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ABSTRACT 
 

The offensive strategy in American football strives to be enigmatic. A strong offense has a well 

rounded offensive playbook, rotating offensive plays in attempts to disrupt any predictive 

patterns. Therefore, it has always been in the interest of defensive coordinators to offer accurate 

predictions of the upcoming play to minimize offensive yardage gain. A well advised defense can 

change its positioning and coverage schemes, given solely whether the next play will be a run or 

a pass. Although coaches have developed traditional heuristics for tendency-based play 

prediction, they are limited to patterns discerned by human consciousness. 
 

This paper aims to take advantage of recent professional football databases in an attempt to 

develop a machine learning classification model for predicting opponent play-calling, as well as 

implement said model into a novel application aimed at deployment on all levels of play. 

 

We conducted research on various classification models and features. Utilizing 10 past seasons 

from the National Football League (NFL), we devised random forest classification models with 

optimally chosen features. We also investigated the importance of Synthetic Minority 

Oversampling Technique (SMOTE) in training with inherently imbalanced datasets. The final 

model was able to achieve an NFL league average accuracy of 89.52%, with 91.69% as the 

highest team-specific accuracy. This accuracy is substantially higher than past projects of 
similar goals. 
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1. INTRODUCTION 
 
Football is distinctive in its compartmentalized, or “discrete”, plays. Hence, football plays 

naturally contain features, such as the score differential, down, and time remaining. Similarly, 

most football plays can be classified into two: running—moving the ball upfield from the line of 
scrimmage—and passing—throwing the ball from behind the line of scrimmage to a receiver 

positioned downfield. All remaining plays are “special”, such as those when the ball is not in play 

(kickoffs and points-after-touchdown) and those when the ball remains in play (punts, field-goals, 

and quarterback kneels) [7]. 
 

American football, like the majority of competitive sports, is based on ambiguity [2]. From a 

defensive standpoint, the offensive advantage relies heavily on the unpredictable nature of play-
calling [3]. Defensive coordinators rely on traditional heuristics, usually on past opponent 

tendencies, to predict offensive plays. Simple predictions can lead to shifts in defensive 
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positioning and coverage schemes that greatly hinder offensive capabilities. 
 

Given the readily accessible professional football datasets, as well as the inherent need for 

improved defensive prediction tools for in-game coaching assistance, this paper seeks to devise 

an accurate machine learning model for said predictions, as well as fully implement an 
accompanying mobile app for ready deployment at all levels of play [4]. 

 

Traditional prediction heuristics are indispensable to football [12]. Opponent behaviors are 
usually inferred through careful analysis of opponent game footage. However, such a method is 

somewhat ineffective, since much of the underlying patterns are indiscernible to humans, due to 

inability to consider a wide set of potential influential features. Furthermore, human bias and 
retroactive interference limit the extent to which team-specific tendencies are discovered. 

Moreover, tendency-based metrics, such as run/pass ratios, have wildly varying performances. 

For example, recent years saw the National Football League (NFL) shift to adopt a pass-heavy 

offense. However, teams with balanced playbooks will have run/pass ratios that approach 1, 
which, intuitively, lowers prediction accuracy. 

 

Past papers have considered solely the prediction of two types of targets: run plays and pass 
plays, with varying success [6]. Although special offensive plays, such as punts, field-goals, and 

quarterback kneels are rare and self-revealing, they can still reveal certain attitudes from 

opposing teams that are not discernible by simple run/pass target sets. For example, an offensive 
coordinator who favors run/pass plays over punting on 4th down can be inferred to be riskier and 

prone to turnovers. Even more, run/pass-only target sets significantly reduce data for certain 

situations. For example, 4th down data is greatly reduced when punting plays are neglected, 

which skews the data-by-down distribution. 
 

Past papers have also focused mainly on professional level deployment. The extensive datasets 

that result from NFL coverage allows for papers to implement models not easily generalizable to 
other levels of play. For example, one popular input factor commonly featured by past papers is 

Madden player ratings. Video game statistics, aside from the fact that they are tailored to serve 

diverging purposes that confound model development, are not easily replicable on lower levels, 

such as high-school and collegiate teams. 
 

