CHARACTERISTICS OF SUPER-UTILIZERS OF CARE AT THE UNIVERSITY HOSPITALS OF GENEVA USING LATENT CLASS ANALYSIS

Gilles Cohen¹, Pascal Briot² and Pierre Chopard²

¹Finance Directorate Geneva University Hospitals Geneva, Switzerland ²Quality and Patient Safety Division Geneva University Hospitals Geneva, Switzerland

ABSTRACT

In hospitalized populations, there is significant heterogeneity in patient characteristics, disease severity, and treatment responses, which generally translates into very different related outcomes and costs. A better understanding of this heterogeneity can lead to better management, more effective and efficient treatments by personalizing care to better meet patients' profiles. Thus, identifying distinct clinical profiles among patients can lead to more homogenous subgroups of patients. Super-utilizers (SUs) are such a group, who contribute a substantial proportion of health care costs and utilize a disproportionately high share of health care resources. This study uses cost, utilization metrics and clinical information to segment the population of patients (N=32,759) admitted to the University Hospital of Geneva in 2019 and thus identifies the characteristics of its SUs group using Latent Class Analysis. This study shows how cluster analysis might be valuable to hospitals for identifying super-utilizers within their patient population and understanding their characteristics.

KEYWORDS

Latent Class Analysis, Clustering, Super-Utilizers, Inpatient Segmentation, Hospital Efficiency, Quality Improvement.

1. INTRODUCTION

The ongoing increase in healthcare expenditures [1] [2] and the introduction of new payment incentives which favor reductions in avoidable admissions and reoperations [3] [4][5] are forcing hospitals to develop new quality improvement strategies and improve their efficiencies. Since the greater share of hospital expenditure is often directed toward a limited number of patients commonly referred in the literature as super-utilizers (SUs)[6] [7] [8] [9], identifying these patients and designing better targeted interventions for them have the potential to increase appropriateness of care, improve outcomes and reduce costs. This study aims to stratify the population of patients admitted for more than 24 hours to the University Hospitals of Geneva and discharged between January 1, 2019 and December 31, 2019 applying cluster analysis on utilization data using demographics, admission and medical data.

The proposed approach uses Latent Class Analysis (LCA)to identify distinct patient clusters within our inpatient data. LCA is a model-based method that determines clusters of patients by common underlying unobserved characteristics. It is an iterative, maximum likelihood method that estimates how patterns in patient characteristics can be summarized into a finite number of

David C. Wyld et al. (Eds): MLDS, NECO, SEMIT, IBCOM, SPPR, SCAI, CSIA, ICCSEA - 2021 pp. 01-15, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.111801

groups, or latent classes, by producing a probability distribution over the cluster allocation for each patient.LCA is convenient for analysis of categorical variables that are commonly found in clinical settings.

Clustering has been used to identify new disease subgroups in a diverse range of conditions, such as asthma, chronic lung disease (COPD), chronic heart failure (CHF) and neurological disorders. Nevertheless, the application of clustering to health care delivery is still emerging.

2. Methods

2.1. Data and Variables

The Hôpitaux Universitaires de Genève (HUG) in Geneva is the largest academic medical center in Switzerland with approximately 2,000 acute care beds and 47,000 admissions per year. Located on 8 different sites, the hospital offers acute, intensive and long-term inpatient care, including pediatric and psychiatric care as well as rehabilitation and ambulatory care. All data for the study were collected from the HUG Enterprise Data Warehouse (EDW). The EDW contains information from several information systems including the patient administrative file (DPA - Dossier Patient Administratif), the clinical data repository which includes data from the HUG electronic medical record system (DPI - Dossier Patient Integré), the accounting costing system, and other operation tracking systems. Case costing at the HUG is determined using the standardized cost accounting model known by the acronym REKOLE developed by the Swiss Hospital Association (H+) [10]. It is based on real and normative costs which provide detailed information on the direct and indirect costs associated to each patient hospital stay. All costs are quoted in Swiss francs (CHF). From the EDW we used patient hospital utilization data. Detailed admission data were gathered from hospital discharge summaries comprising admission and discharge dates, admission and discharge disposition, length of stay (LOS), level of care provided (standard care or intensive care), category of services provided including surgical interventions, medications, tests, imaging and both primary and secondary diagnoses. The Elixhauser comorbidity index was calculated for every admission using the International Classification of Diseases, Version 10 [11] using a coding algorithm. DiagnosesICD-10 codes were matched with chapter headings. These data are gathered and coded systematically for each admission by coding service. Patients with missing data were excluded from the analysis.

Since we focused on high-cost patients according to the costs charged, we examined the distribution of health care costs in our data set representing all patients with a non-psychiatric inpatient admission discharged between January 1, 2019, and December 31, 2019. This rapid analysis confirms that the distribution of health care costs is highly concentrated on a small number of patients. In Figure 1, the population on the horizontal axis is segmented into deciles, starting from the decile of patients with the lowest costs consumption on the left to the decile of patients with the highest costs consumption on the right. The vertical axis shows the cumulative costs consumption for all patients. Thus, the 58.5% indicated above the 90% on the horizontal axis signifies that 90% of individuals (the least costly) accounted for only 58.5% of the total costs of the population. While the other 10% of the population generated 41.5% of the total costs. Therefore, the high-costs group was defined as the top 10 percentile of patients incurring the largest total (direct and indirect) admission costs.

The primary objective of this study was to characterize the high-costs users compared to the remaining 90% of patients according to patient characteristics, primary diagnoses, as well as their admission (emergency department) and discharge dispositions (e.g., home, acute care transfer, and long-term care transfer)and selected comorbidity score.

2

Figure 1. Lorenz curve for the total costs distribution. The diagonal line is the line of equality (for a perfectly equal distribution of costs per patient). Greater distance from the equality line indicates greater disparity in the distribution of total HUG costs.

