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ABSTRACT 
 
Reducing costs is an important part in todays business. Therefore manufacturers try to reduce 

unnecessary work processes and storage costs. Machine maintenance is a big, complex, regular 

process. In addition, the spare parts required for this must be kept in stock until a machine fails. 

In order to avoid a production breakdown in the event of an unexpected failure, more and more 

manufacturers rely on predictive maintenance for their machines. This enables more precise 

planning of necessary maintenance and repair work, as well as a precise ordering of the spare 

parts required for this. A large amount of past as well as current information is required to 

create such a predictive forecast about machines. With the classification of motors based on 

vibration, this paper deals with the implementation of predictive maintenance for thermal 

systems. There is an overview of suitable sensors and data processing methods, as well as 

various classification algorithms. In the end, the best sensor-algorithm combinations are shown. 
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1. INTRODUCTION 
 

The topic of predictive maintenance (PMA) is becoming more and more important for industrial 

plants and is the key topic in mechanical engineering from the Industry 4.0 aspect [1]. PMA is 
defined as condition-based maintenance which is carried out on the basis of a wear or service life 

forecast [2]. PMA uses methods that allow for individual maintenance intervals of an industrial 

plant to be determined and the maintenance process to be initiated automatically. As part of a 

R&D cooperation project between CeraCon GmbH and the Heilbronn University of Applied 
Sciences, a thermal system is to be set up under automation and a PMA strategy is to be 

implemented, which should then be adaptable to other industrial plants 1. Due to the complexity 

of industrial plants, an intelligent solution is required in order to be able to offer individual 
maintenance strategies depending on the state of the plant. For this reason, the project uses 

machine learning (ML) methods. The essential steps of an intelligent PMA strategy are the digital 

acquisition of (sensor) data, their evaluation, the analysis of the acquired data and the prediction 
of probable events. First, possible component defect combinations (CDC) of the industrial plant 

were analyzed using standard technical risk analysis methods (FMEA, risk graph, fault tree 

analysis) [3]. CDC is the assignment of a wear component of the industrial system to a potentially 

occurring defect. Depending on the number of possible defects, a component can therefore have 
several CDCs. Each CDC was assigned an potential detection measure, e.g. physical vibration 

measurement or electrical current measurement. Suitable sensors were selected for the analyzed 
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detection measures and analyzed with regard to the PMA strategy. CDC’s with the same 
detection methods were combined and measurement data recorded with the respective sensors. 

The core of this work is the evaluation of a combination of detection measures for data 

processing methods and ML algorithms. The optimal combination of these is a prerequisite for an 

efficient PMA strategy that can be used for the respective industrial plant. 
 

2. STATE OF THE ART 
 

A study by Bearingpoint [4] shows that PMA implementations capture 76% of the relevant data 
using suitable sensors, although only 59% of the process, measurement and machine data are 

evaluated in a targeted manner. There are three basic approaches to implementing a PMA 

strategy [5]. A basic approach is to use the already implemented sensors of the plant for process 

monitoring. This passive method is particularly suitable for systems that are already in operation. 
Another passive approach is to introduce dedicated sensors into the system. The additional 

sensors are introduced to monitor defined wear components and to detect potential defects. In the 

third approach, a test signal is actively fed into the system. The degree of wear of the components 
to be monitored can be deduced from the feedback. An example of this is Time Domain 

Reflectometry (TDR) [5]. 

 

3. DATA COLLECTION 
 

3.1. Sensor Resolution 
 
When buying industrial sensors, you often have to commit to a sensor resolution. This requires 

that you have a basic understanding of what accelerations occur on the component. For this 

purpose, the effects were previously considered in an experiment when an accelerometer with an 

insufficient resolution is used. In this case, the sensor generates vibrations that exceed the sensor 
resolution. A CDC of the fan motor is that the fan wheel has an imbalance. This fault situation 

was simulated by attaching an unbalance to the fan blade. The result of this simulation is shown 

in Figure 1(a). There are shown the measured acceleration values in x- and y- axis of an 
acceleration sensor with a maximum resolution of ±2G. The red values show the vibrations of the 