Current years saw an uprising in publicly maintained professional sports databases [7]. In this 

paper, we aim to accomplish the goal of accurately predicting opponent play-calling. We were 
inspired by past papers to utilize the expansive Kaggle dataset developed by Horowitz et al, 

detailing 2009-2018 NFL play-by-play statistics. Past papers have attempted to solely predict 

whether the upcoming offensive play will result in a run or a pass. However, by removing special 
plays, such as punts, a small yet significant portion of the dataset is lost [8]. Our paper is the first 

to recognize the usefulness of offensive special plays in the target set, since offensive special 

plays do not disrupt game continuity and function heavily similar to other offensive plays. 

Furthermore, we predicted that including special plays offers relevant information to both offenses 
and defenses alike regarding an opponent’s situational behaviors. More elaboration is provided in 

the subsequent section. 

 
Furthermore, we prioritized usability factors, such as time expenses, practicability, and 

functionality. Moreover, our application is aimed towards deployment on all levels of play, 

whereas previous papers have majorly focused on experimentation and development on the 
professional level with the NFL. 

 

Much of our motives behind our evaluation metrics and experiments chosen are described in the 

following section, but our priorities are generally targeted towards responding to the challenges 
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described in Section 2. We chose 5-fold cross validation for evaluation, which allows a model 
trained on 8 past NFL seasons to be evaluated for 2 NFL seasons. This metric allows for 

confirmation that play-calling tendencies are persistent and independent of specific matchups. 

Similarly, models were trained with team-specific data, and the league average—across 32 

teams—is recorded. This is done to ensure that our experiments are not skewed by teams with 
varying tendency strengths. 

 

Our experiments target specific questions and challenges that guide the development of our 
machine learning model. First, we analyzed the potential application of Synthetic Minority 

Oversampling Technique (SMOTE) on the dataset, due to an inherent imbalance. We evaluated 

simple classification models trained on both pre-SMOTE and post-SMOTE data. Secondly, we 
explored various popular classification models and chose one with optimal accuracy and time 

expenses, again weighted with regard to cross validation scores. Third, we studied the influence 

of our feature set and greatly reduced the final feature set to maximize model accuracy. 

 
The paper’s structure is as follows: Section 2 describes a small subset of significant challenges 

that we encountered and overcame during the design and experiments; Section 3 dissects our 

solution into details by analyzing our implementation methods and the motives behind our 
choices; Section 4 presents our experiments, as well as an abundant collection of recorded data, 

that were targeted to correspond to the various challenges that we discuss in Section 2; Section 5 

gives a brief analysis of recent related works, including a critique and a comparison with our 
paper. Finally, Section 6 gives a brief concluding summary, as well as defining areas of future 

work. 

 

2. CHALLENGES 
 
In order to build the prediction model, a few challenges have been identified as follows. 

 

2.1. Choosing optimal dataset features & targets 
 

The dataset that we utilized to conduct research featured an extensive list of features, 255 in total 

[9]. However, we distinguished only 15 features to have potential relevance to influence play 
calling. Although there was an overabundance of potential targets, ranging from total WPA (win 

percentage added) to two-point conversion probability, we ultimately decided on play-type [10]. 

That is, whether the play would result in a pass attempt or a run attempt. Our rationale behind this 

being that run/pass play predictions are actionable data for the defense. In addition, we added all 
possible offensive plays, such as punts, field-goals, and quarterback kneels (only excluding 

special plays that take place after scoring, such as extra points and kickoffs). Past papers have 

erred in the ruling that only run/pass predictions are constructive to the defense. These erroneous 
perspectives limit the dataset, especially on 4th down, where punts are most likely and most 

frequent. In the perspective of commercial potentials, a client should be able to input arbitrary 

factors for predictions beyond the next play. For example, if a team is predicted to attempt a field-
goal later in an offensive drive, an offensive coordinator can determine the intensity of the next 

offensive drive, based on the score differential. Another example considers the end of the game 

(or when the score differential is very high), when the leading team is likely to run out the play 

clock with the quarterback kneeling when in possession of the ball. However, this practice varies 
with teams, and some will favor offensive drives in an attempt to score until the end of the game, 

which comes with associated risks of turnovers. Coordinators equipped with hypothetical 

predictions about opponent endgame behaviors can then adjust the offensive drive intensities, as 
well as defensive prevention schemes, among many other controllable factors, to take advantage. 
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A greater challenge arises from choosing relevant features. An overabundance of factors can not 
only confound the model and decrease the predictive accuracy, but can also significantly slow 

down the client-side processes, hence diminishing commercial practicability. Unnecessary factors 

not only make training the model more timely, but can also decrease the quality of client-side 

usage. More features means more inputs during in-game scenarios. Time is a significantly limiting 
variable, given that NFL regulations only allow 40 seconds in between each play. Variables that 

consume time yet do not yield comparable increases in prediction accuracy must not be equated 

into the final product. 
 