2.2. Methodology

2.2.1. Latent Class Analysis

Let **X**be the $N \times M$ data matrix, where each row **X**_n is the realization of an *M*-dimensional vector of random dichotomous or polytomous variables **X**=(X_{n1},...,X_{nM}). Model based clustering assumes that each **X**_n comes from a finite mixture of G probability distribution in the exponential family, such as Bernoulli or Multinomial, each representing a different cluster, class or group. The general form of finite joint distribution of observed variables is as follow:

$$p(\mathbf{X}_n) = \sum_{g=1}^G \tau_g p(\mathbf{X}_n | \theta_g)$$
(1)

where the τ_g are the mixing probabilities and θ_g is the parameter set corresponding to component g. The component densities completely describe the cluster structure of the data and each observation belongs to the respective cluster in accordance with a set of unobserved cluster membership indicators $\mathbf{z}_n = (z_{n1}, z_{n2}, ..., z_{nG})$ such that $z_{ng} = 1$ if \mathbf{X}_n arises from the gth subpopulation.

When grouping multivariate categorical data, a prevalent model-based approach is the latent class analysis (LCA) model. In this setting, within each class, each variable X_m is modelled using a multinomial distribution, thus

$$p(X_m|\theta_g) = \prod_{c=1}^{C_m} \theta_{gmc}^{\mathbbm{1}\{X_m=c\}}$$

where $c=1,...,C_m$ are the possible categories values for variable m, θ_{gmc} is the probability of the variable taking value c given class g, and $\mathbb{1}{X_m = c}$ is the indicator function that is 1 if the variable takes value c, and 0 if not. In LCA, the variables are considered to be statistically independent given the class value of an observation. This is a primary assumption referred to as

the local independence assumption [12]. Transgressions of this assumption often cause the incompatibility of latent class models. The variables are then modelled for each variable within each group with a multinomial density giving the following factorization of the joint component density:

$$p(\mathbf{X}_n|\theta_g) = \prod_{m=1}^M \prod_{c=1}^{C_m} \theta_{gmc}^{\mathbbm{I}\{X_{nm}=c\}}$$

accordingly the overall density in (1) turn into

$$p(\mathbf{X}_n) = \sum_{g=1}^G \tau_g \prod_{m=1}^M \prod_{c=1}^{C_m} \theta_{gmc}^{\mathbbm{I}\{X_{nm}=c\}}$$

For a specified value G, the set of LCA model parameters is typically estimated by maximum likelihood by means of the Expectation-Maximization (EM) [13]. The algorithm is initialized with a random set of starting values. Therefore, it is usually recommended to run the procedure a bunch of times and then to pick the best solution [14]. More information about the model and parameter estimation can be found in [15][16] [17] and [14]. Concerning parameters interpretation, in the LCA model the parameter θ_{gmc} represents the probability of occurrence of attribute c for variable \mathbf{X}_m in class g. Hence for the variables in the HUG dataset, θ_{gmc} will stand for the probability of having a certain criterion for each patient who belongs to the class g.

2.2.2. Model Selection

Various LCA models are being specified by the assignment of different values to G. For the purpose of selecting the optimal clustering model, various measures have been considered [18] and their performance were compared [19][20].Selecting the number of classes usually requires estimating models with incremental numbers of latent classes, and picking the number of classes based on the model that best fit the observed data. However, statistical criteria must always be assessed in combination with interpretability[21]. A class solution with better statistics is not of any use if it does not make any sense theoretically. Most current ways to decide the number of classes that are frequently considered in a broad variety of statistical models and are used to make comparisons between a set of models. ICs consider model complexity into account and are also used to assess statistical fit. These indices comprise the Akaike Information Criterion (AIC) [22], the Consistent Akaike Information Criterion (cAIC)[23], the Bayesian Information Criterion (BIC) [24] and the adjusted Bayesian Information Criterion (aBIC)[25], where lower values denote a better fitting model. The AIC can be defined as:

$$AIC = -2LL + 2p,$$

where p is the number of free model parameters and LL the log-likelihood. The cAIC is a variant of the AIC but also punishes the value of -2 times the log-likelihood of the model for the number of free model parameters and sample size (Bozdogan, 1987). The cAIC is described as:

$$cAIC = -2LL + p[log(n) + 1],$$

where p is the number of free parameters and n is the sample size. The BIC also incorporates an adaptation for sample size and is given as follows:

$$BIC = -2LL + 2p\log(n),$$

where p is the number of free parameters and n is the sample size. Finally, aBIC is a by-product of BIC that decreases the penalty related to the sample size. The aBIC is defined as:

$$aBIC = -2LL + 2p \log[(n+2)/24],$$

where again p is the number of free parameters and n is the sample size.

The second type of methods for assessing model fit in latent class models involves likelihood ratio (LR) statistic tests. These tests compare the relative fit of two models that disagree in a set of parameter restrictions. For example, it compares a nested (n-1)-class solution to an (n)-class solution. The final category of the fit tests used to evaluate latent class models is the measure of entropy. The entropy index is based on the uncertainty of classification [26] [27]. Basically, the uncertainty of classification is evaluated at the individual level using the posterior probability; thus, entropy is a measure of the aggregated classification uncertainty. The uncertainty of classification is raised when the posterior probabilities are very close across classes. The normalized version of entropy, which scales to the interval [0, 1], is commonly used as a model selection criteria indicating the level of separation between classes. A higher value of normalized entropy represents a better fit; values > 0.80 indicate that the latent classes are highly discriminating [28].

3. RESULTS

3.1. LCA Results

A sequence of models was fitted to the data with the number of classes ranging from 1 to 12. The number of classes was determined by the evaluation of model fit indices (Table 1). Smaller values indicate better latent class separation except for entropy where values near 1 indicate better latent class separation. Regarding the relative goodness-of-fit indices, the value of BIC, aBIC, and cAIC continued to decline for the estimated models from the single-class model to the twelve-class model, while they reached a flattening from the five-class model onwards. However, there was no substantial improvement in either BIC, aBIC or cAIC fit beyond models with nine to twelve classes indicated by the elbow-shaped curve in Figure 2.Moreover, upon examination, the eight-class model appeared to have a meaningful interpretation. Therefore, based on a trade-off between several fitting indices, parsimony, and interpretability of the model, the eight-class model was retained as the final model.