motor without an imbalance and the blue values show the vibrations which occurs with an 

imbalance. It can be clearly seen that the vibrations on the motor increased due to the imbalance. 
It can also be seen that vibrations that go beyond the set sensor resolution of ±2G were not 

recorded correctly. They are in line with the maximum acceleration of ±2G. The measured values 

that did not exceed the maximum resolution were not affected by this. The experiment shows that 

the CDC "imbalance" can cause very strong vibrations. The vibrations are so strong that they 
exceed a sensor resolution of ±2G. If a sensor is used that can only record values up to a 

resolution/acceleration of ±2G, these are recorded incorrectly. The values that exceed the 

maximum resolution are then incorrectly saved in the data record [6]. To prevent such problems, 
it is important to see how large the vibrations can be. The sensor resolution should have at least 

this value with a safety buffer. In Figure 1(b), instead of the resolution of ±2G, the double 

resolution of ±4G was chosen for the same motor level.  In the picture you can see that no "lines" 

have formed and therefore the vibrations were not greater than the sensor resolution. The 
resolution of ±4G is therefore much more suitable than the resolution of ±2G. The experiment 

has shown that a correctly selected sensor resolution is a prerequisite for obtaining meaningful 

results. If the vibrations are greater than the resolution of the sensor, the incorrectly stored 
measured values cannot be classified correctly [6]. 
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Figure 1. Comparison of an unbalanced fan with a resolution of ±2G (a) and a resolution of ±4G (b). 

 

3.2. Sensors and Test Set-Up 
 
The requirement for a condition-based PMA is a structured data collection of sensor values. The 

following sensors were used to obtain status data: 

 

 Three-axis acceleration sensors (Accelerometer): 
o LIS 3DH, MMA 8451, ADXL 343, ADXL 345 

 Three-axis acceleration sensors with three-axis yaw rate sensor (gyroskope) 

o MPU 60.50 

 Three-axis magnetic field sensor (magnetometer) 

o MLX 90393 

 Multi sensors with three-axis acceleration, three-axis yaw rate and three-axis magnetic 
field measurement 

o MPU 92.65, BNO 055, GY 250, GY 521 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

                                 

 

(a)      (b)

 (b) 



52         Computer Science & Information Technology (CS & IT) 

These recorded the acceleration, the rotation rate and the surrounding magnetic field of the fan 
motor R3G180-AJ11-XF from ebm-papst Mulfingen GmbH & Co. KG used in the thermal 

system. Figure 2 shows the measurement set-up with the selected three-axis acceleration sensors 

[6]. 

 

                                
Figure 2. Measurement setup with the three-axis acceleration sensors LIS3DH, MMA 8451, ADXL 345 

and ADXL 343. 

 

The fan motor was operated at fixed speeds, which were divided into 7 classes. This classification 
was based on the specific values 0%, 50%, 60%, 70%, 80%, 90% and 100% of the maximum 

engine speed. During the operation of the fan motor the vibration of the crankcase was sensed 

and recorded by the sensors. More than 980,000 structured sensor data sets per measurement 
series and sensor type were recorded. A total of more than 2.6 million data sets have thus been 

recorded for all sensor types. A section of a full data set is shown in Table 1. 

 
Table 1. A Section of the Data measured with the MPU 60.50. 

 

AccelX AccelY AccelZ GyroX GyroY GyroZ Target 

416 6088 60146 2709 62478 65187 Motor 000 

426 6026 60148 2733 62469 65185 Motor 000 

404 6110 60146 2727 62478 65192 Motor 000 

470 6046 60140 2720 62486 65188 Motor 000 
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Figure 3. Measurement results from the acceleration sensor MMA 8451. 

 

An example of a recorded data set is shown in Figure 3. It shows the measured acceleration from 

the housing vibration in the spatial x- and z- orientation. The individual classes are highlighted in 
color to make a distinction possible. Due to the highest spatial coverage, it can be seen that the 

measurement results for class 80% can be assigned to the resonance range of the fan motor, since 

the acceleration values in the x- and z- alignment are at their maximum values here. 
 