Our solution is a multi-layered analysis using feature importances [11]. All 15 potential features 

were first gauged for predictive influence, and although some factors distinguished themselves 
on the extremes of the spectrums, others were prone to confoundment due to the mixing of 

variables. This warranted a simple manual grid-search using a small subset of potential factors 

similar in influence. In the end, the 15 potential features were minimized into a small subset of 7 

showing maximum accuracy; each feature was considered simple for client-side entry, hence 
increasing efficiency. 

 

2.2. Competing for user attention with other professional products/past papers 
 

We have found several past papers, alongside numerous community projects, with similar goals 

of predicting football play-calling, with the oldest dating from 2015. However, they were 
primarily concerned with implementation solely on the professional level. Hence, they 

incorporated numerous NFL-specific features, such as Madden player ratings, that cannot be 

easily generalized to other levels of play. Our paper is distinguishable from past papers in that we 
seek to bring play prediction to all levels of play, using simple yet sufficient models [12]. 

Furthermore, we did not find any similar commercial product that shares a common target. Some 

challenges that may arise from the app-implementation include the creation of a streamlined and 
efficient UI, capable of importing large amounts of training data, as well as providing a high 

amount of customizability for the consumer’s preferences. Similarly, the former challenge 

warrants compatibility with existing popular game-film sharing systems, and the latter would 

require the ability of choosing specific datasets and features to predict from. An example of the 
latter would be using the dataset of all past opponent games versus using solely the dataset of past 

opponent games against a specific team, since play-calling variability varies drastically between 

play-levels. Furthermore, organizations may have ethical regulations that may conflict with the 
use of said technologies on the field. 

 

2.3. Determining how to measure model accuracy 
 

The dataset we utilized was expansive, providing data from 10 NFL seasons. This allowed a high 

variability of metrics for measuring the model’s accuracy. The challenge arises from the 
consideration of real-life scenarios. For a commercial product, a possible utilization is providing 

predictions during an ongoing game. Hence, a possible accuracy metric is comparing model 

predictions versus actual results in a specific game. However, another consideration arises from 

the potential high variability of a team’s playbook throughout the season, or, on a greater scope, 
throughout the franchise’s short-term history. Hence, we decided that an appropriate accuracy 

metric would be cross validation with 5 folds. Roughly speaking, 5 fold cross validation allows a 

model trained with solely 80% of the data to be tested across 2 NFL seasons, which amounts to 
around 32-46 games. 

 

We believe that using such a metric, in conjunction with the resulting model accuracies, has led 
to discoveries of generalized play-calling trends and tendencies throughout the NFL. For 

example, the fact that our model achieved a high validity through 2 NFL suggests that play-
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calling tendencies are rather innate, and not significantly influenced by a specific opponent, hence 
reducing the perceived variability in NFL play-calling. 

 

2.4. Finding data and SMOTE 
 

Traditionally, professional sports data has been long privatized, with only a small fraction of 

relevant data making its way to the public through media outlets. However, recent years saw the 
rise of publicly maintained sites documenting a wide range of professional sports data, from 

player drafts and trades to detailed post-game performance reports. This, in conjunction with 

recently developed web-scraping libraries targeting professional sports databases, form the 

premise that made this paper possible. 
 

Due to extensive testing by previous papers on past NFL seasons, our original intention was to 

switch focus to a different level of play. We settled upon high-school game films as the most 
appropriate candidate, since college football is heavily similar to the professional level, and levels 

below high-school are hard to find due to the scarcity and obscurity of their datasets. However, 

high-school data being the candidate would result in significant limitations in research 
capabilities. Due to the constrictions of high-school level data, we are provided with less features, 

as well as less data. Moreover, the level of dynamism in high-school level play is, intuitively, 

higher than those at the professional levels. Personnel are almost completely replaced each year, 

and the skill and performance vary significantly per team. With our main intention being the 
development of a sound model, we chose to avoid these self-imposed limitations, and instead 

chose past NFL seasons as our research dataset. 