Figure 2. Plots showing goodness of fit with varying number of classes

Number of	Number of	BIC	aBIC	cAIC	Entropy	likelihood-
latent class	parameters					ratio
	estimated					
1	32701	1020364.3	1020179.9	1020422.3	-	419028.1
2	32642	957342.3	956970.4	957459.3	0.82	355392.7
3	32583	910366.9	909807.6	910542.9	0.89	307804.0
4	32524	880006.5	879259.7	880241.5	0.92	276830.1
5	32465	855091.5	854157.2	855385.5	0.95	251301.7
6	32406	842763.4	841641.6	843116.4	0.94	238360.2
7	32347	834598.9	833289.6	835010.9	0.94	229582.2
8	32288	824737.8	823240.9	825208.8	0.94	219107.7
9	32229	818230.5	816546.2	818760.5	0.94	211987.0
10	32170	813011.7	811139.9	813600.7	0.94	206154.8
11	32111	810219.2	808159.9	810867.2	0.94	202748.9
12	32052	808030.0	805783.2	808737.0	0.93	199946.2

Table 1. Fit Statistics for Latent Class Analyses

BIC: Bayesian information criterion; aBIC: adjusted Bayesian information criterion; cAIC: consistant Akaike information criterion

3.2. Results for the groups

3.2.1. Results for demographics and mode of admission and discharge from hospital

32,759 unique patients across 8 groups were identified by the clustering method. The number of patients per group ranges from 2,735 (8.4%) to 5,711 (17.4%) with an average of 4,095. Groups 6 and 8 have only single patients (N = 5,927; 18.1%) and group 3 has only women patients (N = 3,981; 12.2%) as described in table 2 below.

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8	All
	(N =	Groups							
	5,711)	3,909)	3,981)	4,054)	3,476)	3,192)	5,701)	2,735)	(N =
									32,759)
Men	2622	1694	0 (0%)	2236	2084	1586	2774	1589	14585
	(45.9%)	(43.3%)		(55.2%)	(60.0%)	(49.7%)	(48.7%)	(58.1%)	(44.5%)
Women	3089	2215	3981	1818	1392	1606	2927	1146	18174
	(54.1%)	(56.7%)	(100%)	(44.8%)	(40.0%)	(50.3%)	(51.3%)	(41.9%)	(55.5%)
Single	2706	2504	1570	2495	1889	3192	3214	2735	20305
	(47.4%)	(64.1%)	(39.4%)	(61.5%)	(54.3%)	(100%)	(56.4%)	(100%)	(62.0%)
Couple	3005	1405	2411	1559	1587	0 (0%)	2487	0 (0%)	12454
	(52.6%)	(35.9%)	(60.6%)	(38.5%)	(45.7%)		(43.6%)		(38.0%)

Table 2. Gender and status distribution of patients per groups

The patients' age showed a bimodal distribution with a first mode in the 0 to 18 age range (N = 6781; 20.7%) and the second mode in the 75 and above age range (7107; 21.7%). Groups 6 and 8 include mostly young patients less than 19 years of age (99.8% and 81.7% respectively). Group 3 includes nearly only young adult patients from age 19 to 44 (99.2%) while group 7 has a majority of older adults from age 75 and above (57.5%) and no young patients (less than 18 years old) as described in table 3 below.

Age bracket	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8	All
C	(N =	(N = 1)	(N =	(N =	(N = 1)	(N =	(N =	(N =	Groups
	5,711)	3,909)	3,981)	4,054)	3,476)	3,192)	5,701)	2,735)	(N =
	. ,	. ,	. ,	. ,	. ,	. ,		. ,	32,759)
[0,18]	161	373	13	566	248	3185	0 (0%)	2235	6781
	(2.8%)	(9.5%)	(0.3%)	(14.0%)	(7.1%)	(99.8%)		(81.7%)	(20.7%)
(18,34]	858	540	2687	699	109	0 (0%)	182	347	5422
	(15.0%)	(13.8%)	(67.5%)	(17.2%)	(3.1%)		(3.2%)	(12.7%)	(16.6%)
(34,44]	1008	333	1260	503	145	4 (0.1%)	285	78	3616
	(17.7%)	(8.5%)	(31.7%)	(12.4%)	(4.2%)		(5.0%)	(2.9%)	(11.0%)
(44,54]	1152	371	21	663	373	3 (0.1%)	451	67	3101
	(20.2%)	(9.5%)	(0.5%)	(16.4%)	(10.7%)		(7.9%)	(2.4%)	(9.5%)
(54,64]	1107	407	0 (0%)	704	600	0 (0%)	648	2 (0.1%)	3468
	(19.4%)	(10.4%)		(17.4%)	(17.3%)		(11.4%)		(10.6%)
(64,74]	766	409	0 (0%)	476	750	0 (0%)	857	6 (0.2%)	3264
	(13.4%)	(10.5%)		(11.7%)	(21.6%)		(15.0%)		(10.0%)
(74,150	659	1476	0 (0%)	443	1251	0 (0%)	3278	0 (0%)	7107
]	(11.5%)	(37.8%)		(10.9%)	(36.0%)		(57.5%)		(21.7%)

Table 3. Age bracket distribution of patients per groups

Admissions to the HUG were done majorly via the emergency department (ED) for all the groups (55.7%) with groups 2 and 7 at 92.5% and 93.3% respectively. Group 6 was the exception with only 50 patients out of 3,142 (1.6%) admitted via the ED. On the average 78.3% of all patients (N = 25,654) were discharged to home with the exception of group 5 with only 49.5% discharged to home (N = 1719). Groups 5 and 7 had the most patients transferred to rehabilitation with 32.1% and 23.4% respectively; while groups 1, 3,6 and 8 had the least with 0.4%, 0.1%, 0.0% and 0.8% respectively. These results are tabulated in table 4 below.

