improve the resource reuse 

rate. The finally implemented scalar multiplication structure has certain advantages over 
traditional fields in terms of resource consumption and computing speed, and is suitable for use as 

a secure cryptographic algorithm carrier in various communication scenarios. Next, this paper 

introduces the relevant theoretical knowledge in the second part, and the third part focuses on the 
arithmetic design and implementation over a finite field of characteristic 3. The fourth part 

focuses on the general design and implementation of the scalar product structure. And in the fifth 

part we find some related work to do the performance comparison analysis. At the end of this 
paper, we have made a summary of our work. It also gives directions for further improvement. 

 

2. RELATED KNOWLEDGE 
 

The security of elliptic curve cryptosystems is based on the computational Diffie-Hellman 
problem in order-n subgroups (ECDLP security) and that in finite fields (MOV security)[8]. The 

Weierstrass equation[9] for an elliptic curve is an elliptic curve E(K) defined over a field K with 

the following expression: 
 

2 3 2

1 3 2 4 5y a xy a y x a x a x a     
                   (1) 

 

When K = GF(3m), we call E(K) an elliptic curve defined on GF(3m). An abelian Group can be 

formed based on the set of all solutions on an elliptic curve E(K) plus one infinity point, and the 
algorithm in the exchange group formed should satisfy the basic theory of groups. The following 

describes the group operators on elliptic curves defined on field K and char (K) = 3. The 

expression of E(K) is given in equation (2): 
 

               
2 3( ) {( , ) | } { }E K x y K K y x ax b                          (2) 

 

Set 1 1( , )P x y
, 2 2( , )Q x y

 as two points on the elliptic curve, and according to the definition 

of group theory, there are , 1 1( , )P x y  
 and P P P  . Therefore, the 

expression of the third point obtained by adding two points on the elliptic curve on GF(3m) has 
the following operating rules. 
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3. DESIGN AND IMPLEMENTATION ALGORITHMS ON GF(3M) 
 

3.1.  Addition and Subtraction 
 

In binary fields, hardware implementation of addition and subtraction operation among 
polynomial elements is simply a matter of dissimilarity by corresponding bits. So, in order to 

improve the performance of the algorithm in the finite fields of characteristic there, the 

coefficients of each polynomial element in GF(3) are stored as two values q2 and q1, of which q2 
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stores the higher of the polynomial coefficients, while q1 stores the lower of them. q1 and q2 
increase in size as the number of polynomials increases. By saving the high and low bits of each 

coefficient as two separate values, it is possible to perform arithmetic operation that is directly 

bit-oriented as arithmetic operation in the binary fields, and this basic logic is easy for FPGAs to 

implement, improving the efficiency of operation. For example, the polynomial element 
2x6+x5+x3+2x2+2x+1 is represented in Figure 1. 

 

1
0
0
0
1
1
0

0
1
0
1
0
0
1

q2 q1

62 x
51 x
40 x
31 x
22 x
12 x
01 x

 
 

Figure 1. Polynomial element representation 

 

The arithmetic operation of adding two polynomial elements with their coefficients is done in 

field GF(3), and the operation of adding two polynomials expressed through the above new 
method can be done using the basic operating logic. For example, the specific hardware flow 

implementation of adding polynomial A(x) to polynomial B(x) to obtain C(x) is shown in Figure 

2. 
 

c2 c1

B(b2,b1) A(a2,a1)

C(c2,c1)  
 

Figure 2. Hardware structure of addition 

 

3.2.  Multiplication 
 

Multiplication in finite field is the most critical module in the entire design. Its operation is based 

on the principle of multiplying two polynomials and then taking the modulus P(x). P(x) is an 

irreducible polynomial defined in a finite field. A fully parallel modulo multiplier was initially 
considered to be implemented in this design, but the area and power consumption would be far 

more than expected, which would not be suitable for most practical cryptographic applications. 

