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ABSTRACT 
 
Malicious software is constantly being developed and improved, so detection and classification 

of malicious applications is an ever-evolving problem. Since traditional malware detection 

techniques fail to detect new or unknown malware, machine learning algorithms have been used 

to overcome this disadvantage. We present a Convolutional Neural Network (CNN) for malware 

type classification based on the Windows system API (Application Program Interface) calls. 

This research uses a database of 5385 instances of API call streams labeled with eight types of 

malware of the source malicious application. We use a 1-Dimensional CNN by mapping API 

call streams as categorical and term frequency-inverse document frequency (TF-IDF) vectors 

respectively. We achieved accuracy scores of 98.17% using TF-IDF vector and 95.40% via 

categorical vector. The proposed 1-D CNN outperformed other traditional classification 

techniques with overall accuracy score of 91.0%. 
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1. INTRODUCTION 
 

There are many different forms of malicious applications present in the highly connected 

software environment of the current technological world. Malicious applications such as viruses 

are constantly being developed and distributed in an attempt to extract information from 

computers or networks, and software such as firewalls and antivirus programs are constantly 

evolving to attempt to protect benign users and software from this threat [1]. Malicious software 

is constantly being developed and improved, so the classification of malicious applications is an 

ever-evolving problem. Signature-based, behavior-based and specification-based techniques are 

commonly used to detect malware [1-3]. Signature-based techniques detect malware fast and 

require less computational resources. However, it cannot detect new or unknown malware. 

Behavior-based detection method has ability to detect known and unknown malware, but it 

requires high computational resources [3]. To overcome these disadvantages, a specification-

based technique, which is basically a behavior-based approach, is developed. Researchers have 

employed data mining and machine learning techniques and obtained good performance in 

malware detection and classification with high accuracy scores [4-6]. These methods provide 
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reliable and accurate results, especially for classifying metamorphic malware. Metamorphic 

malware indicates itself with different sequences in various environments, but it must 

demonstrate the same behavioral features in all environments. Hence, most of the methods used 

behavioral features for malware classification and detection rather than structural features [7-8]. 

API call sequence can provide considerable information about the behavioral features of 

malware. Most of the researchers conducted their study by using API calls to analyze behavior-

based malware [9-12]. One benefit of having the ability to classify the type of malware from a 

malicious program’s system call behavior is to more quickly attribute a source and better 

understand the effects of a piece of malware. Understanding the class of malware to which a 

malicious program belongs gives administrators of an infected a device insight on resolution 

strategies regarding the attack. 

 

In this paper, we proposed two different approaches to classify the type of malware of a 

malicious program based on its produced API call stream [1-3]. The study presented both binary 

and multiclass classification problems. We used a public Windows API call dataset [8] with 8-

class malware for the experiments. We used a 1-D Convolutional Neural Network by converting 

API call sequences to categorical vectors. We compared our results with existing methods. We 

also presented a text-based analysis for classification by using Random Forest Classifier, 

Bernoulli Naïve Bayes (NB), Multinomial NB, Gaussian NB, Decision Tree Classifier, AdaBoost 

Classifier, Bagging Classifier, KNeighbors Classifier, and MLP Classifier. We also presented 

overall comparisons for both approaches. 

 

Another goal of this study was to investigate the utility of visual analytic approaches in data 

analysis, exploration and computational model development. The purpose of visual analytics is to 

form a union between computationally complex algorithms and human intuition [13]. We used 

visual approaches to understand the patterns of API calls by overall and malware type. This study 

is organized as follows. Section 2 provides a literature review. Section 3 describes the malware 

dataset, comprehensively. Section 4 provides a detailed methodology and visual approaches for 

data exploration. Section 5 presents the results of the study. Finally, Section 6 concludes the 

paper along with the discussion. 

 

2. BACKGROUND 
 

Since the volume of malware being spread has had rapid growth, many studies have been carried 

out to analyze and detect malware automatically [3,14-17]. There are three major approaches for 

malware detection based on the analysis types: Static (code analysis), dynamic (behavioral 

analysis) and hybrid analysis which uses both static and dynamic attributes of malware. The most 

common and traditional way to detect malware is for a system to maintain a hash signature-based 

blacklist of known malware. These signature-based methods fail to detect new, unknown, or 

obfuscated malware. Data mining and machine learning approaches have overcome 

disadvantages of signature-based methods by detecting new and unknown malware with high 

accuracy and detection rate [5, 17]. Hence, most of the studies used various machine learning 

algorithms to detect malware accurately and quickly [4, 14-16]. In recent studies, API call 

sequences are mostly used as a feature to detect malware. Xiaofeng et al. [15] used a combined 

deep learning and machine learning model for malware behavior analysis with binary 

classification (i.e., benign and malicious). Random Forest (RF) was used to extract API calls 

features. The combined RF and Long Short-Term Memory (LSTM) model classified malware 

with 96.7% accuracy. Malware analyses are carried out by using static or dynamic analysis. 