	Group 1 (N = 5,711)	Group 2 (N = 3,909)	Group 3 (N = 3,981)	Group 4 (N = 4,054)	Group 5 (N = 3,476)	Group 6 (N = 3,192)	Group 7 (N = 5,701)	Group 8 (N = 2,735)	All Groups (N = 32.759)
ED	1766	3617	2686	1313	2212	50	5319	1299	18262
	(30.9%)	(92.5%)	(67.5%)	(32.4%)	(63.6%)	(1.6%)	(93.3%)	(47.5%)	(55.7%)
Not ED	3945	292	1295	2741	1264	3142	382	1436	14497
	(69.1%)	(7.5%)	(32.5%)	(67.6%)	(36.4%)	(98.4%)	(6.7%)	(52.5%)	(44.3%)
Home	5547	2185	3947	3510	1719	3160	3037	2549	25654
	(97.1%)	(55.9%)	(99.1%)	(86.6%)	(49.5%)	(99.0%)	(53.3%)	(93.2%)	(78.3%)
Rehab	21 (0.4%)	669 (17.1%)	2 (0.1%)	414 (10.2%)	1116 (32.1%)	1 (0.0%)	1336 (23.4%)	22 (0.8%)	3581 (10.9%)
Others	143 (2.5%)	1055 (27.0%)	32 (0.8%)	130 (3.2%)	641 (18.4%)	31 (1.0%)	1328 (23.3%)	164 (6.0%)	3524 (10.8%)

Table 4. Mode of admission and discharge from hospital for patients per groups

3.2.2. Results for diagnoses, procedures and Elixhauser index

Groups 1 and 4 show a range of precisely targeted procedures (such as obstetric technics and operations on musculoskeletal system) and primary diagnoses (such as diseases of the digestive system) while groups 2 and 6 show no procedures done in 2019. In addition, group 6 shows a majority (61.1%) of diagnoses related to factors influencing the health status and reasons to access the health system.

35.4% of group 1 patients received operations of the digestive system with 30.9% of patients diagnosed with a disease of the digestive system. Of all patients with operations of the digestive systems (N = 3003), group 1 includes 67.4% patients (N = 2024) and of all patients with a primary diagnosis of disease of the digestive system (N = 2774), group 1 includes 63.6% patients (N = 1763).

90.3% of group 4 patients received operations of the musculoskeletal system with 49.5% of patients diagnosed with a disease of the musculoskeletal system and 47.1% with traumatic lesions. Of all patients with operations of the musculoskeletal system (N = 4473) group 4 includes 81.8% patients (N = 3660) and of all patients with a primary diagnosis of disease of the musculoskeletal system or traumatic lesions (N = 6407), group 4 includes 61.1% patients (N = 3917).94.0% of the patients (N = 3,742) in group 3 (women only patients) received obstetric procedures.

These results are summarized in tables 5 and 6 below.

Table 5. Distribution	of procedure	categories f	for patients	by groups

Procedure categories	Group 1 (N = 5,711)	Group 2 (N = 3,909)	Group 3 (N = 3,981)	Group 4 (N = 4,054)	Group 5 (N = 3,476)	Group 6 (N = 3,192)	Group 7 (N = 5,701)	Group 8 (N = 2,735)	All Groups (N = 32,759)
Operations on the nervous system	196 (3.4%)	0 (0%)	10 (0.3%)	111 (2.7%)	177 (5.1%)	0 (0%)	116 (2.0%)	83 (3.0%)	693 (2.1%)
Operations on the urinary system	440 (7.7%)	0 (0%)	0 (0%)	1 (0.0%)	129 (3.7%)	0 (0%)	195 (3.4%)	37 (1.4%)	802 (2.4%)
Operations on male genital organs	314 (5.5%)	0 (0%)	0 (0%)	0 (0%)	15 (0.4%)	0 (0%)	0 (0%)	47 (1.7%)	376 (1.1%)
Operations on female genital organs	688 (12.0%)	0 (0%)	198 (5.0%)	0 (0%)	25 (0.7%)	0 (0%)	0 (0%)	2 (0.1%)	913 (2.8%)
Obstetric techniques	0 (0%)	0 (0%)	3742 (94.0%)	0 (0%)	1 (0.0%)	0 (0%)	0 (0%)	0 (0%)	3743 (11.4%)
Operations on musculoskeletal system	0 (0%)	0 (0%)	0 (0%)	3660 (90.3%)	504 (14.5%)	0 (0%)	294 (5.2%)	15 (0.5%)	4473 (13.7%)
Operations on integumentary system	424 (7.4%)	0 (0%)	1 (0.0%)	204 (5.0%)	73 (2.1%)	0 (0%)	107 (1.9%)	29 (1.1%)	838 (2.6%)
Diagnostic and therapeutic techniques	572 (10.0%)	0 (0%)	24 (0.6%)	22 (0.5%)	828 (23.8%)	0 (0%)	4158 (72.9%)	1841 (67.3%)	7445 (22.7%)
Operations of the nose, mouth and pharynx	317 (5.6%)	0 (0%)	0 (0%)	0 (0%)	23 (0.7%)	0 (0%)	8 (0.1%)	370 (13.5%)	718 (2.2%)
Operations of respiratory system	147 (2.6%)	0 (0%)	0 (0%)	10 (0.2%)	127 (3.7%)	0 (0%)	107 (1.9%)	49 (1.8%)	440 (1.3%)
Operations of cardiovascular system	195 (3.4%)	0 (0%)	3 (0.1%)	41 (1.0%)	672 (19.3%)	0 (0%)	228 (4.0%)	103 (3.8%)	1242 (3.8%)
Operations of digestive system	2024 (35.4%)	0 (0%)	2 (0.1%)	0 (0%)	736 (21.2%)	0 (0%)	142 (2.5%)	99 (3.6%)	3003 (9.2%)
Other classified procedures	377 (6.6%)	0 (0%)	0 (0%)	5 (0.1%)	103 (3.0%)	0 (0%)	0 (0%)	57 (2.1%)	542 (1.7%)
Procedures non classified elsewhere	17 (0.3%)	0 (0%)	1 (0.0%)	0 (0%)	62 (1.8%)	0 (0%)	346 (6.1%)	3 (0.1%)	429 (1.3%)
No procedure	0 (0%)	3909 (100%)	0 (0%)	0 (0%)	1 (0.0%)	3192 (100%)	0 (0%)	0 (0%)	7102 (21.7%)