4. DATA CONDITIONING 
 

In order to be able to better differentiate the individual classes, it is in some cases advantageous if 

the data records are processed before classification. The methods used for data conditioning are 
presented here: One possibility to process the data sets consists of the differencing and absolute 

value formation of subsequent values according to (1) 

 

     𝑋𝑖𝑑𝑖𝑓 = |𝑋𝑖 − 𝑋𝑖+1|   (1) 

 

Xi and Xi+1 are the successive sensor values. Another processing method is the integration of the 
data according to (2). Here the area under two successive values Xi and Xi+1 is calculated. 
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   Figure 4. Comparison of raw data (a) and data prepared by differencing (b). 

  

 

𝑋𝑖𝑖𝑛𝑡 = {

𝑋𝑖 + 0.5 ∗ (𝑋𝑖+1 − 𝑋𝑖)𝑖𝑓𝑋𝑖 < 𝑋𝑖+1

𝑋𝑖 − 0.5 ∗ (𝑋𝑖 − 𝑋𝑖+1)𝑖𝑓𝑋𝑖 > 𝑋𝑖+1

𝑋𝑖𝑖𝑓𝑋𝑖 =  𝑋𝑖+1

  (2) 

 

In both the processing methods, an additional smoothing can be carried out by calculating the 

moving average according to equation (3). 
 

     𝑋𝑖 =  
1

𝐺
∗ ∑ 𝑋𝑖

𝑖+𝑔
𝑖−𝑔    (3) 

 

The parameter G specifies the degree of smoothing. The parameter g is the difference between 
the indices between the instantaneous value Xi and the maximum value Xg±i specified by the 

degree of smoothing. Thus g depends on the degree of smoothing G and can be determined 

according to (4). 
 

     𝑔 =  
𝐺−1

2
    (4) 

 

With the degree of smoothing G, first optimizations regarding the classification of the measured 

sensor data can be carried out [7]. Error! Reference source not found. shows the effect of 

processing by means of differencing compared to the unprocessed raw data. The coloring in the 

pictures illustrates the different class assignments. Error! Reference source not found.(a) 

shows the acquired raw data of an acceleration sensor in the x-orientation. It can be seen that a 

delimitation regarding the classes is not clear. For example, the acceleration in the direction of 

the x-axis at -8 m/s² is not unique and can in principle be assigned to any class. In Error! 

Reference source not found.(b) the classes are more delimited after the differencing and 

smoothing and thus a class assignment is clearer. For example, the value 0.7 can be clearly 
assigned to the class shown in gray. Figure 5(a) shows the raw data from the measurements in x- 

and y-orientation. A classification is clearly not possible due to the overlapping point clouds. 

Figure 5(b), on the other hand, shows the data prepared after the differencing. It can be seen that 

 

(b)      

 (b) 
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the point clouds are now clearly distinguishable, making visual and algorithmic class assignment 
easier. 

     
Figure 5. Comparison of raw data (a) and data prepared by differencing (b) in two axes. 

 

5. EVALUATION 
 

 
Figure 6. Comparison of the prediction results of the focus cluster algorithm with raw data (a) and data 

prepared by differencing (b). 

 

The evaluation of the ML algorithms with regard to the respective sensors and the data 
processing was divided into a training and a test phase. In the training phase, the data records 

were divided evenly by feeding every tenth data value of the respective training method to the 

ML algorithm. As a result, the respective ML algorithm was trained with 10% of the data. The 

complete data set was then evaluated in the test phase. Several ML algorithms were considered 
for the recorded data sets. These included decision trees [8][9], the gradient boost method [8][10] 

a focus cluster algorithm [11] and artificial neural networks (ANN) [12]. The investigations 

 

(a)       

 (b) 

 

(a)       