Researchers have studied to improve the usage of static and dynamic analysis. Han et al. [14] 

used RF, Decision Tree (DT), k-nearest neighbor, and XGboost methods to detect and classify 

multiclass malware by combining static and dynamic API calls sequences.  The study explains 

the differences and relation between API sequences and explains malicious behavior types via 
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MalDAE framework. The study achieved a 97.8% detection rate and 94.4% classification 

accuracy with RF. The study also examined the effect of sequence length on measuring time. 

Salehi et al. [17] proposed a novel dynamic malware feature selection method based on 

generating new features to overcome disadvantages of using only static or dynamic analysis. RF, 

DT, sequential minimal optimization, and Bayesian Logistic Regression (BLR) methods were 

used, and 98.1% accuracy rate is obtained with BLR by generating three feature sets. As the 

volume of cyber-attacks with advanced malware increases, it makes malware hard for detection 

and classification. Bahtiyar et al. [5] proposed a multidimensional machine learning approach to 

detect advanced malware. They applied various regression models by using five distinguished 

features: stealthiness, Stuxnet closeness, behavioral instability, conventional malware arsenal and 

metamorphic engine. The proposed method provided 0.0001 mean squared error rate. Belaoued 

and Mazouzi [18] presented a fast-portable executable system to detect malware by using an 

efficient feature selection method. They used decision tree, boosted decision tree, AdaBoost, 

Random forest, and rotation forest algorithms for binary classification. They evaluated the 

proposed system with different subsets of data and achieved more than 98% accuracy in a short 

detection time (0.09 seconds). Gupta et al. [19] conducted a comprehensive study to capture 

malware behaviors based on API calls sequences. The experiments were conducted with five 

malware classes for 2000 samples. They encoded 534 important API calls to 26 categories (A... 

Z). N-gram analysis was carried out to extract class specific patterns. They also calculated fuzzy 

hashed scores with ssdeep algorithm to use as classification criteria. Yazi et al. [7] generated a 

dataset contains 8 different malware type with their Windows API call sequences and utilized 

LSTM classification models for 8 different types of malware. The highest accuracy rate was 

obtained with 97.5% in the adware class. Zhang et al. [20] proposed a feature-hybrid malware 

variants detection method by integrating various features. They extracted bi-gram model and 

encoded API calls as a frequency vector. The study achieved 90% classification accuracy by 

utilizing Convolutional Neural Network (CNN). 

 

In the light of the literature review, we conducted a comprehensive study by using Windows 

system API calls [8] dataset to classify malware. API call sequences are used as a feature for 

malware classification. In the literature, most of the studies are carried out for binary 

classification to detect malware by utilizing one-vs-rest strategy [7, 15,18-19]. However, different 

types of malware require different precautions and treatments. For this reason, it is crucial to 

classify and determine the type of a given malware sample. We conducted experiments on both 

binary and multiclass to detect malware by using various decision trees (DT, RF, AdaBoost DT 

and Bagging DT), Naïve Bayes, k-NN, and Multilayer Perceptron algorithms and a 1D (CNN) 

algorithm. We implemented two different data representation approaches: text-based analysis 

through TF-IDF vectors and binary categorical vector. 

 

3. WINDOWS MALWARE API CALL DATASET 
 

The Windows Malware API Call Dataset is a public malware dataset containing 7,107 samples of 

malicious files among eight classes of malware, found in [8]. The breakdown of sample size per 

label is available in Table 1.  
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Table 1.  API call dataset sample counts 

 

Malware Type Sample Size 

Spyware 832 

Downloader 1001 

Trojan 1001 

Worms 1001 

Adware 379 

Dropper 891 

Virus 1001 

Backdoor 1001 

Total 7107 

 

The dataset contains a class label and an arbitrary length list of API call strings for each data 

entry. For this dataset, API calls represent a system call on the Windows operating system 

occurring during the runtime of the malicious file. The dataset does not include benign samples. 