Table 6.	Distribution	of	diagnosis	categories t	for 1	patients	hv	groups
1 uoie 0.	Distribution	O1	anagnoono	cutegories	IOI	patients	υ,	SIOups

	C 1	0 0	0 2	C 1	G 5	0 (0 7	C 0	A 11
	Group I	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8	All
	(N =	(N =	(N =	(N =	(N =	(N =	(N =	(N =	Groups
	5,711)	3,909)	3,981)	4,054)	3,476)	3,192)	5,701)	2,735)	(N =
									32,759)
Certain infectious	34	117			202	2	255	77	687
and parasitic	(0.6%)	(2.0%)	0 (0%)	0 (0%)	(5.8%)	(0, 104)	(4,5%)	(2,804)	(2.1%)
diseases	(0.0%)	(3.0%)			(3.8%)	(0.1%)	(4.5%)	(2.8%)	(2.1%)
	1426	42	0 (00()	29	775	2	195	0 (00()	2469
Tumors	(25.0%)	(1.1%)	0(0%)	(0.7%)	(22.3%)	(0.1%)	(3.4%)	0(0%)	(7.5%)
Diseases of the									
blood.									
hematopoietic	22	23	0(0%)	0 (0%)	29	0 (0%)	91	27	192
organs immunity	(0.4%)	(0.6%)		- ()	(0.8%)	,	(1.6%)	(1.0%)	(0.6%)
system									
Endocrinien									
metabolic and	274	103	0(0%)	0(0%)	98	6	154	35	670
nutritionel diseases	(4.8%)	(2.6%)	0(0/0)	0(0/0)	(2.8%)	(0.2%)	(2.7%)	(1.3%)	(2.0%)
Diseases of the	208	410			771		1820	32	3241
Diseases of the	(2.6%)	(10.50)	0 (0%)	0 (0%)	(22,20)	0 (0%)	(21.0%)	(1, 20/)	(0.0%)
Mantal and	(3.0%)	(10.3%)			(22.270)		(31.9%)	(1.270)	(9.9%)
Mental and	4 (0.1%)	409	0 (0%)	0 (0%)	15	0 (0%)	1//	41	040
behavior diseases	021	(10.5%)		0	(0.4%)		(3.1%)	(1.5%)	(2.0%)
Diseases of the	231	122	0 (0%)	9	85	0 (0%)	345	119	911
Di Cul	(4.0%)	(3.1%)		(0.2%)	(2.4%)		(6.1%)	(4.4%)	(2.8%)
Diseases of the	95	69	0 (0%)	0 (0%)	0 (0%)	0 (0%)	20	50	234
eyes	(1.7%)	(1.8%)	· · ·	~ /	100	· /	(0.4%)	(1.8%)	(0.7%)
Diseases of the	235	495	0(0%)	0(0%)	130	2	909	808	2579
respiratory system	(4.1%)	(12.7%)	- (-,-)	0 (0.0)	(3.7%)	(0.1%)	(15.9%)	(29.5%)	(7.9%)
Diseases of the	1763	286	0(0%)	20	421	4	193	87	2774
digestive system	(30.9%)	(7.3%)	0 (070)	(0.5%)	(12.1%)	(0.1%)	(3.4%)	(3.2%)	(8.5%)
Diseases of the skin	117	84		28	36	1	68	36	370
and subcutaneous	(2.0%)	(2.1%)	0 (0%)	(0.7%)	(1.0%)	(0.0%)	(1.2%)	(1.3%)	(1.1%)
tissue	(2.070)	(2.170)		(0.770)	(1.070)	(0.070)	(1.270)	(1.370)	(1.170)
Diseases of the		214		2006	157	1	170	38	2586
musculoskeletal	0 (0%)	(5.5%)	0 (0%)	(49.5%)	(4.5%)	(0.0%)	(3.0%)	(1.4%)	(7.9%)
system		(3.370)		(47.370)	(4.570)	(0.070)	(3.0%)	(1.470)	(7.970)
Diseases of the	970	237		1	107	6	214	66	1601
urinary track	(17.0%)	(6.1%)	0 (0%)	(0.0%)	(3.1%)	(0.2%)	(3.8%)	(2,4%)	(4.9%)
system	(17.0%)	(0.1%)		(0.0%)	(3.1%)	(0.2%)	(3.8%)	(2.4%)	(4.9%)
Traumatic lesions,									
poisoning and other	81	609	0 (00/)	1911	461	1	619	139	3821
external cause of	(1.4%)	(15.6%)	0(0%)	(47.1%)	(13.3%)	(0.0%)	(10.9%)	(5.1%)	(11.7%)
illness									
Pregnancy and	0 (00()	101	3981	0 (00()	4	1	1	0 (00())	4088
delivery	0(0%)	(2.6%)	(100%)	0(0%)	(0.1%)	(0.0%)	(0.0%)	0(0%)	(12.5%)
Perinatal related	0 (00()	1	0 (00()	0 (00()	12	1037	0 (00()	782	1832
illness	0(0%)	(0.0%)	0(0%)	0(0%)	(0.3%)	(32.5%)	0(0%)	(28.6%)	(5.6%)
Genetic									
malformations and	26	1	0 (00())	49	110	154	0 (00())	212	552
chromosomic	(0.5%)	(0.0%)	0(0%)	(1.2%)	(3.2%)	(4.8%)	0(0%)	(7.8%)	(1.7%)
abnormalities	· · /	· ,			× /	× /		· /	``´´
Abnormal results									
from exams and	92	526	0.(0.01)	1	53	26	467	118	1283
labs non classified	(1.6%)	(13.5%)	0 (0%)	(0.0%)	(1.5%)	(0.8%)	(8.2%)	(4.3%)	(3.9%)
elsewhere		(()	(((-···/	((
Factors influencing									
health status and	133	60	0.(0.01)	0 (001)	10	1949	3	68	2223
reasons to access	(2.3%)	(1.5%)	0 (0%)	0 (0%)	(0.3%)	(61.1%)	(0.1%)	(2.5%)	(6.8%)
health system	()= /= /	((/-/	((//	((

The Elixhauser comorbidity index was calculated for each patient based on their diagnosis codes. The distribution per group for chronic heart failure (CHF), cardiovascular disease (CARIT), chronic obstructive pulmonary disease (COP), and diabetes (DIABC) do not show any significance difference across the groups. The proportion of patients across the groups exhibiting each conditions are very homogeneous as described in table 7 below.