So, an all-bit serial design was used to implement the multiplication operation. Repeatedly shifted 



94         Computer Science & Information Technology (CS & IT) 

the multiplicative polynomial down to one place while shifting the multiplied polynomial up to 
the other to perform the multiplication operation. Then, a corresponding bit of the multiplied 

polynomial was added or subtracted from the output value in each iteration depending on whether 

the lowest significant bit in multiplicative polynomial q1 or q2 was set as 1. This is shown in 

Figure 3. 
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Figure 3. Multiplication of polynomial illustration 

 
The advantage of this all-bit serial approach is that it does not require large intermediate storage, 

and a large amount of shift operation is more suitable for FPGAs to implement. Using a basic 

iterative structure and simple logic cells, neither a direct multiplier nor addition circuits are 

required, saving hardware resources. However, its disadvantage is that the calculation speed is 
relatively slow. 

 

3.3. Inversion 
 

Inverse is the most time and resource consuming operation in finite fields. Since the extended 

Euclidean algorithm effectively avoids the division operation, the use of this algorithm for 
inversion can effectively improve the calculation speed. The pseudocode for computing the 

inversion in hardware using the extended Euclidean algorithm is shown in Figure 4. 
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A(X)

    A(X)
-1

1.   S:=P(x);  R:=A(x);  U:=1;  V:=0;  d:=0;

2.   q= S[`MOST]/R[`MOST]

3.   FOR i:=1 to 2m DO

4.   IF  R[`MOST]=0

5.    THEN R:=x*R;  U:=(x*u)modP(x)；d:=d+1；
6.   ELSE IF  d[0]=0

7.   THEN R:=x*(S-q*R);  S:=R; 

8.   U:=x*(V-qU)modP(x) V:=U;  d:=d+1;

9.   ELSE IF  d[0]!=0

10.  THEN S:= x*(S-q *R); V:=V-q*U;

11.  U:=(U/x)modP(x);  d:=d-1;

12.  END; 

13.  ( A(X)
-1

=U/R[`MOST]) 

 
 

Figure 4. Algorithm for inversion in GF(3m) 

 

4. SCALAR MULTIPLICATION STRUCTURE DESIGN AND IMPLEMENTATION 
 

The most central operation on elliptic curves is the calculation of C*P, which can be expressed as

 c P P P P c times    
. So, the scalar product is actually a multiplication of the same point 

on the elliptic curve, which can be implemented through the algorithm shown in Figure 5. 
 

    

1.   B O,   A P;

2.   WHILE  C>0  DO{

3:   IF c is odd THEN B B+A

4:     A A+A

5:  C   floor(C/2)

6:  }

7: RETURN B

 
 

Figure 5. Scalar multiplication algorithm 

 

Because the scalar multiplication algorithm calls point operation in every loop, in order to avoid 
the time-consuming inverse operation, the point doubling and point addition operation can be 

done using a projection coordinate system to increase the speed. At the beginning of the 

calculation, it is necessary to convert point (x, y) in the affine coordinate system to point (X, Y, 
Z) on the Jacobian projection coordinates, and the conversion process is as follows. 
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1X x Y y Z  ， ，
 

 

Thus, at the end of the scalar multiplication operation, we only need to convert the projection 

coordinates to affine coordinates, which requires only one inverse operation, as follows. 
 

2 3/ , /x X Z y Y Z 
 

 

In this paper, a modified Jacobia projection coordinate system[10] is used for point addition and 

point doubling calculation, in which a quadratic representation of (x, y) transformed into 
(X,Y,Z,aZ4) is used. Because the modified Jacobia projection coordinate system can further 

improve the overall arithmetic performance. Figure 6 and 7 show the specific computation 

process and data flow of the designed point addition and point doubling operation as well as the 

data dependencies among each operation. The quadrilateral represents cubic operation, the ellipse 
represents multiplication operation, and the rectangle represents addition and subtraction 

operation. We can see that in this way there is no inverse operation in each loop of the scalar 

multiplication, and only one inverse operation is needed at the end of the calculation to transfer 
the points back to the affine coordinate system. On the other hand benefits from the fact that the 

cubic operation on GF(3m) is much faster than the multiplication operation, largely reducing the 

computational complexity compared to the paper[11] where the cubic result is computed by two 
multiplication steps, thus making the overall scalar multiplication algorithm run much faster. 
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Figure 6. Point addition steps and data flow 
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Figure 7. Point doubling steps and data flow 

 

