
David C. Wyld et al. (Eds): AIAP, SIGML, CNSA, NIAI - 2021

pp. 85-98, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.110106

CONVOLUTIONAL NEURAL NETWORK FOR

MALWARE CLASSIFICATION BASED ON API

CALL SEQUENCE

Matthew Schofield1, Gulsum Alicioglu2, Russell Binaco1, Paul Turner1,

Cameron Thatcher1, Alex Lam1 and Bo Sun1

1Department of Computer Science, Rowan University,

Glassboro, New Jersey, USA
2Department of Electrical and Computer Engineering,

Rowan University, Glassboro, New Jersey, USA

ABSTRACT

Malicious software is constantly being developed and improved, so detection and classification

of malicious applications is an ever-evolving problem. Since traditional malware detection

techniques fail to detect new or unknown malware, machine learning algorithms have been used

to overcome this disadvantage. We present a Convolutional Neural Network (CNN) for malware

type classification based on the Windows system API (Application Program Interface) calls.

This research uses a database of 5385 instances of API call streams labeled with eight types of

malware of the source malicious application. We use a 1-Dimensional CNN by mapping API

call streams as categorical and term frequency-inverse document frequency (TF-IDF) vectors

respectively. We achieved accuracy scores of 98.17% using TF-IDF vector and 95.40% via

categorical vector. The proposed 1-D CNN outperformed other traditional classification

techniques with overall accuracy score of 91.0%.

KEYWORDS

Convolutional Neural Network, Malware Classification, Windows API Calls, Term Frequency-

Inverse Document Frequency Vectors

1. INTRODUCTION

There are many different forms of malicious applications present in the highly connected

software environment of the current technological world. Malicious applications such as viruses

are constantly being developed and distributed in an attempt to extract information from

computers or networks, and software such as firewalls and antivirus programs are constantly

evolving to attempt to protect benign users and software from this threat [1]. Malicious software

is constantly being developed and improved, so the classification of malicious applications is an

ever-evolving problem. Signature-based, behavior-based and specification-based techniques are

commonly used to detect malware [1-3]. Signature-based techniques detect malware fast and

require less computational resources. However, it cannot detect new or unknown malware.

Behavior-based detection method has ability to detect known and unknown malware, but it

requires high computational resources [3]. To overcome these disadvantages, a specification-

based technique, which is basically a behavior-based approach, is developed. Researchers have

employed data mining and machine learning techniques and obtained good performance in

malware detection and classification with high accuracy scores [4-6]. These methods provide

http://airccse.org/cscp.html
http://airccse.org/csit/V11N01.html
https://doi.org/10.5121/csit.2021.110106

86 Computer Science & Information Technology (CS & IT)

reliable and accurate results, especially for classifying metamorphic malware. Metamorphic

malware indicates itself with different sequences in various environments, but it must

demonstrate the same behavioral features in all environments. Hence, most of the methods used

behavioral features for malware classification and detection rather than structural features [7-8].

API call sequence can provide considerable information about the behavioral features of

malware. Most of the researchers conducted their study by using API calls to analyze behavior-

based malware [9-12]. One benefit of having the ability to classify the type of malware from a

malicious program’s system call behavior is to more quickly attribute a source and better

understand the effects of a piece of malware. Understanding the class of malware to which a

malicious program belongs gives administrators of an infected a device insight on resolution

strategies regarding the attack.

In this paper, we proposed two different approaches to classify the type of malware of a

malicious program based on its produced API call stream [1-3]. The study presented both binary

and multiclass classification problems. We used a public Windows API call dataset [8] with 8-

class malware for the experiments. We used a 1-D Convolutional Neural Network by converting

API call sequences to categorical vectors. We compared our results with existing methods. We

also presented a text-based analysis for classification by using Random Forest Classifier,

Bernoulli Naïve Bayes (NB), Multinomial NB, Gaussian NB, Decision Tree Classifier, AdaBoost

Classifier, Bagging Classifier, KNeighbors Classifier, and MLP Classifier. We also presented

overall comparisons for both approaches.