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8	All Groups		
	(N =	(N = 32,759)									
	5,711)	3,909)	3,981)	4,054)	3,476)	3,192)	5,701)	2,735)			
	CHF										
0	5306	3632	3744	3794	3260	2982	5340	2574	30632		
	(92.9%)	(92.9%)	(94.0%)	(93.6%)	(93.8%)	(93.4%)	(93.7%)	(94.1%)	(93.5%)		
1	405	277	237	260	216	210	361	161	2127 (6.5%)		
	(7.1%)	(7.1%)	(6.0%)	(6.4%)	(6.2%)	(6.6%)	(6.3%)	(5.9%)			
				C	CARIT						
0	5062	3432	3545	3583	3080	2827	5059	2421	29009		
	(88.6%)	(87.8%)	(89.0%)	(88.4%)	(88.6%)	(88.6%)	(88.7%)	(88.5%)	(88.6%)		
1	649	477	436	471	396	365	642	314	3750 (11.4%)		
	(11.4%)	(12.2%)	(11.0%)	(11.6%)	(11.4%)	(11.4%)	(11.3%)	(11.5%)			
				(COPD						
0	5412	3716	3801	3866	3313	3049	5435	2589	31181		
	(94.8%)	(95.1%)	(95.5%)	(95.4%)	(95.3%)	(95.5%)	(95.3%)	(94.7%)	(95.2%)		
1	299	193	180	188	163	143	266	146	1578 (4.8%)		
	(5.2%)	(4.9%)	(4.5%)	(4.6%)	(4.7%)	(4.5%)	(4.7%)	(5.3%)			
				D	DIABC						
0	5143	3549	3589	3663	3192	2898	5182	2497	29713		
	(90.1%)	(90.8%)	(90.2%)	(90.4%)	(91.8%)	(90.8%)	(90.9%)	(91.3%)	(90.7%)		
1	568	360	392	391	284	294	519	238	3046 (9.3%)		
	(9.9%)	(9.2%)	(9.8%)	(9.6%)	(8.2%)	(9.2%)	(9.1%)	(8.7%)			

Table 7. Distribution Elixhauser comorbidity index for selected conditions for patients by groups

3.2.3. Results for top 10 percentile of cost and clinical outcomes

Group 5 (N = 3,476) had 80.5% of its patients in the top 10 percentile for total costs compared to all the other groups combined with 3.0% of their patients (N = 883).

Group 5 patients had the most number of patients with more than 10 ambulatory visits (42.9%), more than 10 different diagnoses (69.9%), more than 3 procedures (90.5%), more than 10 lab tests (80.2%), more than 10 medications (96.3%), and more than 2 hospitalizations (23.9%).

Group 5 had also the most number of patients who were discharged to rehabilitation facilities after their hospital stay (32.1%).

More group 5 patients were 65 years and older (N = 2,001; 57.6%) than any other groups except group 7 (N = 4,135; 72.5%). While group 7 had more patients 65 years and older than group 5, it also had no patient less than 19 years of age while group 5 had 248 patients (7.1%).

Group 7 provides some other results which are noteworthy. After group 5, it has the most number of patients (N = 371; 6.5%) in the top 10 percentile of costs; with more than 10 diagnoses (N = 2,028; 35.6%); with more than 10 tests (N = 2,649; 46.5%); and with more than 10 medications (N = 4,628; 81.2%).

These results are tabulated in table 8 below.

Table 8. Distribution of costs percentile and clinical outcomes for patients per group	Table 8. Distribution of cost	percentile and clinical of	outcomes for patients per gro	ups
--	-------------------------------	----------------------------	-------------------------------	-----