 

 
 

Figure 1. Bubble plot of frequent API calls by class 

 

Exploratory data visualizations are presented to provide some human-readable insight to the 

breakdown of data features and metrics for Windows API call dataset by using Tableau [21]. 

Figure 1 shows a bubble plot of the most frequent API calls per class. The labels in the bubbles 

represent the API calls. The size of each bubble indicates the average instances that contain the 

related API call. Get AsyncKeyState is the most frequent call for Spyware, Worms, Trojan and 

Backdoor malware classes, and thread32next is the most frequent call for the Downloader class. 

Similar bar charts were constructed for each class with their record percentage, as seen in Figure 

2. However, since these most frequent API calls are often used in many of the mentioned classes, 

statistical analysis may not be sufficient for identifying what class a call stream belongs to. This 

justifies the need for a more complex system than an expert rule set. 
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Figure 2. API calls frequency of each malware 

 

4. METHODS 
 

4.1. Categorical Vector with Convolutional Neural Network 
 

Two separate analytic methods were used for the API call dataset. First, a one-dimensional 

convolutional neural network (CNN) was used to classify the type of malware of a malicious 

program based on its produced API call stream. For the data to be formatted for the CNN, 

preprocessing was necessary. Each sample was comprised of a list of system API calls. In order 

to reduce the dimensionality of the data, we reduced all call streams that were longer than 2000 

API calls to its first 2000 API calls. This reduction effected 1466 of 6851 records. The dataset 

contains 278 unique API calls in total. These unique API calls may be repeated in the API call 

stream. Each unique API call was encoded into a categorical vector. The length of the vector is 

the same as the number of unique API calls plus one, totaling 279. For each unique API call, 1 

was placed in the vector’s index corresponding to that call and the rest of the vector was set to 

0’s. Additionally, a padding vector was created as a categorical vector with a 1 in the previously 

unused last index. This padding vector is then added to encoded API call streams that have a 

length less than 2000 until the API call stream’s length reaches 2000. The padding vector allows 

equalizing the API call streams of different lengths so that we can provide batch optimization. 

Each unique API call mapped to an integer and converted to a categorical vector to use in CNN. 

Figure 3 provided a specific example. As seen in Figure 3, API call “ldrloaddll” was mapped to 

133 and API call “ldrgetprocedureaddress” was mapped to 132 according to their positions in 

alphabetical order (see Figure 10). Then, using their mapped value, categorical vectors are 

obtained by replacing with 1 at position 132 and the rest of the index with 0 for the “ldrloaddll” 

call. For the “ldrgetprocedureaddress” call, we placed 1 at position 133 and 0 at the rest of the 

index. These categorical vectors represented the unique API calls and they were substituted with 

their corresponding position in a given API call sequence.  
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Figure 3. Encoding methodology for categorical vector 

 

The convolutional neural network model architecture is shown in Figure 4. The first layer of the 

network is a 1-D convolutional layer, this uses convolutional filters to create a feature map from 

an input API call stream seen as a vector with 279 channels. This layer uses 64 filters with ReLU 

(Rectified linear unit function) activation function [22], which has an almost linear function and 

therefore retains the properties of linear models. These properties provide ease to optimize with 

gradient descent methods. This activation function rectifies the input values that have less than 

zero, by forcing them to be zero [23]. The following two layers flatten the generated feature map 

using mean-pooling [23, 24] on segments of length two within the generated feature map. 

Pooling is used to gradually decrease the dimensions of the attribute representation. Hence, it 

provides low computational cost by shrinking memory cost and the number of parameters 

[23,24]. Mean-pooling calculates the average of each feature values of the feature map [24]. The 

next layer is a standard feed-forward layer in a deep learning architecture which transforms the 

generated feature vector using ReLU activation [22], shown in Eq. (1). The final layer then uses 

softmax activation [22] to generate a vector, shown in Eq. (2). Softmax provides an output whose 

value ranges between 0 and 1 and returns probabilities of each class [22]. Softmax represents the 

probabilities of the input malware API call stream belonging to each class. Each class being 

statically assigned to a specific index of this probability vector within the training data. 