Another goal of this study was to investigate the utility of visual analytic approaches in data

analysis, exploration and computational model development. The purpose of visual analytics is to

form a union between computationally complex algorithms and human intuition [13]. We used

visual approaches to understand the patterns of API calls by overall and malware type. This study

is organized as follows. Section 2 provides a literature review. Section 3 describes the malware

dataset, comprehensively. Section 4 provides a detailed methodology and visual approaches for

data exploration. Section 5 presents the results of the study. Finally, Section 6 concludes the

paper along with the discussion.

2. BACKGROUND

Since the volume of malware being spread has had rapid growth, many studies have been carried

out to analyze and detect malware automatically [3,14-17]. There are three major approaches for

malware detection based on the analysis types: Static (code analysis), dynamic (behavioral

analysis) and hybrid analysis which uses both static and dynamic attributes of malware. The most

common and traditional way to detect malware is for a system to maintain a hash signature-based

blacklist of known malware. These signature-based methods fail to detect new, unknown, or

obfuscated malware. Data mining and machine learning approaches have overcome

disadvantages of signature-based methods by detecting new and unknown malware with high

accuracy and detection rate [5, 17]. Hence, most of the studies used various machine learning

algorithms to detect malware accurately and quickly [4, 14-16]. In recent studies, API call

sequences are mostly used as a feature to detect malware. Xiaofeng et al. [15] used a combined

deep learning and machine learning model for malware behavior analysis with binary

classification (i.e., benign and malicious). Random Forest (RF) was used to extract API calls

features. The combined RF and Long Short-Term Memory (LSTM) model classified malware

with 96.7% accuracy. Malware analyses are carried out by using static or dynamic analysis.

Researchers have studied to improve the usage of static and dynamic analysis. Han et al. [14]

used RF, Decision Tree (DT), k-nearest neighbor, and XGboost methods to detect and classify

multiclass malware by combining static and dynamic API calls sequences. The study explains

the differences and relation between API sequences and explains malicious behavior types via

Computer Science & Information Technology (CS & IT) 87

MalDAE framework. The study achieved a 97.8% detection rate and 94.4% classification

accuracy with RF. The study also examined the effect of sequence length on measuring time.

Salehi et al. [17] proposed a novel dynamic malware feature selection method based on

generating new features to overcome disadvantages of using only static or dynamic analysis. RF,

DT, sequential minimal optimization, and Bayesian Logistic Regression (BLR) methods were

used, and 98.1% accuracy rate is obtained with BLR by generating three feature sets. As the

volume of cyber-attacks with advanced malware increases, it makes malware hard for detection

and classification. Bahtiyar et al. [5] proposed a multidimensional machine learning approach to

detect advanced malware. They applied various regression models by using five distinguished

features: stealthiness, Stuxnet closeness, behavioral instability, conventional malware arsenal and

metamorphic engine. The proposed method provided 0.0001 mean squared error rate. Belaoued

and Mazouzi [18] presented a fast-portable executable system to detect malware by using an

efficient feature selection method. They used decision tree, boosted decision tree, AdaBoost,

Random forest, and rotation forest algorithms for binary classification. They evaluated the

proposed system with different subsets of data and achieved more than 98% accuracy in a short

detection time (0.09 seconds). Gupta et al. [19] conducted a comprehensive study to capture

malware behaviors based on API calls sequences. The experiments were conducted with five

malware classes for 2000 samples. They encoded 534 important API calls to 26 categories (A...

Z). N-gram analysis was carried out to extract class specific patterns. They also calculated fuzzy

hashed scores with ssdeep algorithm to use as classification criteria. Yazi et al. [7] generated a

dataset contains 8 different malware type with their Windows API call sequences and utilized

LSTM classification models for 8 different types of malware. The highest accuracy rate was

obtained with 97.5% in the adware class. Zhang et al. [20] proposed a feature-hybrid malware

variants detection method by integrating various features. They extracted bi-gram model and

encoded API calls as a frequency vector. The study achieved 90% classification accuracy by

utilizing Convolutional Neural Network (CNN).

In the light of the literature review, we conducted a comprehensive study by using Windows

system API calls [8] dataset to classify malware. API call sequences are used as a feature for

malware classification. In the literature, most of the studies are carried out for binary

classification to detect malware by utilizing one-vs-rest strategy [7, 15,18-19]. However, different

types of malware require different precautions and treatments. For this reason, it is crucial to

classify and determine the type of a given malware sample. We conducted experiments on both

binary and multiclass to detect malware by using various decision trees (DT, RF, AdaBoost DT

and Bagging DT), Naïve Bayes, k-NN, and Multilayer Perceptron algorithms and a 1D (CNN)

algorithm. We implemented two different data representation approaches: text-based analysis

through TF-IDF vectors and binary categorical vector.