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8	All
	(N =	(N =	(N =	(N =	(N =	(N =	(N =	(N =	Groups
	5,711)	3,909)	3,981)	4,054)	3,476)	3,192)	5,701)	2,735)	(N =
									32,759)
			Perce	ntile distribu	tion of costs				
Top 10th	133	32 (0.8%)	13	157	2797	11	371	166	3680
percentile	(2.3%)		(0.3%)	(3.9%)	(80.5%)	(0.3%)	(6.5%)	(6.1%)	(11.2%)
Bottom 90th	5578	3877	3968	3897	679	3181	5330	2569	29079
percentile	(97.7%)	(99.2%)	(997%)	(96.1%)	(19.5%)	(99.7%)	(93.5%)	(93.9%)	(88.8%)
Ambulatory visits									
0 - 4	2320	2660	1998	1073	1075	3076	3828	2115	18145
	(40.6%)	(68.0%)	(50.2%)	(26.5%)	(30.9%)	(96.4%)	(67.1%)	(77.3%)	(55.4%)
5 - 10	1758	647	1294	1907	910	95	1085	407	8103
. 10	(30.8%)	(16.6%)	(32.5%)	(47.0%)	(26.2%)	(3.0%)	(19.0%)	(14.9%)	(24.7%)
> 10	1033	(15.4%)	(17.2%)	10/4	(42.0%)	(0, 7%)	/88 (12.8%)	213	(10.0%)
	(20.0%)	(13.4%)	(17.5%)	(20.5%) Hospital adm	(42.9%)	(0.7%)	(13.6%)	(7.0%)	(19.9%)
	4010	2250	2662	2605	1(0)	2117	4405	00/0	07000
1	4919	3359	3663	3695	1623	3117 (07.7%)	4495	2362	(82.1%)
	(80.1%)	(83.9%)	(92.0%)	(91.1%)	(40.7%)	(97.7%)	(78.6%)	(80.4%)	(03.1%)
2	(10.8%)	(10.7%)	(6.9%)	(7.7%)	(29.4%)	(2,2%)	(15.1%)	(12.2%)	(11.9%)
	173	130	45	48	832	(2.270)	346	40	1618
> 2	(3.0%)	(3.3%)	(1.1%)	(1.2%)	(23.9%)	4 (0.1%)	(6.1%)	(1.5%)	(4.9%)
			N	Number of di	agnoses				
1	1433	600	10	553	3 (0.1%)	1680	38	547	4864
	(25.1%)	(15.3%)	(0.3%)	(13.6%)		(52.6%)	(0.7%)	(20.0%)	(14.8%)
2 - 10	4210	2773	3804	3489	1043	1512	3635	2124	22590
	(73.7%)	(70.9%)	(95.6%)	(86.1%)	(30.0%)	(47.4%)	(63.8%)	(77.7%)	(69.0%)
> 10	68	536	167	12	2430	0 (0%)	2028	64	5305
	(1.2%)	(13.7%)	(4.2%)	(0.3%)	(69.9%)		(35.6%)	(2.3%)	(16.2%)
			N	umber of tre	atments				
0	0 (0%)	3908	0 (0%)	0 (0%)	0 (0%)	3192	0 (0%)	0 (0%)	7100
1.0	1050	(100.0%)	2665	2104	220	(100%)	1100	2151	(21.7%)
1 - 2	4059	0(0%)	2665	3194	329	0(0%)	(78.0%)	2151	1689/
> 3	(71.1%)	1 (0.0%)	(00.9%)	(78.8%)	(9.5%)	0 (0%)	(78.9%)	(78.0%)	(31.0%)
/ 3	(28.9%)	1 (0.0%)	(33.1%)	(21.2%)	(90.5%)	0(0%)	(21.1%)	(21.4%)	(26.7%)
	(20.970)		(33.170) N	umber of lab	s (Tests)		(21.170)	(21.470)	(20.770)
1 - 10	5241	3275	3884	3948	689	3181	3052	2639	25909
1 10	(91.8%)	(83.8%)	(97.6%)	(97.4%)	(19.8%)	(99.7%)	(53.5%)	(96.5%)	(79.1%)
> 10	470	634	97	106	2787	11	2649	96	6850
	(8.2%)	(16.2%)	(2.4%)	(2.6%)	(80.2%)	(0.3%)	(46.5%)	(3.5%)	(20.9%)
			N	umber of me	dications				
1 - 10	2526	2100	2859	2294	130	3192	1073	2315	16489
	(44.2%)	(53.7%)	(71.8%)	(56.6%)	(3.7%)	(100%)	(18.8%)	(84.6%)	(50.3%)
> 10	3185	1809	1122	1760	3346	0 (0%)	4628	420	16270
	(55.8%)	(46.3%)	(28.2%)	(43.4%)	(96.3%)		(81.2%)	(15.4%)	(49.7%)

4. **DISCUSSION**

This study was conducted to determine how cluster analysis using the SU criterion used in the literature and by Grafe et al [29]might applied to the inpatient population of the Hôpitaux Universitaires de Genève. The results show that the LCA clustering model is able to generate 8 groups with distinctive characteristics. In particular, the algorithm was able to identify a group with mostly patients less than 19 years of age who use the hospital for health related factors but not serious illness as well as a group with only women who use the hospital for only women related procedures and diagnoses and two other groups whose patients are greater utilizers of digestive and musculoskeletal procedures with consistent related diagnoses. Across and among the groups the results for the variables studied appear highly coherent and as would be expected

demonstrating that the clustering algorithm appears robust in stratifying the population of patients admitted to the Hôpitaux Universitaires de Genève in 2019.

Most important among the 8 groups was the group of patients whose costs are in the top 10^{th} percentile (Group 5) and for whom the use of ambulatory and inpatient services is the greatest as well as the use of treatments, test (labs) and medications. Given the consistency of the results for these patients and the coherence we observed across the other groups (described above), we are confident that group 5 represent the super-utilizers of care for the HUG in 2019.

In this investigation, we demonstrated the use of cluster analysis to identify distinct subgroups of patients with specific combinations of co-occurring conditions in a large academic medical center.

The model revealed the expected segmentation by age brackets and gender such as with group 6 (patients less than 19 years of age) and group 3 (women only patients) along with the expected utilisation of care services such as pregnancy and delivery for group 3. The identification of these expected groups in our analysis provide assurance of the validity of our data mining method.

The cluster analysis provided also a data driven approach to identifying at least 3very distinctive clinically relevant groups of patients with patterns of care utilization that could be targeted with new, enhanced care management strategies. The super-utilizers (group 5, N = 3476, 10.6% of all patients) including mostly SUs (N = 2797, 8.5% of all patients). The patients who consistently (93.3% of patients) are admitted via the ED (group 7, N = 5701, 17.4% of all patients) including at least some SUs (N = 371, 1.0% of all patients). The musculoskeletal patients (group 4, N = 4054, 12.4% of all patients) whose care and costs are mostly related to problems associated with the musculoskeletal system including at least some SUs (N = 157, 0.5% of all patients). Together these 3 groups (N = 12947, 39.5% of all patients) which alone contain the majority of SUs (N = 3325, 10% of all patients), and considering only the SUs, account for all costs above the 90% percentile which means that targeted intervention to improve the care of these patients will have the most impact on total costs for the HUG.

While the model appears coherent and robust to further assess the stability of these clusters over time, analyses should be conducted on cohorts from different years. A larger population of patients (over multiple years) might also provide more power to detect significant difference in the Elixhauser comorbidity index across groups.