 
Another challenge also arises from the fact that the dataset is intuitively skewed. Visualization of 

the types of data reveals that the play types are heavily skewed. Running and passing plays More 

details can be found in later sections describing methodologies. 
 

2.5.Choosing optimal model & optimizing hyperparameters (accuracy and speed) 

 
Once the metric for measuring accuracy was established, we turned to evaluating different 

metrics using said accuracy metric. This took place before the features were optimized. We chose 

several popular classifier models, since there was a high variability in performance and 
efficiency. Models quick to train with data usually performed less adequately against those with 

longer training times. Due to the fact that model retraining is infrequent and not required, we 

prioritized accuracy over efficiency. In the end, the model with the best accuracy was a random 
forest classifier. Interestingly, the traditional heuristics that coaches rely on are heavily similar 

with the model’s decision trees. However, the decision tree is limited in the expansiveness of the 

feature set that it can utilize. 

 
Following work was done on optimizing hyperparameters using a grid search cross validation. 

There were several popular and significantly influential settings that we considered, ranging from 

the number of trees in an ensemble to the max depth reached by each tree. The grid search sets 
were limited with respect to time restraints. For example, even though an increase in n-estimators 

may boost model accuracy, its tradeoff is significantly slower training times and potentially 

renders the possibility of in-game model retraining futile, not to mention slowing down prediction 
processes. Similarly, hyperparameters, such as max depth, have the potential to increase 

efficiency at the cost of model accuracy. We found that default hyperparameters kept the time 

costs sufficiently low, while not sacrificing accuracy. More of our optimization methodologies 

can be found in the next section. 
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3. SOLUTION 
 
A mobile app [PlayGuessr] trains a machine learning classification model using the play 

conditions (eg. down, time, score differential) as inputs and play type as outputs (eg. run, pass, 

punt). Firstly, we implemented the app to receive the client’s desired training dataset, as well as 

any prediction inputs. For ease of customizability, the training data is categorized by games. This 
can allow the client to select, with specificity, the data that the model will train with. 

 

 
 

Figure 1. Overview of the app 

 
As Figure 1 demonstrates, the model trains with the client-selected datasets and can readily take 

inputs from the client. The client’s inputs are sent to the model, which returns a play type 

prediction from the client’ s inputs. After the play, the client is prompted to record the actual play 

type in the app. The app maintains a dataset of the past plays during an ongoing game and gives 

the client the option to retrain the model with said plays. 
 

PlayGuessr is implemented as follows. Firstly, the backend is divided into three main 

components. The training set is produced from user-provided data. We used the Pandas library for 
Python to parse our intended features and convert Data Frames into training sets. SMOTE was 

performed on the training data, with a K-Neighbors value of 2. The second backend component is 

our machine learning model. After obtaining our training data, we fitted a random forest classifier 

model using said data. The model is now ready to make predictions. Thirdly, the Flask module 
for Python web framework was utilized to set up a server for our predictive algorithm. 

 

A design prototype (Figure 3) is provided below, demonstrating the chronological relationships 
between each screen. 

 

 
 

Figure 2. Design prototype 

 

 



Computer Science & Information Technology (CS & IT)                                              151 

 

 

 
Figure 3. Uploading and Selecting Training Set 

 

The app will first prompt the user to choose their datasets to use for model training (Figure 3). 

After the training set is established, the backend will fit the model accordingly, and predictions 
are ready to be made. The user will be taken to the input screen (Figure 4). 

 

 
 

Figure 4. Input Screen 

 
The input screen consists of six out of the seven features, due to net yards per offensive drive 

hard to keep track by the user. Instead of traditional textboxes, we have implemented buttons for 

features with discrete values. After the features are selected, the user will prompt the app to send 

a server command to run our predictive algorithm. The results will be returned in the final output 
screen (Figure 5). 
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Figure 5. Output Screen 

 

After the play, the user will be prompted to provide the actual resulting play. The actual output is 

kept in a temporary list in the backend, alongside the provided input features. After every 

prediction, the user will be provided the ability to update the training dataset with new 
information from the ongoing game. Due to the time expenses associated with retraining a 

random forest classification model, it will be up to the user to update the model at a time of 

convenience. Moreover, the net yards feature will be implemented in the output screen, allowing 
the user to end an offensive drive to effectively reset the net yardage to zero. The user will be 

returned to the input screen, where the next offensive prediction can be made again. 