3. WINDOWS MALWARE API CALL DATASET

The Windows Malware API Call Dataset is a public malware dataset containing 7,107 samples of

malicious files among eight classes of malware, found in [8]. The breakdown of sample size per

label is available in Table 1.

88 Computer Science & Information Technology (CS & IT)

Table 1. API call dataset sample counts

Malware Type Sample Size

Spyware 832

Downloader 1001

Trojan 1001

Worms 1001

Adware 379

Dropper 891

Virus 1001

Backdoor 1001

Total 7107

The dataset contains a class label and an arbitrary length list of API call strings for each data

entry. For this dataset, API calls represent a system call on the Windows operating system

occurring during the runtime of the malicious file. The dataset does not include benign samples.

Figure 1. Bubble plot of frequent API calls by class

Exploratory data visualizations are presented to provide some human-readable insight to the

breakdown of data features and metrics for Windows API call dataset by using Tableau [21].

Figure 1 shows a bubble plot of the most frequent API calls per class. The labels in the bubbles

represent the API calls. The size of each bubble indicates the average instances that contain the

related API call. Get AsyncKeyState is the most frequent call for Spyware, Worms, Trojan and

Backdoor malware classes, and thread32next is the most frequent call for the Downloader class.

Similar bar charts were constructed for each class with their record percentage, as seen in Figure

2. However, since these most frequent API calls are often used in many of the mentioned classes,

statistical analysis may not be sufficient for identifying what class a call stream belongs to. This

justifies the need for a more complex system than an expert rule set.

Computer Science & Information Technology (CS & IT) 89

Figure 2. API calls frequency of each malware

4. METHODS

4.1. Categorical Vector with Convolutional Neural Network

Two separate analytic methods were used for the API call dataset. First, a one-dimensional

convolutional neural network (CNN) was used to classify the type of malware of a malicious

program based on its produced API call stream. For the data to be formatted for the CNN,

preprocessing was necessary. Each sample was comprised of a list of system API calls. In order

to reduce the dimensionality of the data, we reduced all call streams that were longer than 2000

API calls to its first 2000 API calls. This reduction effected 1466 of 6851 records. The dataset

contains 278 unique API calls in total. These unique API calls may be repeated in the API call

stream. Each unique API call was encoded into a categorical vector. The length of the vector is

the same as the number of unique API calls plus one, totaling 279. For each unique API call, 1

was placed in the vector’s index corresponding to that call and the rest of the vector was set to

0’s. Additionally, a padding vector was created as a categorical vector with a 1 in the previously

unused last index. This padding vector is then added to encoded API call streams that have a

length less than 2000 until the API call stream’s length reaches 2000. The padding vector allows

equalizing the API call streams of different lengths so that we can provide batch optimization.

Each unique API call mapped to an integer and converted to a categorical vector to use in CNN.

Figure 3 provided a specific example. As seen in Figure 3, API call “ldrloaddll” was mapped to

133 and API call “ldrgetprocedureaddress” was mapped to 132 according to their positions in

alphabetical order (see Figure 10). Then, using their mapped value, categorical vectors are

obtained by replacing with 1 at position 132 and the rest of the index with 0 for the “ldrloaddll”

call. For the “ldrgetprocedureaddress” call, we placed 1 at position 133 and 0 at the rest of the

index. These categorical vectors represented the unique API calls and they were substituted with

their corresponding position in a given API call sequence.

90 Computer Science & Information Technology (CS & IT)

Figure 3. Encoding methodology for categorical vector

The convolutional neural network model architecture is shown in Figure 4. The first layer of the

network is a 1-D convolutional layer, this uses convolutional filters to create a feature map from

an input API call stream seen as a vector with 279 channels. This layer uses 64 filters with ReLU

(Rectified linear unit function) activation function [22], which has an almost linear function and

therefore retains the properties of linear models. These properties provide ease to optimize with

gradient descent methods. This activation function rectifies the input values that have less than

zero, by forcing them to be zero [23]. The following two layers flatten the generated feature map

using mean-pooling [23, 24] on segments of length two within the generated feature map.