 

ReLU(x) = x+ = max(0,x)        (1) 

 

where x is the pre-activation output value of the nodes. 
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       (2) 

 

where x is an input vector of pre-activation values. The letter e represents the base of the natural 

logarithm system. 
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Figure 4. Model Architecture 

 

The proposed 1-D CNN model and encoding methodology can be used to classify multiclass 

malware API call streams. Converting a list of words to a categorical variable, can be utilized in 

any text data. This encoding provides ease in the analysis and classification. After encoding, the 

index of the largest probability within the output probability vector will correspond to the 

predicted class. 

 

4.2. TF-IDF Vector 
 

Another computational approach used for the API call dataset was the use of text-based analysis. 

N-grams, described in [25], are sequential series of words or terms in an ordered sequence. In the 

case of this research, N-grams can be created from a moving window of API calls along the call 

streams in the dataset. Due to the nature of the API call streams (hundreds or thousands of terms 

in which calls were often repeated sequentially), 10-grams, sequences of ten terms, were used. 

Figure 5 provides general structure of n-grams. We provided first three grams for API call 

streams as an example with a small piece of API call sequence. As seen in Figure 5, when 

unigram is utilized (N=1), each API call is grouped with only 1 API call. Consequently, we 

obtained 4 unigrams, namely “getAsyncKeyState”, “ldrloaddll”, “ldrgetprocedureaddress”, and 

“thread32next”. Similarly, for bigram (N=2), API calls are grouped with only 2 consecutive calls. 

In this case, we obtained 3 bigrams: “getAsyncKeyState, ldrloaddll”, “ldrloaddll, 

ldrgetprocedureaddress”, and “ldrgetprocedureaddress, thread32next”. In trigram (N=3), we 

obtained 2 trigrams that 3 consecutive API calls including “getAsyncKeyState, ldrloaddll, 

ldrgetprocedureaddress” and “ldrloaddll, ldrgetprocedureaddress, thread32next”. We created 10-

grams from a moving window of API calls along the call streams. To parse API call streams, we 

modeled call streams to represent each n-gram as n words, where n is the position of the API call. 
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Figure 5. N-grams representation 

 

These identified vectors of terms were translated to Term Frequency, Inverse Document 

Frequency (TF-IDF) vectors. TFIDF vectors are described in [26]. Term frequency is used to 

calculate the number of times a term is present in a document [27]. Inverse document frequency 

is a measure of information provided by words.  IDF assigns a value to the word according to 

their rareness. If a word is frequent, then IDF assigns less weight and if a word is infrequent the 

more weight is assigned. The formulation of TF, IDF and TF-IDF are provided in Eq. (3), Eq. (4) 

and Eq. (5), respectively [26].  

 

TF(x) = log(x+1)         (3) 

 
1

( ) log( ) 1
1

p
IDF x

d


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         (4) 

 

TF-IDF = TF * IDF         (5) 

 

where x is a vector of raw frequencies, p is the number of tracks in the X set, and d is a vector that 

counts the tracks where every 10-grams appears. 

 

First, we determined TF for each API call. Then IDFs are calculated and multiplied with TF 

values to get TD-IDF values. These TF-IDF vectors were used as inputs for a suite of decision 

tree classifiers for both binary cases (i.e., Trojan versus Not Trojan, and so on) and for the 

multiclass classification problem. Implementations of these decision trees were used: Random 

Forest (RF), Bernoulli Naïve Bayes (BNB), Multinomial NB (MNB), Gaussian NB (GNB), 

Decision Tree (DT) Classifier, AdaBoost Classifier, BaggingClassifier, kNN, and MLP. 

Additionally, we also used CNN to classify the TD-IDF vector. We utilized the same CNN 

structure as described in the previous section, only changing its input layer to accept the larger 

14666 length TF-IDF vectors. This TF-IDF based CNN performed competitively with the 

previously described CNN which received API call streams as input directly. This is likely the 

case as the CNN which receives the API call stream directly is able to produce a feature map that 

is more effective than the TF-IDF feature extraction we provide. Python scikit-learn library was 

used for the n-grams, TF-IDF vectors, decision tree, and CNN implementations. 

 

4.3. Visual Analytic Methods 
 

This research used a variety of visual analytic methods to explore the dataset as well as the 

computational performance of the analytical model. There are four metrics adopted in our 

experiment with the malware API dataset, namely length, unique instances, varibility and call 
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sequence. Thus, a visual tool that can highlight and compare the metrics per each malware type 

would help to analyze a dataset initially and assist in computation model choice for machine 

learning.    Tableau was used for data exploration and preliminary analysis of feature correlations. 