 
The following figures (Figures 6, 7, 8) demonstrate the various functions utilized in the processes 

described above, primarily to parse and construct training data, as well as evaluate models. 

 

 
 

Figure 6. Code for Play Type Vectorization 
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Figure 7. Code for Experimentation 

 

 
 

Figure 8. Code for Parsing Data 

 

4. EXPERIMENTATION 
 

Experiment 1 
 

Note: Code snippets will be provided to detail the exact experiments taking place. We created two 
functions, gen_data (used to generate training data, given a specific team, see Figure 9), and 

test_team (performing SMOTE [when necessary] and fitting model with training data, able to 

return the model, CV scores, and feature importances). Please refer to Section 3 for the 
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implementation of said programs. These two functions may be slightly altered with our following 
experiments. 

 

The first experiment seeks to determine the relevancy of SMOTE, or Synthetic Minority 

Oversampling Technique. Intuitively, running and passing plays constitute the majority of plays 
called, significantly overshadowing situational plays (punts, field-goals, and quarterback kneels). 

The following table (Table 1) and PyPlot graph (Figure 9) describes the total occurrences of each 

play type over the 2009-2018 seasons. Another PyPlot Graph is an average of each play type’s 
occurrences averaged per NFL team. Given an imbalanced dataset, we wanted to test the 

effectiveness of SMOTE in model accuracy, using a basic SVM classification model as our 

metric (using all available features). We applied SMOTE to our training data using a baseline K-
Neighbors value of 2. We trained one model with the SMOTE undergone data, also keeping a 

control model trained with non-SMOTE data. We then compared average 5-fold cross validation 

results from the two models. This was done using the Chicago Bears, but results can be 

generalized to other teams as well, and the degree of efficacy is predicted to be dependent upon 
the varying play type ratios of each team. Those with higher disparities are predicted to benefit 

more from SMOTE. A Pyplot of the post-SMOTE training data for play types can be found below 

as well. 
 

Table 1. Pyplot of the post-SMOTE training data 

 

Play Type Total Occurrences Average Occurrences Percent of Total Plays 

Run 126,663 3,958.22 37.22% 

Pass 177,933 5,560.41 52.29% 

Punt 22,832 713.50 6.71% 

Field-Goal 9,249 289.03 2.72% 

Quarterback Kneel 3,603 112.59 1.06% 
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Figure 9. Total Occurrences in the NFL Per Play Type 

 

 
 

Figure 10.  Average Occurrences Per Team Per Play Type 
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Figure 11. Post-SMOTE Distribution for the Chicago Bears 

 
Table 2. Table of accuracy 

 

Control SVM Accuracy Experimental SVM Accuracy (SMOTE) 

51.73% 57.41% 

 

The results are as followed: Above, Figure 11 demonstrates the resulting distribution for the 

Chicago Bears after SMOTE was performed. Furthermore, Table 2 (above) describes the resulting 

model accuracies for both pre-SMOTE and post-SMOTE models. Code for the experiment can be 
found in Figure 12. 

 

 
 

Figure 12. Code for Experiment 1 

 
As the results demonstrate, SMOTE was capable of elevating a basic SVM classification model’s 
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accuracy by 10.97%. We discovered that SMOTE is essential for boosting accuracy due to the 
imbalance nature of our datasets. Further experimentation with increasing K-Neighbor values did 

not yield any significant nor constant upwards trends in model accuracy, and the K-Neighbor 

value was determined to be at two in order to compensate for future time expenses. The 

following experiment explores the SMOTE-induced accuracy enhancements with different 
popular classification models. 

 

Experiment 2 
 

We have discovered that SMOTE significantly boosts a model’s accuracy due to the imbalance in 

our datasets. However, different classification models respond differently to SMOTE, and their 
increases in accuracy also vary. This experiment aims to find the most optimal post-SMOTE 

model. We considered 5 popular classification models: SVM, Random Forest, Naive Bayes 

(Gaussian NB), Passive Aggressive, and Gradient Boosting. We chose to remain with the Chicago 
Bears for our testing data. For features, we have included all available features as a baseline. All 

hyperparameters are set at default values, as provided by Scikit-Learn, except for a constant and 

uniform random state. The following table shows results for all 5 models. Each model is trained 
on both pre-SMOTE and post-SMOTE data (with K-neighbors remaining at 2) and evaluated by 

a 5-fold cross validation metric. The percent increase in performance is also recorded in Table 3. 