Like any investigation, the characteristics of our clusters are constrained to our data and setting. Reproducing these analyses in different settings and different patient populations may potentially yield different clusters. However, these differences would and should nevertheless inform on different management strategies specific to populations in those settings.

In this study we showed how cluster analysis can be used to identify homogeneous groups of complex patients from a large heterogeneous population. Such data science methods demonstrate that it is possible to use the conceptual findings of this investigation to raise awareness of the need for a more personalized approach of care management services for patients with high levels of healthcare utilization (super utilizers). However, further understanding of the care management needs of clusters of patients with similar comorbidities and care utilization is warranted before designing specific tailored interventions.

5. CONCLUSIONS

This study identified SU criterion that have commonly been used in the literature and applied these criterion to the inpatient population of a large academic medical center. The procedures and results reported illustrate how cluster analysis can be helpful in differentiating homogeneous groups of complex patients from a large heterogeneous population. These results should help in the application of more targeted interventions per subgroups to improve appropriateness of care, improve outcomes and reduce costs.

ACKNOWLEDGEMENTS

The medical directorate, the service for quality and patient safety, and the department of finance of the Hôpitaux Universitaires de Genève provided useful insights into the broad focus and goals of this study. We appreciate their inputs, especially from our colleagues in the medico-economic unit, which were most helpful and constructive for the analysis and writing of this paper. This study will not have been possible without the assistance and collaboration of all these people.

REFERENCES

- [1] Spending on health: Latest trends. Health Spending Latest Trend Brief.2018. [En ligne]. Available: https://www.oecd.org/health/health-systems/Health-Spending-Latest-Trends-Brief.pdf.
- [2] R. W. Raghupathi. Healthcare Expenditure and Economic Performance: Insights From the United States Data. Front Public Health, vol. 8, 2020.
- [3] R. Axon, M. Williams. Hospital readmission as an accountability measure. JAMA, vol. 305, pp. 504-5, 2011.
- [4] H. A. Purdey. Predicting and preventing avoidable hospital admissions: a review. The journal of the Royal College of Physicians of Edinburgh, vol. 43, pp. 340-4, 2013.
- [5] C. Schwierz. Cost-Containment Policies in Hospital Expenditure in the European Union. 2016.
- [6] M. Berk, A. Monheit. The concentration of health care expenditures, revisited. Health Affairs (Project Hope)., vol. 20, pp. 9-18, 2001.
- [7] S. Rais, A. Nazerian, S. Ardal, Y. Chechulin, N. Bains, K. Malikov, A. Nazerian. High-cost users of Ontario's healthcare services. Healthc Policy., vol. 9, pp. 44-51, 2013.
- [8] W. P. Wodchis, P. C. Austin, D. A. Henry. A 3-year study of high-cost users of health care.CMAJ : Canadian Medical Association journal., vol. 188, pp. 182-188, 2016.
- [9] S. B. Cohen. The Concentration of Health Care Expenditures and Related Expenses for Costly Medical Conditions, 2012. Statistical Brief (Medical Expenditure Panel Survey (US)), Agency for Healthcare Research and Quality (US), 2014.
- [10] P. Besson. Manuel Rekole® Comptabilité Analytique A L'hôpital. Les Hôpitaux de Suisse, 2013.
- [11] H. Organization. ICD-10 Classification of Mental and Behavioral Disorders (The): Diagnostic Criteria for Research. World Health Organization, 1993.
- [12] C. C. Clogg. Latent Class Models for Measuring. Latent Trait and Latent Class Models, pp. 173-205, 1988.
- [13] A. Dempster, N. Laird, D. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the royal statistical society, series B, vol. 39, pp. 1-38, 1977.
- [14] D. J. Bartholomew, K. Martin, I. Moustaki. Latent Variable Models and Factor Analysis: A Unified Approach. Wiley Series in Probability and Statistics, 2011.
- [15] P. F. Lazarsfeld, N. W. Henry. Latent Structure Analysis, Houghton, Mifflin, 1968.
- [16] C. C. Clogg. Latent class models, chez Handbook of statistical modeling for the social and behavioral sciences, 1995.
- [17] A. Agresti. Categorical data analysis, New York: Wiley, 2002.
- [18] G. McLachlan, D. Peel. Finite mixture models, New York: Wiley, 2000.
- [19] J. G. Dias. Latent Class Analysis and Model Selection, chez From Data and Information Analysis to Knowledge Engineering, 2006.
- [20] C. Biernacki. Model selection theory and considerations in large scale scenarios, chez Research Summer School on Statistics for Data Science - S4D, Caen France, 2018.

14

- [21] B. O. Muthén, L. K. Muthén. Integrating person-centered and variablecentered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical & Experimental Research, vol. 24, pp. 882-891, 2000.
- [22] H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control, vol. 19, pp. 716-723, 1974.
- [23] H. Bozdogan. Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika, vol. 52, pp. 345-370, 1987.
- [24] G. Schwarz. Estimating the dimension of a model. Annals of Statistics, vol. 6, pp. 461-464, 1978.
- [25] S. L. Sclove. Application of model-selection criteria to some problems in multivariate. Psychometrika, vol. 52, pp. 333-343, 1987.
- [26] M.-C. Wang, Q. Deng, X. Bi, H. Ye, W. Yang. Performance of the entropy as an index of classification accuracy in latent profile analysis: A Monte Carlo simulation study. Acta Psychologica Sinica, vol. 49, pp. 1473-1482, 2017.
- [27] G. Celeux, G. Soromenho. An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, vol. 13, pp. 195-212, 1996.
- [28] C. Larose, O. Harel, K. Kordas, D. Dey. Latent Class Analysis of Incomplete Data via an Entropy-Based Criterion. Stat Methodology, vol. 32, pp. 107-121, 2016.
- [29] Grafe, Carl J et al. "How to Classify Super-Utilizers: A Methodological Review ofSuper-Utilizer Criteria Applied to the Utah Medicaid Population, 2016-2017.Population health management vol. 23,2 (2020): 165-173.

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons Attribution (CC BY) license.