D3.js, a JavaScript tool, was used to develop interactive, web-based visualization platforms for 

exploring datasets and computational results. 

 

5. RESULTS 
 

5.1. Categorical Vector with Convolutional Network 
 

We converted API call streams to categorical variables to employ 1-D CNN. We utilized 80-20 

train-test split of API call stream data. The proposed 1-D CNN model has achieved an accuracy 

of 91.0%, a macro F1 score of 91.3%, and a weighted F1 score of 91.0%. We compared our 

proposed algorithm with Random Forest (RF) classifier, Logistic Regression (LR), Support 

Vector Machine (SVM), and k-nearest neighbor (kNN) with 3, 5 and 7 neighbors. A comparison 

of our model and the existing classification algorithms is shown in Figure 6. 1-D CNN 

outperformed the existing algorithms with 91.0% accuracy score. The algorithm that performed 

most competitively with CNN was the Random Forest which achieved an accuracy of 89.8% (-

1.2%), a macro F1 score of 90.3% (-1.0%), and a weighted F1 score of 89.8% (-1.2%). Naïve 

Bayes algorithm has the lowest accuracy and F1 scores. For kNN, an increase in the number of 

neighbors affected accuracy scores, adversely. The confusion matrix for CNN is shown in 

Figure7. Confusion matrix shows that each malware has high true positives. 

 

 
 

Figure 6. Traditional models compared to our 1-D CNN predicting the types of multiclass  

malware using TF-IDF vectors 

 

5.2. TF-IDF Vector 
 

When using TF-IDF feature extraction, CNN outperformed the decision tree classifiers including 

AdaBoost DT, Random Forest, Bernoulli Naïve Bayes (NB), Multinomial NB, Gaussian NB, 

Decision Tree Classifier, Bagging Classifier, kNN, and MLP. The CNN model has achieved an 

accuracy of 91.0%, a macro F1 score of 91.3%, and a weighted F1 score of 91.0% Of the suite of 

the decision tree classifiers, AdaBoost Decision Tree performed the best among other 

algorithms.MLP has the worst accuracy values, specifically at classification of Adware, Dropper, 

and Spyware. Table 2 summarized these results on class accuracy in detail. 
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5.3. Overall Comparison 
 

Table 2 presents the overall comparison in terms of class accuracy for the two approaches of 

feature extraction. When comparing CNN performance between TF-IDF vector with categorical 

vector, the highest class accuracy varied depending on the type of malware. The performances 

are competitive with differences of accuracy ranged from 0.26%-7.32% for eight classes 

respectively. The highest accuracy scores are highlighted in bold, and scores in the 2nd rank are 

underlined for each type of malware. Specifically, CNN performed the best at classification of 

malware type, suggesting that this form of malware is the most unique relative to its counterparts. 

 
Table 2. Performance comparisons on class accuracy scores 

 

 

 
 

Figure 7. 1-Dimensional convolutional neural network confusion matrix 

 

 

 

 