Note: the code from Experiment 1 was reused with slight modifications by substituting various 

models in place of SVM. 
 

Table 3. Results for 5 models 

 

Model Pre-SMOTE Post-SMOTE % Increase 

SVM 51.73% 57.41% 10.97% 

Random Forest 71.67% 88.82% 23.94% 

Naive Bayes 65.75% 81.30% 23.66% 

Passive Aggressive 48.74% 57.50% 17.98% 

Gradient Boosting 74.04% 87.95% 18.79% 

 

 
Our data demonstrates that there is a high variability between the effects of SMOTE on final 

model accuracy. We decided upon Random Forest as our model of choice, as it yielded the highest 

post SMOTE accuracy. This experiment further supports our previous experiment demonstrating 

the pivotal role of SMOTE. Gradient boosting is another highly favorable candidate with the 
second highest post-SMOTE accuracy. Had our experiment been done solely on non-SMOTE 

datasets, we would have chosen gradient boosting as the most optimal model, since it has the 

highest pre-SMOTE accuracy. 
 

Experiment 3 
 
The previous experiments have yielded a desirable data set and a competent model. The final 

experiment seeks to define the optimal subset of features with the highest accuracy and intuitive 

convenience. We predict that due to different teams having varying priorities, an optimal feature 
subset for the Chicago Bears might not be optimal for teams differing in values and priorities. To 
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mitigate team-specific feature selection, we performed feature analysis on all 32 NFL teams with 
all available features. We used random forest classifiers along with post-SMOTE datasets. The 

team-specific data is then averaged to obtain an appropriate generalized feature list for the entire 

league. 

 
The below table (Table 4) and PyPlot (Figure 13) demonstrates the relative average importance of 

our feature set. Note: the function test_team was modified to return the feature importances of the 

random forest classification model trained from the team’s data. 
 

 
Figure 13. The relative average importance of our feature set chart 

 

Table 4. Average Importances for All Features 

 

Feature Importance (%) 

A. Timeouts Remaining 1.96% 

B. Quarter 1.02% 

C. Quarter Seconds Remaining 7.52% 

D. Half 0.42% 

E. Half Seconds Remaining 9.65% 

F. Game Seconds Remaining 7.16% 

G. Score Differential 3.12% 



Computer Science & Information Technology (CS & IT)                                              159 

H. Offensive Team Score 2.69% 

I. Defensive Team Score 2.69% 

J. Yardline 15.99% 

K. Yards to Go 4.52% 

L. Net Yards (On Drive) 10.03% 

M. Down 24.14% 

N. Shotgun (Formation) 9.31% 

O. No Huddle 0.52% 
 

From the average feature importances, our set of 15 features can be ranked by their percentages. 
The order goes as follows: down, yardline, net yards on a drive, half seconds remaining, shotgun, 

quarter seconds remaining, game seconds remaining, yards to go, score differential, 

offensive/defensive team score, timeouts remaining, quarter, no huddle, half. 

 
We then trained the model 15 times, starting with solely the most influential feature, adding the 

next most influential feature every iteration, as well as recording the league average accuracy for 

each iteration. We seek to set a pruning point in our features set to discard any irrelevant features 
bringing insufficient boosts in accuracy in return for added inconvenience for client-side 

management. 

 
The following table (Table 5) describes our findings, as well as a PyPlot graph (Figure 17) that 

charts the progress in accuracy boosting per feature added. Code for the experiment can be found 

in Figure 14. 
 