 (b) 
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revealed that ANNs are less suitable for data sets with low attribute numbers due to the long 
duration in the training phase. Therefore, only the decision trees, the gradient boost method and 

the focus cluster algorithm were used for the further experiments [7]. Figure 6 shows two 

confusion matrices [13] for the focus cluster algorithm, which show the distribution between the 

actual class and the class determined by the algorithm. The numbers on the axes correspond to 
the seven defined classes in which the data records have been categorized. The darker an area, the 

more often the ML algorithm has assigned data records to a class. A correct assignment is 

obtained if the assigned class corresponds to the actual class. Ideally, you would get a black 
diagonal from top left to bottom right. Figure 6(b) shows the result for the data sets prepared after 

differencing and smoothing. It can be seen that the majority of the data records were assigned to 

the actual classes, the hit rate here was over 98%. On the other hand, it can be seen in Figure 6(a) 
that a significantly lower hit rate has been achieved for the unprepared data sets. 

 

6. USING STATISTICAL METHODS FOR PREDICTION 
 

The preceding test was performed by measuring the vibration of a stand-alone motor on a 
workbench, which was not build into a working machine. Therefore this data cannot be used to 

make a prediction for maintenance, but the feasibility of categorizing a motor by its vibration and 

magnetic field was studied. To get a better picture of the real working conditions of such a motor 
a larger data set was collected by mounting three multifunction sensors (GY 521, BNO 055, 

MPU 92.65) on a thermal system which is used in day to day operations. These data sets were 

then used to build a statistical model based on auto regression and moving average 

(ARMA[14],[15]) of the vibration. The statistical models were created for every sensor 
orientation separately to get an optimal result for each time series. As the metric to compare the 

different models was chosen the maximum relative deviation (MRD) according to (5). 

 

    𝑀𝑅𝐷 = max
𝑖

(|
𝑋𝑖−𝑌𝑖

𝑋𝑖
|)    (5) 

 

In (5) “Xi” are the measured sensor values used to build the model and “Yi” are the values 

predicted by the model at this time-step. 
 

7. RESULTS 
 

To compare the results of the ML algorithms for the respective sensors, a matrix with the relevant 

properties was created for each combination of ML algorithm and sensor: 
 

 Classification accuracy (performance) of the algorithms 

 Computing time for the training and testing phase of the algorithms 

 Smoothing factor G 

 
Table 2 shows the comparison of the processing methods examined using the combination of the 

multifunction sensor GY 521 and the gradient boost method. 
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Table 2. Comparison of the data preparation methods with the combination of the multifunction sensor 

GY521 and the gradient boost method. 

 

GY521 with Gradient 

Boost method 

Performance 

(%) 

Computing Time 

Training (s) 

Computing Time 

Testing (s) 

G=0 G=99 G=0 G=99 G=0 G=99 

Raw Data 98.51 83.97 4.85 6.88 1.11 0.90 

Integration 82.84 85.15 5.45 3.82 1.07 0.66 

Differencing 79.76 85.1 5.04 3.83 1.50 0.61 

 

It can be seen that the highest performance is achieved when using the raw data. In the training 

and test phases the integrated and the differenced data are slightly faster. A comparison was made 
for each sensor and ML algorithm combination. The best performing data processing method was 

then selected for each combination. 

 
The comparison tables of the sensors which have achieved the best results of the sensor types 

examined are listed in Tables 3 to 5. These were the ADXL 345 (accelerometer), the MPU 60.50 

(gyroscope) and the GY 521 (accelerometer, gyroscope and magnetic field). The processing 
method with the highest performance for the respective algorithm is shown for each of the 

sensors. 

 
Table 3: Comparison of the ML algorithms on the combination ADXL 345 (accelerometer) and the best 

performing data processing method. 

 
ADXL345 Decision Tree Gradient Boost 

Method 

Focus Cluster 

Algorithm 

Conditioning method Differencing G=99 Differencing G=99 Differencing G=99 

Performance 93.79% 96.6% 98.98% 

Computing time 

training 

1.78s 5.88s 0.32s 

Computing time 

testing 

31.99s 1.44s 34.88s 

 
The result of the examinations according to Table 3 is that all acceleration sensors achieved the 

greatest performance with smoothing (G = 99) and data prepared by differencing. The focus 

cluster algorithm achieved the highest performance. 
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Table 4. Comparison of the ML algorithms on the combination  

MPU 60.50 (accelerometer And gyroskope) and the best performing data processing method. 