The general structure of the scalar multiplication module is given in Figure 8. The master 

controller is designed to control the final scalar multiplication operation by judging whether the 
input signal is valid or not. All intermediate variables are stored in the register heap, and because 

they will be read frequently, dual-port registers are used for the maximum reuse of hardware 

resources. The data after operation is stored in the data unit. 
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Figure 8. General framework of scalar multiplication 
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5. EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS 

 
5.1. Experimental Results 
 

The choice of the hyperelliptic curve y2=x3-x+1 is defined on GF(3m). Compared with the 

conventional elliptic curve cryptosystem, the Hyperelliptic Curve Cryptosystem (HCC)[12] has a 
higher security in the context of the general trend of quantum computer development and 

quantum attacks. Simulate and verify the elliptic curve with base field on GF(397) on the target 

device. The results of the inputs and outputs associated with the scalar multiplication module at a 

system clock frequency of 124Mhz are shown in Figure 9, where c is selected as the parameter of 
the order of this curve. To ensure the accuracy of the experimental results, we implemented the 

arithmetic on GF(397) through the Linux platform with reference to the software of literature[13], 

and did comparison as well as verification of the results with the same elliptic curve and input 
parameters, and finally the results obtained from the simulation verification in VIVADO 2018.3 

were consistent with those obtained from Linux. The hardware platform we use is the XILINX-

Xc7z020 device. Finally, we know through simulation that it takes only 0.335ms to calculate a 

scalar multiplication. 
 

 
 

Figure 9. Simulation results. 

 

The main arithmetic in the scalar multiplication structure implemented is then simulated 

separately, the specific performance at a maximum frequency of 124Mhz and the resources 

occupied are shown in Table 1. 
 

Table 1.  GF(397)- Major arithmetic performance and resource usage 

 

GF(3
97

)-Arithmetic Time/us Resources/slices 

multiplication 0.225 811 

inversion 1.785 1373 

Point addition 2.785 3201 

Point doubling 2.325 2578 

 

5.2. Performance Analysis and Comparison 
 

Finally, in order to demonstrate that the scalar multiplication structure implemented in this paper 
has certain advantages in terms of both resource consumption and operational performance, the 

performance of scalar multiplication structures implemented in related conventional fields 

hardware is compared in this paper. Direct comparisons are difficult due to different platforms 
used, different algorithms defined and the variability of bit widths. Therefore, to ensure the 
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relative fairness of the comparison, some conventional fields with similar bit widths are selected 
for it.  

 
Table 2.  Performance comparison with conventional fields of similar bit width 

 

Design Hardware 

platform 

Bit width/ 

fields 

Resources 

(Slices) 

Frequency 

(MHz) 

Time 

(Ms) 

Number of 

Cycles(K) 

[14] Virtex-4 192 7080  21.55 15.87 342 

[15] Virtex-4 192 8590  48 2.3 110 

[16] XC4VLX GF(2163) 9308  12.5 195.09 2438 

[17] Virtex-5 GF(2163) 9670  147.5 0.283 41.7 

This paper Xc7z020 194 7518  124 0.335 41.5 

 

From Table 2, it can be seen that the scalar product structure designed and implemented in this 
paper consumes the least number of clock beats to compute one scalar result [14-16], which is 

slightly inferior to the computing performance of the design by Anissa[17], but saves about 22% in 

terms of resources. The comparison fully illustrates that the scalar product structure designed in 
this paper does have some advantages. However, the scalar multiplication structure implemented 

in this paper also has some shortcomings. If triple point arithmetic is used to implement the scalar 

multiplication algorithm, the performance will be better, but it will consume more resources, so 

how to improve the computing performance to a large extent without consuming too many 
resources is worthy of further study. 

 

6. CONCLUSIONS 
 
In this paper, we propose and implement a scalar product structure for elliptic curves on a base 

field of GF(3m) based on the theory of elliptic curve cryptography methods. It is demonstrated by 

experimental comparison that the arithmetic performance of the implementation is sufficiently 

comparable to that of the conventional fields that have been extensively studied so far. This 
structure can be used as an IP core in some communication fields with higher security 

requirements. For finite fields of other bit widths, this can be achieved simply by modifying the 

design parameters, so it also has some generality. How to improve the inverse operation on finite 
field and scalar multiplication algorithm to increase the calculation speed is worthy of further 

study. 
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