 

 
Figure 14. Experiment 3 code 
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Table 5. The progress in accuracy boosting per feature added 

 

Feature Added Cumulative Model 
Accuracy 

Accuracy 
Difference 

Increase In 
Percentage 

A. Down 44.56% N/A N/A 

B. Yardline 79.30% +34.74% +77.97% 

C. Net Yards 84.71% +5.42% +6.83% 

D. Half Seconds Remaining 86.34% +1.62% +1.92% 

E. Shotgun 88.81% +2.47% +2.86% 

F. Quarter Seconds Remaining 88.96% +0.14% +0.16% 

G. Game Seconds Remaining 89.04% +0.082% +0.092% 

H. Yards to Go 89.62% +0.58% +0.65% 

I. Score Differential 89.59% -0.028% -0.031% 

J. Offensive Team Score 89.40% -0.19% -0.22% 

K. Defensive Team Score 89.16% -0.24% -0.27% 

L. Timeouts Remaining 89.06% -0.10% -0.12% 

M. Quarter 89.02% -0.036% -0.041% 

N. No Huddle 88.94% -0.082% -0.092% 

O. Half 88.92% -0.023% -0.026% 
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Figure 15. The progress in accuracy boosting per feature added chart 

 
The graph (Figure 19) shows that model accuracy quickly rose and plateaued. The graph also 

reveals that model accuracy was maximized when the feature set consisted of factors A-H. The 

table confirms the absolute maxima of 89.62%. Furthermore, each successive addition of features 

resulted in a decrease in model accuracy. The results have defined our final feature set as follows: 
down, yardline, net yards, half seconds remaining, shotgun, quarter seconds remaining, game 

seconds remaining, yards to go. 

 

Discussion 

 
The first experiment was designed in response to the imbalanced nature of our dataset. As 

previously discussed, the imbalance in the dataset arises from the comparatively rare occurrences 

of offensive special plays, involving punts, field-goals, and quarterback kneels. Hence, our 

challenge was whether advanced techniques that remedy imbalanced classification is practicable 
and desirable in our project. The experiment validated our hypothesis, and the subsequent 

experiment further supported our predictions, with all models showing significant yet varying 

degrees of improvement after the training data had undergone SMOTE. 
 

Our second experiment was tailored towards the challenge of choosing the optimal model. 

Past papers have been exceptionally widespread in their classification models of choice, and we 
evaluated a small set of popular classification models for their accuracy. The result demonstrated 

that random forest and gradient boosting classifiers were the strongest candidates, with gradient 

boosting holding the highest accuracy with pre-SMOTE training data, and random forest with 

post-SMOTE training data. Both classification models are good candidates, yet time 
complexities, as well as our utilization of SMOTE, drove us to choose random forest as our 

model of choice. 
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Our final experiment targeted the challenge of optimal feature selection in an effort to maximize 
model accuracy as well as minimize potential confounding usage. The accuracy vs feature set 

graph defined a clear absolute extremum. Although alternative evaluating metrics, such as 

analysis of variance with multiple factors, may be better for feature selection, our method of 

evaluation is less computationally expensive and also does not lie far from the optimal feature set. 
 

5. RELATED WORKS 
 

Joash Fernandes et al (2020) sought to design an intuitive and interpretable model for predicting 
run/pass plays in the NFL. The authors utilized a significantly smaller dataset compared to ours, 

consisting of the 2013-2016 NFL seasons. The authors considered the following features: year, 

quarter, minute, second, down, yards to go, yardline, and offensive formation; these are heavily 

similar to our feature set. The authors also derived many features, including the previous play, 
home/away game, point differential, passing and completion proportions, average yards per play 

type, and average position group scores (weighted by the position player count on the field). The 

paper experimented with complex models, assessing classification trees, K-nearest neighbors, 
random forests, and neural networks, which constitutes a more expansive list than our models. 

Similar to our model, the authors chose a decision tree model, however, with limited splits. 

 
The finalized model achieved a lower accuracy of 65.3% with only three variables—down, point 

differential, and yards to go—and ten splits. Although the model was trained from league-wide 

data, team-specific trees scored accuracies between 64.7% to 82.5%, which had significantly 

higher variance than our results. 
 

Lee et al (2016) set out to build upon past research to develop a model featuring more diverse 

features, primarily formation and player ratings. The paper utilized past NFL data from the 2011-
2014 seasons, which is significantly smaller than the size of our training set, although 

featuring more details. The authors chose the following features from their dataset: score 

difference, quarter, time left in quarter, down, yards to go, player counter per position, formation, 
out of position players, turnovers, and home/away games. The authors settled on team-on-league 

type data. Moreover, the feature set contains many derived features, such as positional group 

rankings. 