Pooling is used to gradually decrease the dimensions of the attribute representation. Hence, it

provides low computational cost by shrinking memory cost and the number of parameters

[23,24]. Mean-pooling calculates the average of each feature values of the feature map [24]. The

next layer is a standard feed-forward layer in a deep learning architecture which transforms the

generated feature vector using ReLU activation [22], shown in Eq. (1). The final layer then uses

softmax activation [22] to generate a vector, shown in Eq. (2). Softmax provides an output whose

value ranges between 0 and 1 and returns probabilities of each class [22]. Softmax represents the

probabilities of the input malware API call stream belonging to each class. Each class being

statically assigned to a specific index of this probability vector within the training data.

ReLU(x) = x+ = max(0,x) (1)

where x is the pre-activation output value of the nodes.

()
i

j

x

i x

j

e
SoftMax x

e



 (2)

where x is an input vector of pre-activation values. The letter e represents the base of the natural

logarithm system.

Computer Science & Information Technology (CS & IT) 91

Figure 4. Model Architecture

The proposed 1-D CNN model and encoding methodology can be used to classify multiclass

malware API call streams. Converting a list of words to a categorical variable, can be utilized in

any text data. This encoding provides ease in the analysis and classification. After encoding, the

index of the largest probability within the output probability vector will correspond to the

predicted class.

4.2. TF-IDF Vector

Another computational approach used for the API call dataset was the use of text-based analysis.

N-grams, described in [25], are sequential series of words or terms in an ordered sequence. In the

case of this research, N-grams can be created from a moving window of API calls along the call

streams in the dataset. Due to the nature of the API call streams (hundreds or thousands of terms

in which calls were often repeated sequentially), 10-grams, sequences of ten terms, were used.

Figure 5 provides general structure of n-grams. We provided first three grams for API call

streams as an example with a small piece of API call sequence. As seen in Figure 5, when

unigram is utilized (N=1), each API call is grouped with only 1 API call. Consequently, we

obtained 4 unigrams, namely “getAsyncKeyState”, “ldrloaddll”, “ldrgetprocedureaddress”, and

“thread32next”. Similarly, for bigram (N=2), API calls are grouped with only 2 consecutive calls.

In this case, we obtained 3 bigrams: “getAsyncKeyState, ldrloaddll”, “ldrloaddll,

ldrgetprocedureaddress”, and “ldrgetprocedureaddress, thread32next”. In trigram (N=3), we

obtained 2 trigrams that 3 consecutive API calls including “getAsyncKeyState, ldrloaddll,

ldrgetprocedureaddress” and “ldrloaddll, ldrgetprocedureaddress, thread32next”. We created 10-

grams from a moving window of API calls along the call streams. To parse API call streams, we

modeled call streams to represent each n-gram as n words, where n is the position of the API call.

92 Computer Science & Information Technology (CS & IT)

Figure 5. N-grams representation

These identified vectors of terms were translated to Term Frequency, Inverse Document

Frequency (TF-IDF) vectors. TFIDF vectors are described in [26]. Term frequency is used to

calculate the number of times a term is present in a document [27]. Inverse document frequency

is a measure of information provided by words. IDF assigns a value to the word according to

their rareness. If a word is frequent, then IDF assigns less weight and if a word is infrequent the

more weight is assigned. The formulation of TF, IDF and TF-IDF are provided in Eq. (3), Eq. (4)

and Eq. (5), respectively [26].

TF(x) = log(x+1) (3)

1

() log() 1
1

p
IDF x

d


 

 (4)

TF-IDF = TF * IDF (5)

where x is a vector of raw frequencies, p is the number of tracks in the X set, and d is a vector that

counts the tracks where every 10-grams appears.

First, we determined TF for each API call. Then IDFs are calculated and multiplied with TF

values to get TD-IDF values. These TF-IDF vectors were used as inputs for a suite of decision

tree classifiers for both binary cases (i.e., Trojan versus Not Trojan, and so on) and for the

multiclass classification problem. Implementations of these decision trees were used: Random

Forest (RF), Bernoulli Naïve Bayes (BNB), Multinomial NB (MNB), Gaussian NB (GNB),

Decision Tree (DT) Classifier, AdaBoost Classifier, BaggingClassifier, kNN, and MLP.