Categor

ical 

Vector 

TF-IDF Vector 

Malwar

e Type 
CNN CNN  

AdaBo

ost 

Baggi

ng 
BNB DT 

GN

B 
kNN 

ML

P 

MN

B 
RF 

Adware 95.40% 
98.17

% 

76.00

% 

48.00

% 

51.0

0% 

45.0

0% 

70.0

0% 

70.00

% 
0% 

32.0

0% 

48.0

0% 

Backdo

or 
88.00% 

88.26

% 

52.00

% 

46.00

% 

40.0

0% 

40.0

0% 

53.0

0% 

57.00

% 

46.0

0% 

52.0

0% 

62.0

0% 

Downlo

ader 
93.20% 

91.14

% 

69.00

% 

54.00

% 

51.0

0% 

50.0

0% 

59.0

0% 

67.00

% 

64.0

0% 

64.0

0% 

52.0

0% 

Dropper 94.10% 
86.78

% 

57.00

% 

60.00

% 

27.0

0% 

37.0

0% 

23.0

0% 

45.00

% 

1.50

% 

29.0

0% 

35.0

0% 

Spywar

e 
85.60% 

88.54

% 

41.00

% 

38.00

% 

23.0

0% 

11.0

0% 

25.0

0% 

32.00

% 
0% 

8.30

% 

17.0

0% 

Trojan 89.50% 
84.04

% 

51.00

% 

45.00

% 

11.0

0% 

16.0

0% 

18.0

0% 

32.00

% 

20.0

0% 

32.0

0% 

16.0

0% 

Virus 94.80% 
92.26

% 

74.00

% 

66.00

% 

75.0

0% 

41.0

0% 

77.0

0% 

62.00

% 

72.0

0% 

63.0

0% 

80.0

0% 

Worms 88.90% 
87.69

% 

57.00

% 

52.00

% 

28.0

0% 

78.0

0% 

34.0

0% 

49.00

% 

29.0

0% 

32.0

0% 

58.0

0% 
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5.4. D3 Visualizations 
 

To analyze API call streams, we presented a visualization tool by using D3, a JavaScript library. 

We considered API calls as time series and examined their features. We determined length, 

uniqueness and variability features to investigate malware behaviors.  

 

The distribution of the length, unique instances, and variability metrics is viewed per malware 

class within a API call stream dataset. These metrics can be defined as follows:  

 

 Length: Number of entries in a time-series record 

 Unique Instances: Number of unique entries in a time-series record 

 Variability: Number of times in a time-series where  entry n differs from entry n + 1, 

divided bylength of the time-series minus 1. 

 

 
 

Figure 8.  A representation of the encoding map for a given time-series 

 

 
 

Figure 9. The selected metric distributions of malware over the system API calls 

 

We also created an encoder view to see unique API calls and their assigned integer values, which 

is used in mapping. Fig. 8 shows the encoder for each API calls. The encoder for the time series 

data can be used to be inspected for any errors as well. Activated button returns yellow color. Fig. 

9 shows the length, uniqueness and variability metrics for each malware. These metric buttons 

can be activated simultaneously. This helps to analyze data comprehensively. Variability metric 

indicates that downloader (3rd) and adware (8th) have different variability among other types of 

malware. This justifies that Adware has the best accuracy score with both approaches of feature 

extractions under CNN because it has a lower than usual variability. We also added Model 

Performance button to reach confusion matrix of 1-D CNN. The tool has ability to analyze any 

time series data with similar structure. In this application a user can upload a dataset of time 

series data and find out  how a model performs in classification of each record through our 
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designed metrics. The visualization will help users to view various attributes in determining the 

model performance.  

 

6. CONCLUSION AND DISCUSSION 
 

We utilized two different approaches of feature extraction to classify a malware API dataset at 

both binary and multiclass levels. In our first approach, we encoded API call streams by 

converting them to categorical variable. We proposed 1-D CNN and compared results with four 

other ML methods, namely RF, LR, SVM, and k-NN. We conducted text-based analysis in our 

2nd approach. We used 10-grams for API calls and converted them to TD-IDF vectors. A set of 

decision tree classifiers and CNN were used to classify the malwares using these TD-IDF vectors. 

  

This research has ultimately produced Convolutional NeuralNetwork models that achieved 

above90% accuracy in classifying the type of malware using a malicious program based on its 

system call stream. For the purpose of identifying and classifying malware, the results of this 

research demonstrate the advantages of using a CNN to label the type of malware that a 

malicious system API call  stream belongs to. When using categorical vector, the proposed CNN 

outperformed RF, LR, SVM, and k-NN. While using TF-IDF vector, CNN also received the 

highest accuracy than AdaBoostDT, Random Forest, Bernoulli Naïve Bayes (NB), Multinomial 

NB, Gaussian NB, Decision Tree Classifier, Bagging Classifier, kNN, and MLP. Overall 

comparisons indicate that both feature extraction approaches produced competitive performance 

on classification of malware. Depending on the type of malware, the class accuracy varies 

between 0.26%-5.4% respectively. The results also suggest that the high impact feature in an API 

call stream executed by a malware are related to both call variability and call sequence.  

 

We also demonstrate a visual analysis platform for time-series data to assist our machine learning 

model choices. The D3 visualization tool aided in human understanding of the API call stream 

data. The distributions of the variability, uniqueness, and length of call streams can be inspected 

using the visualizer. The tool also helps other time series formatted data as well. 

 

Future work includes expanding the length of call streams and including non-malicious programs 

for classification. An anti-virus system can adapt the model to aid in attack attribution by quickly 

gaining an understanding as to the type of malware they are dealing with. Finally, a goal for 

improving the visual analytic process of this research is to use the correlations identified in the 

D3 tool to adjust the computational model so that it can be more successful in differentiating 

between similar classes. 
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