 
The authors experimented with four different models: logistic regression, linear discriminant 

analysis, gradient boosting machine, and random forest, most of which were assessed in our 

paper as well. Gradient boosting scored the highest, with a 75.7% accuracy, which is in agreement 
with our findings. However, the authors seeked to combine models in order to achieve an optimal 

accuracy, and they reported that a combined model with gradient boosting having a 60% and 

random forest a 40% weight showed the best performance, with an accuracy of 75.9%. The team 

was also able to achieve a game-specific accuracy ranging from 47.2% to 94.6%, as well as a 
season-specific accuracy ranging from 67.6% to 86%, which is also more wildly variant than our 

results. 

 
Ota (2017) presents a unique viewpoint by advising against using raw statistics, due to lack 

of specific scenarios and resulting discontinuous models. Instead, Ota advocates for a more ideal 

“aggregate” model. 
 

Ota’s study utilized solely one NFL season, from 2016, which is significantly and concerningly 

smaller. The author included the following features: down, yards to go, score differential, game 

time remaining, and yardline. The list is marginally smaller than ours, as well as containing all 
static and observable variables. 
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The study performed experimentation on a neural network with customizable hyperparameters, 
which we did not assess. It must be clarified that models were trained separately per down. The 

average accuracy, 68.9%, was higher than the baseline run/pass ratio driven model accuracy, 

which scored 61.3%. It was noted that as the downs incremented, the model accuracy rose 

considerably, with 3rd down scoring the highest, at 86.8%. 
 

The study was extended into research of situational-based models. Logistic regressions, linear 

regressions, support vector machines, and random forests were tested for accuracy, all of which 
were repeated in our study. Ota chose to reduce the feature set even more, with only team, down, 

distance, and yardline remaining. Holistic average accuracy proved to be at 65.67%, only a slight 

improvement over the naïve tendency-based model, which scored 62.86%. Both experiments 
yielded lesser accuracies than our results. 

 

While Ota put forth two perspectives—aggregate and situational—both suggest that their 

practicality is not fully realized. The aggregate model is too broad in its reach to offer specific 
insight, and much of the general trends revealed are too intuitive to offer insight. Perhaps if the 

aggregate model was more specified towards a certain area, it would serve more value to 

coordinators [13]. 
 

6. CONCLUSIONS 
 

In this paper, we addressed the potential of football in-game predictions. We experimented with 

dataset engineering techniques, such as SMOTE, to satisfy our eccentric target set that deviates 
from previous studies in its inclusion of offensive special plays. We also experimented with 

different machine learning classification models, and found that random forest and gradient 

boosting both have high-performances. We chose to advance with random forest due to time 
complexities, and in an effort to further minimize potential confounding variables during 

deployment, we sought to reduce our feature set using feature importances. 

 
The experiments proved to be highly successful in responding to the encountered challenges. The 

experiment design was focused around both team-specific and league aggregate evaluations to 

minimize potential bias with outlying teams. The experimental results show that our model had a 

clear advantage over previous models, with a 89.52% accuracy across the league. This confirmed 
that offensive play-calling tendencies are independent of the defense and deeply rooted in the 

offensive team itself. 

 

Limitations 
 

Overall, we were unable to predict and evaluate the effects of deployment in other levels of play. 
The NFL dataset is expansive and may not be attainable in the same manner, whether it be 

personnel longevity or league expansiveness, in college and high-school level play. 

 
Furthermore, hardware limitations prevented experiments from reaching further complexity. 

Hyperparameter tuning and analysis of variance were excluded for time expenses. 

 

Even more, the dataset presented limiting feature sets. We also noticed that the dataset featured 
erroneous data, primarily for score differential, although the error is marginal and rare. 

 

The choice to incorporate more plays into our label set meant that certain models, such as those 
that govern two-target predictions (logistic regression, for example) were made unavailable. 
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Future Works 
 

A major area remains on the practicability of our model’s deployment in lower level play. Further 

research will be done on whether the conditions of high-school and college football, such as 
higher player turnover rates and smaller datasets, warrants adjustments to our model. 

 

Furthermore, more features can be evaluated for their influences. Some appealing features 
include gameday conditions, and specific offensive formations. The label set can also experiment 

with specificity. For example, expanding the target set to include all possible offensive plays, or 

providing multi-class outputs for different levels of specificity. Even more, deep learning models, 

especially those of recurrent neural networks, have yet to be tested. 
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