Additionally, we also used CNN to classify the TD-IDF vector. We utilized the same CNN

structure as described in the previous section, only changing its input layer to accept the larger

14666 length TF-IDF vectors. This TF-IDF based CNN performed competitively with the

previously described CNN which received API call streams as input directly. This is likely the

case as the CNN which receives the API call stream directly is able to produce a feature map that

is more effective than the TF-IDF feature extraction we provide. Python scikit-learn library was

used for the n-grams, TF-IDF vectors, decision tree, and CNN implementations.

4.3. Visual Analytic Methods

This research used a variety of visual analytic methods to explore the dataset as well as the

computational performance of the analytical model. There are four metrics adopted in our

experiment with the malware API dataset, namely length, unique instances, varibility and call

Computer Science & Information Technology (CS & IT) 93

sequence. Thus, a visual tool that can highlight and compare the metrics per each malware type

would help to analyze a dataset initially and assist in computation model choice for machine

learning. Tableau was used for data exploration and preliminary analysis of feature correlations.

D3.js, a JavaScript tool, was used to develop interactive, web-based visualization platforms for

exploring datasets and computational results.

5. RESULTS

5.1. Categorical Vector with Convolutional Network

We converted API call streams to categorical variables to employ 1-D CNN. We utilized 80-20

train-test split of API call stream data. The proposed 1-D CNN model has achieved an accuracy

of 91.0%, a macro F1 score of 91.3%, and a weighted F1 score of 91.0%. We compared our

proposed algorithm with Random Forest (RF) classifier, Logistic Regression (LR), Support

Vector Machine (SVM), and k-nearest neighbor (kNN) with 3, 5 and 7 neighbors. A comparison

of our model and the existing classification algorithms is shown in Figure 6. 1-D CNN

outperformed the existing algorithms with 91.0% accuracy score. The algorithm that performed

most competitively with CNN was the Random Forest which achieved an accuracy of 89.8% (-

1.2%), a macro F1 score of 90.3% (-1.0%), and a weighted F1 score of 89.8% (-1.2%). Naïve

Bayes algorithm has the lowest accuracy and F1 scores. For kNN, an increase in the number of

neighbors affected accuracy scores, adversely. The confusion matrix for CNN is shown in

Figure7. Confusion matrix shows that each malware has high true positives.

Figure 6. Traditional models compared to our 1-D CNN predicting the types of multiclass

malware using TF-IDF vectors

5.2. TF-IDF Vector

When using TF-IDF feature extraction, CNN outperformed the decision tree classifiers including

AdaBoost DT, Random Forest, Bernoulli Naïve Bayes (NB), Multinomial NB, Gaussian NB,

Decision Tree Classifier, Bagging Classifier, kNN, and MLP. The CNN model has achieved an

accuracy of 91.0%, a macro F1 score of 91.3%, and a weighted F1 score of 91.0% Of the suite of

the decision tree classifiers, AdaBoost Decision Tree performed the best among other

algorithms.MLP has the worst accuracy values, specifically at classification of Adware, Dropper,

and Spyware. Table 2 summarized these results on class accuracy in detail.

94 Computer Science & Information Technology (CS & IT)

5.3. Overall Comparison

Table 2 presents the overall comparison in terms of class accuracy for the two approaches of

feature extraction. When comparing CNN performance between TF-IDF vector with categorical

vector, the highest class accuracy varied depending on the type of malware. The performances

are competitive with differences of accuracy ranged from 0.26%-7.32% for eight classes

respectively. The highest accuracy scores are highlighted in bold, and scores in the 2nd rank are

underlined for each type of malware. Specifically, CNN performed the best at classification of

malware type, suggesting that this form of malware is the most unique relative to its counterparts.