 
MPU60.50 Decision Tree Gradient Boost 

Method 

Focus Cluster 

Algorithm 

Conditioning method Raw data, G=0 Raw data, G=0 Differencing G=99 

Performance 91.46% 95.24% 90.89% 

Computing time 

training 

0.09s 5.54s 0.91s 

Computing time 

testing 

0.28s 1.46s 31.99s 

 

The result according to Table 4 is that the highest performance was achieved with unprocessed 

and unsmoothed data with the gyroscopes. The gradient boost process achieved the highest 
performance. 

 
Table 5. Comparison of the ML algorithms on the combination GY 521 (Multisensor) and the best 

performing data processing method. 

 
GY521 Decision Tree Gradient Boost 

Method 

Focus Cluster 

Algorithm 

Conditioning method Raw data, G=0 Raw data, G=0 Differencing G=99 

Performance 95.7% 98.51% 99.89% 

Computing time 

training 

0.09s 4.85s 1.27s 

Computing time 

testing 

0.28s 1.11s 37.63s 

 

In the case of the multifunction sensors with acceleration, magnetic field sensors and gyroscope, 
it can be seen from Table 5 that the highest performance was achieved with smoothing (G = 99) 

and differenced data using the focus cluster algorithm. 

 

Error! Reference source not found.shows the lowest MRDs for each separate sensor 

orientation with their number of auto regressive (p) and moving average (q) terms. 
 

Table 6: Lowest MRD for each sensor orientation with their corresponding p and q numbers. 

 
 p q MRD (%) 

Acc X 5 5 20.3 

Acc Y 3 3 24.4 

Acc Z 2 5 10.1 

Gyro X 7 5 22.4 

Gyro Y 4 3 24.7 

Gyro Z 7 6 28.3 

Mag X 4 5 10.6 

Mag Y 3 5 22.6 

Mag Z 7 7 28.2 
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These results show a maximum deviation up 28.3% with the gyroscope values in z orientation. 
The lowest deviation was reached with acceleration in z orientation and the magnetic field in x 

orientation with only 10.1% and 10.6% respectively. The difference in accuracy of the models is 

rather high and therefore an ARMA model can only be used to model two of the nine time series 

measured. For the remaining seven there should be used other means of modeling. 
 

8. CONCLUSION 
 

It has been found that the processing of the raw data in the form of smoothing and differencing in 
combination with the focus cluster algorithm gave the best results for acceleration sensors. The 

gyroscopes examined showed that the unprocessed raw data without smoothing in combination 

with the gradient boost method achieved the highest classifiability. The multisensors examined 

gave the best results when using the focus cluster algorithm in combination with smoothed and 
differenced data. In addition it was found, that an ARMA model could be used to predict the 

acceleration in z orientation and the magnetic field in x orientation. 

 

9. OUTLOOK 
 

Based on these results, the combination of detection measure, data processing method and ML 

algorithm can in the next step be used for a PMA strategy. For a complete PMA, further detection 

measures have to be examined. For that purpose, this procedure is continued with further sensor 
types in order to find an optimal combination for all necessary detection measures. In the future, 

a prediction model is to be developed on the basis of these results, with which predictions can be 

made about the degree of wear of system components of a thermal system under automation. 
Formal aging and error models of the respective system components must also be created in order 

to map the aging process of components. These models can then be used to make probabilistic 

statements about the failure probabilities of the individual assemblies. Such models could be 
based on Dynamic Bayesian Networks (DBN) [16] auto regression and moving average (ARMA) 

[17] or, as the focus cluster algorithm has yielded such an high performance, a multi dimensional 

focus trajectory. In addition to that, the statistical models used to predict the motor vibration in 

day to day operations could be extended to auto regression, integrated, moving average to get a 
better result for all sensor orientations. 
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