Table 2. Performance comparisons on class accuracy scores

Figure 7. 1-Dimensional convolutional neural network confusion matrix

Categor

ical

Vector

TF-IDF Vector

Malwar

e Type
CNN CNN

AdaBo

ost

Baggi

ng
BNB DT

GN

B
kNN

ML

P

MN

B
RF

Adware 95.40%
98.17

%

76.00

%

48.00

%

51.0

0%

45.0

0%

70.0

0%

70.00

%
0%

32.0

0%

48.0

0%

Backdo

or
88.00%

88.26

%

52.00

%

46.00

%

40.0

0%

40.0

0%

53.0

0%

57.00

%

46.0

0%

52.0

0%

62.0

0%

Downlo

ader
93.20%

91.14

%

69.00

%

54.00

%

51.0

0%

50.0

0%

59.0

0%

67.00

%

64.0

0%

64.0

0%

52.0

0%

Dropper 94.10%
86.78

%

57.00

%

60.00

%

27.0

0%

37.0

0%

23.0

0%

45.00

%

1.50

%

29.0

0%

35.0

0%

Spywar

e
85.60%

88.54

%

41.00

%

38.00

%

23.0

0%

11.0

0%

25.0

0%

32.00

%
0%

8.30

%

17.0

0%

Trojan 89.50%
84.04

%

51.00

%

45.00

%

11.0

0%

16.0

0%

18.0

0%

32.00

%

20.0

0%

32.0

0%

16.0

0%

Virus 94.80%
92.26

%

74.00

%

66.00

%

75.0

0%

41.0

0%

77.0

0%

62.00

%

72.0

0%

63.0

0%

80.0

0%

Worms 88.90%
87.69

%

57.00

%

52.00

%

28.0

0%

78.0

0%

34.0

0%

49.00

%

29.0

0%

32.0

0%

58.0

0%

Computer Science & Information Technology (CS & IT) 95

5.4. D3 Visualizations

To analyze API call streams, we presented a visualization tool by using D3, a JavaScript library.

We considered API calls as time series and examined their features. We determined length,

uniqueness and variability features to investigate malware behaviors.

The distribution of the length, unique instances, and variability metrics is viewed per malware

class within a API call stream dataset. These metrics can be defined as follows:

 Length: Number of entries in a time-series record

 Unique Instances: Number of unique entries in a time-series record

 Variability: Number of times in a time-series where entry n differs from entry n + 1,

divided bylength of the time-series minus 1.

Figure 8. A representation of the encoding map for a given time-series

Figure 9. The selected metric distributions of malware over the system API calls

We also created an encoder view to see unique API calls and their assigned integer values, which

is used in mapping. Fig. 8 shows the encoder for each API calls. The encoder for the time series

data can be used to be inspected for any errors as well. Activated button returns yellow color. Fig.

9 shows the length, uniqueness and variability metrics for each malware. These metric buttons

can be activated simultaneously. This helps to analyze data comprehensively. Variability metric

indicates that downloader (3rd) and adware (8th) have different variability among other types of

malware. This justifies that Adware has the best accuracy score with both approaches of feature

extractions under CNN because it has a lower than usual variability. We also added Model

Performance button to reach confusion matrix of 1-D CNN. The tool has ability to analyze any

time series data with similar structure. In this application a user can upload a dataset of time

series data and find out how a model performs in classification of each record through our

96 Computer Science & Information Technology (CS & IT)

designed metrics. The visualization will help users to view various attributes in determining the

model performance.

6. CONCLUSION AND DISCUSSION

We utilized two different approaches of feature extraction to classify a malware API dataset at

both binary and multiclass levels. In our first approach, we encoded API call streams by

converting them to categorical variable. We proposed 1-D CNN and compared results with four

other ML methods, namely RF, LR, SVM, and k-NN. We conducted text-based analysis in our

2nd approach. We used 10-grams for API calls and converted them to TD-IDF vectors. A set of

decision tree classifiers and CNN were used to classify the malwares using these TD-IDF vectors.

This research has ultimately produced Convolutional NeuralNetwork models that achieved

above90% accuracy in classifying the type of malware using a malicious program based on its

system call stream. For the purpose of identifying and classifying malware, the results of this

research demonstrate the advantages of using a CNN to label the type of malware that a

malicious system API call stream belongs to. When using categorical vector, the proposed CNN

outperformed RF, LR, SVM, and k-NN. While using TF-IDF vector, CNN also received the

highest accuracy than AdaBoostDT, Random Forest, Bernoulli Naïve Bayes (NB), Multinomial

NB, Gaussian NB, Decision Tree Classifier, Bagging Classifier, kNN, and MLP. Overall

comparisons indicate that both feature extraction approaches produced competitive performance

on classification of malware. Depending on the type of malware, the class accuracy varies

between 0.26%-5.4% respectively. The results also suggest that the high impact feature in an API

call stream executed by a malware are related to both call variability and call sequence.

We also demonstrate a visual analysis platform for time-series data to assist our machine learning

model choices. The D3 visualization tool aided in human understanding of the API call stream

data. The distributions of the variability, uniqueness, and length of call streams can be inspected

using the visualizer. The tool also helps other time series formatted data as well.

Future work includes expanding the length of call streams and including non-malicious programs

for classification. An anti-virus system can adapt the model to aid in attack attribution by quickly

gaining an understanding as to the type of malware they are dealing with. Finally, a goal for

improving the visual analytic process of this research is to use the correlations identified in the

D3 tool to adjust the computational model so that it can be more successful in differentiating

between similar classes.

REFERENCES

[1] Daniel Gibert, Carles Mateu, & Jordi Planes, (2020) “The rise of machine learning for detection and

classification of malware: Research developments, trends and challenges”, Journal of Network and

Computer Applications. 10.1016/j.jnca.2019.102526.

[2] Zahra Bazrafshan, Hashem Hashemi, Fard Hazrati, Mehdi Seyed, & Ali Hamzeh, (2013) “A survey

on heuristic malware detection techniques”, 2013 5th Conference on Information and Knowledge

Technology. 113-120. 10.1109/IKT.2013.6620049.

[3] Jyoti Landage, & M. P. Wankhade, (2013) “Malware and Malware Detection Techniques : A

Survey”, International journal of engineering research and technology, 2.

[4] Dainius Ceponis, & Nikolaj Goranin, (2019) “Evaluation of Deep Learning Methods Efficiency for

Malicious and Benign System Calls Classification on the AWSCTD”, Security and Communication

Networks, 2317976:1-2317976:12.

[5] SerifBahtiyar, Mehmet Baris Yaman, & Can Yilmaz Altinigne, (2019) “A multi-dimensional

machine learning approach to predict advanced malware”, Comput. Networks, 160, 118-129.

Computer Science & Information Technology (CS & IT) 97

[6] Gyuwan Kim, Hayoon Yi, Jangho Lee, Yunheung Paek, & Sungroh Yoon, (2016) “LSTM-Based

System-Call Language Modeling and Robust Ensemble Method for Designing Host-Based Intrusion

Detection Systems”, ArXiv, abs/1611.01726.

[7] AhmetYazi, Ferhat Ozgur Catak, & EnsarGul, (2019) “Classification of Methamorphic Malware with

Deep Learning (LSTM)”, 10.1109/SIU.2019.8806571.

[8] Ferhat Ozgur Catak, & AhmetYazi, (2019) “A Benchmark API Call Dataset for Windows PE

Malware Classification”, https://arxiv.org/abs/1905.01999.

[9] Eslam Amer, & Ivan Zelinka, (2020) “A dynamic Windows malware detection and prediction method

based on contextual understanding of API call sequence”, Computers & Security.

10.1016/j.cose.2020.101760.

[10] Yuntao Zhao, Bo Bo, Yongxin Feng, ChunYu Xu, & Bo Yu, (2019) “A feature extraction method of

hybrid gram for malicious behavior based on machine learning”, Secur. Commun. Netw.

[11] Chang Choi, Christian Esposito, Mungyu Lee, & Junho Choi, (2019) “Metamorphic malicious code

behavior detection using probabilistic inference methods”, Cognit. Syst. Res. 56, 142–150.

[12] Asghar Tajoddin, & Saeed Jalili, (2018) “HM3alD: polymorphic Malware detection using program

behavior-aware hidden Markov model”, Appl. Sci. 8 (7), 1044.

[13] Jeffrey Heer, Micheal Bostock, & Vadim Ogievetsky, (2010) “A Tour through the Visualization

Zoo”, ACM Queue, 8, 20.

[14] Weijie Han, Jingfeng Xue, YongWang, Lu Huang, Zixiao Kong, & Limin Mao, (2019) “MalDAE:

Detecting and explaining malware based on correlation and fusion of static and dynamic

characteristics”, Comput. Secur., 83, 208-233.

[15] Lu Xiao-Feng, Zhou Xiao, Jiang Fangshuo, Yi Sheng-wei, & Sha Jing, (2018) “ASSCA: API based

Sequence and Statistics features Combined malware detection Architecture”, Procedia Computer

Science, 129, 248-256.

[16] Matilda Rhode, Pete Burnap, & Kevin Jones, (2018) “Early Stage Malware Prediction Using

Recurrent Neural Networks”, Comput. Secur., 77, 578-594.

[17] Zahra Salehi, Ashkan Sami, & Mahboobe Ghiasi, (2017) “MAAR: Robust features to detect

malicious activity based on API calls, their arguments and return values”, Eng. Appl. Artif. Intell., 59,

93-102.

[18] MohamedBelaoued, & Smaine Mazouzi, (2016) “A Chi-Square-Based Decision for Real-Time

Malware Detection Using PE-File Features”, JIPS, 12, 644-660.

[19] Sanchit Gupta, Harshit Sharma, & Sarvjeet Kaur, (2016) “Malware Characterization Using Windows

API Call Sequences”, SPACE.

[20] Jixin Zhang, Zheng Qin, Hui Yin, Lu Ou, & Kehuan Zhang, (2019) “A feature-hybrid malware

variants detection using CNN based opcode embedding and BPNN based API embedding”, Comput.

Secur., 84, 376-392.

[21] Tableau Software. (2020). Retrieved from www.tableau.com.

[22] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, & Stephen Marshall, (2018) “Activation

Functions: Comparison of trends in Practice and Research for Deep Learning”, ArXiv,

abs/1811.03378.

[23] Yinzheng Gu, Chuanpeng Li, & Jinbin Xie, (2018) “Attention-aware Generalized Mean Pooling for

Image Retrieval”, ArXiv, abs/1811.00202.

[24] Mark Cheung, John Shi, Lavender Jiang, Oren Wright, &Jose Moura, (2019) “Pooling in Graph

Convolutional Neural Networks”, 53rd Asilomar Conference on Signals, Systems, and Computers,

462-466.

[25] William Cavnar, & John Trenkle, (1994) “N-gram-based text categorization”, Proceedings of

SDAIR-94, 3rd annual symposium on document analysis and information retrieval. Vol. 161175.

[26] Raymond Canzanese, Spiros Mancoridis, & Moshe Kam, (2015) “Run-time classification of

malicious processes using system call analysis”, 10th International Conference on Malicious and

Unwanted Software (MALWARE), Fajardo, 2015, pp. 21-28.

[27] ShahzadQaiser, & Ramsha Ali, (2018) “Text Mining: Use of TF-IDF to Examine the Relevance of

Words to Documents”, International Journal of Computer Applications, 181, 25-29.

98 Computer Science & Information Technology (CS & IT)

AUTHORS

Matthew Schofield is currently enrolled at Rowan University pursuing his B.S/M.S

degree in Computer Science anticipating graduation in December 2021. He is currently

working on his master’s thesis on Deep Reinforcement Learning in Incentivization

Systems. His research interests are in Machine Learning and Deep Reinforcement

Learning.

Gulsum Alicioglu received M.Sc. Degree in Industrial Engineering from Gazi University,

Turkey, in 2018. Currently, she is a Ph.D. candidate at the Department of Electrical and

Computer Engineering of Rowan University, USA. Her research interests are data

visualization, machine learning and explainable artificial intelligence.

Russell Binaco graduated from Rowan University with a M.S. in Computer Science in

Spring 2020. He now works as a software engineer for Innovative Defense Technologies,

and as an adjunct faculty for Rowan University. At Rowan, he earned undergraduate

degrees in Computer Science and Electrical and Computer Engineering.

Paul Turner received his B.S. in Computer Science from Rowan University in 2018 and

is currently enrolled in a M.S. program at Rowan University. His research interests

include machine learning, text mining, and cloud computing.

Cameron Thatcher received his B.S in Computer Science from Rowan University in

2019 and is currently pursuing his M.S. in Computer Science at Rowan University. His

research interests include Machine Learning and Data Mining.

Alex Lam is currently attending Rowan University pursuing his B.S/M.S degree in

Computer Science and Data Analytics. His research interests include Machine Learning.

Bo Sun received her B.S. in Computer Science from Wuhan University, her M.S. in

Computer Science from Lamar University, and her Ph.D. in Modeling and Simulation

from Old Dominion University. She is an associate professor of Computer Science at

Rowan University. Her research interests are Visual Analytics, Data Visualization, Serious

Gaming, and Virtual Reality/Augmented Reality-based Simulation.

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

