
David C. Wyld et al. (Eds): NLP, MLTEC, CLBD, SEAPP, NeTIoT, VLSIE, ITCS, ARIA, DMS - 2021

pp. 31-44, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.112303

OPTAGAN: ENTROPY-BASED

FINETUNING ON TEXT VAE-GAN

Paolo Tirotta1 and Stefano Lodi2

1Department of Statistics, University of Bologna, Italy
2Department of Computer Science, University of Bologna, Italy

ABSTRACT

Transfer learning through large pre-trained models has changed the landscape of current

applications in natural language processing (NLP). Recently Optimus, a variational

autoencoder (VAE) which combines two pre-trained models, BERT and GPT-2, has been
released, and its combination with generative adversarial networks (GANs) has been shown to

produce novel, yet very human-looking text. The Optimus and GANs combination avoids the

troublesome application of GANs to the discrete domain of text, and prevents the exposure bias

of standard maximum likelihood methods. We combine the training of GANs in the latent space,

with the finetuning of the decoder of Optimus for single word generation. This approach lets us

model both the high-level features of the sentences, and the low-level word-by-word generation.

We finetune using reinforcement learning (RL) by exploiting the structure of GPT-2 and by

adding entropy-based intrinsically motivated rewards to balance between quality and diversity.

We benchmark the results of the VAE-GAN model, and show the improvements brought by our

RL finetuning on three widely used datasets for text generation, with results that greatly surpass

the current state-of-the-art for the quality of the generated texts.

KEYWORDS

Text Generation, Variational Autoencoders, Generative Adversarial Networks, Reinforcement

Learning.

1. INTRODUCTION

Unsupervised text generation finds its use on a plethora of real-world application, ranging from

machine translation [1], to summarization [2] and dialogue generation [3]. A general approach to

modelling text sequences is to auto regressively generate the next token given the previous ones,

and the most successful and widespread technique is to train a model using maximum likelihood
estimation (MLE). This approach, however, is not without fault. At training time the model learns

to generate a token given the ground truth, while at inference time it takes as input its own

generated sequence of words. This dissimilarity leads to the so-called exposure bias [4], where
the accumulation of errors during inference can produce poor outputs. Furthermore, the loss

function of MLE is very strict. For each sequence, only the token accounted by the training

sample is considered as correct [5], and the model learns precisely to mimic the given samples,

often leading to quite dull and homogeneous outputs.

An alternative to MLE methods are generative adversarial networks (GANs) [6], where a

generator learns to create outputs that can fool a discriminator into believing they are real. Thus,
GANs do not have the strict loss function of MLE, and do not suffer from exposure bias, as they

learn to sample during training. Nonetheless, the application of GANs to the text realm has been

rather complicated. Due to the discreteness of text, the sampling of each token results in a non-

http://airccse.org/cscp.html
http://airccse.org/csit/V11N23.html
https://doi.org/10.5121/csit.2021.112303

32 Computer Science & Information Technology (CS & IT)

differentiable function, which does not allow to back propagate the loss of the discriminator.
Countermeasures include the use of reinforcement learning (RL) [7][8][9][10], the use of the

Gumbel-Softmax relaxation [11][12], or to avoid the discrete space altogether and work with

continuous embeddings using autoencoders [13][14][15]. However, methods which utilize RL

often rely on MLE pre-training, and usually do not improve over them [16]. Instead, for both the
approaches using the Gumbel-Softmax distribution, and even more so for autoencoders, the

discriminator considers a continuous representation of text, so it is not able to judge effectively

the single word-by-word generation.

In the past few years, natural language processing (NLP) applications have found huge

improvements with the introduction of the attention mechanism and the transformer architecture,
with notable examples of BERT, GPT-2 and GPT-3 among others [17][18][19][20]. These kind

of language models are large deep neural networks that are able to understand the dependencies

between words thanks to attention and are trained over huge amounts of unannotated data. As

such, pre-trained language models provide better language understanding over recurrent neural
networks, can be very easily finetuned on a downstream task, including text generation, and

reached state-of-the-art results in many areas. Recently Optimus, a text variational autoencoder

(VAE), that is an autoencoder which maps sentences to a meaningful latent space, has been
proposed [21]. It combines both BERT and GPT-2, as encoder and decoder respectively, and can

be employed both as a generative model, and as a tool for language understanding tasks.

In this work, we aim to benchmark the results obtained from combining Optimus and GANs,

similarly as indicated in the original paper. In doing so, we also investigate the GAN structure

and compare the adaptive update strategy presented in [22] with the standard update strategy of

GANs. Furthermore, we combine the training in the continuous space, with the finetuning of the
decoder of Optimus in the discrete text space, in a similar fashion as done in ConCreteGAN [23].

However, differently from most approaches which use RL, we do not use REINFORCE, but add

an additional value head to GPT-2, which outputs the intermediate rewards [24]. Moreover, we
modify the reward function by considering the entropy of the model when generating tokens, and

favour diversity in the output by adding an intrinsic reward.

Thus, our model OptAGAN1 is able to model both the higher level sentence structure, and has
more control over single word generation, in a way that favours both quality and diversity for the

generated sentences. We measure such criteria using standard automatic metrics: BLEU for

quality, Backwards-BLEU for diversity, and Fréchet distance, on which we also present further
analysis. We consider the image caption dataset COCO, the Stanford Natural Language Inference

(SNLI) dataset, and the EMNLP News 2017 dataset for unconditional text generation, and also

provide results for the conditional review dataset YELP.

Results show that the base VAE-GAN model already improves over other GAN methods,

especially with regards to quality. OptAGAN, further improves over these results, and manages

to handle the quality-diversity trade-off very well. Moreover, we show a further experiment that
helps understanding the strengths and weaknesses of our finetuning approach.

2. BACKGROUND

In this section we introduce the mathematical notation and briefly describe the main theoretical

tools which are used in OptAGAN. We also present an overview of the other methods of text

generation.

1Opt(imus) A(ugmented) GAN – Implementation can be found at https://github.com/Egojr/optagan

https://github.com/Egojr/optagan

Computer Science & Information Technology (CS & IT) 33

2.1. Variational Autoencoders

VAEs are generative models formed by two independent models, an encoder qφ and a decoder pθ.

The encoder is tasked with mapping the input x to a latent space z that allows for interpolation.
The decoder maps from z→x̃, providing an approximation of the original input. Thanks to the

introduction of a local variation from sampling the encoder output, it is possible to induce a

smooth latent representation of the inputs, which differs from the rigid space of autoencoders.

Optimus Optimus combines the autoregressive nature of the GPT-2 text generation with the

latent produced by the encoder, such that text generation is done as:

𝑝θ(𝑥|𝑧) =∏𝑝θ(𝑥𝑡|𝑥1, … , 𝑥𝑡−1, 𝑧)

𝑛

𝑡=1

=∏𝑝θ(𝑥𝑖|𝑥<𝑖 , 𝑧)

𝑛

𝑡=1

, (1)

where the probability of each token is estimated conditionally on the latent embedding and the

previous tokens. The latent vector z, which comes from the output of the BERT encoder, controls

the high-level characteristics of the sentence, such as length, tense, style and topic, and allows for
the guided generation of text.

2.2. Generative Adversarial Networks

GANs are also generative models formed by two models: a generator and a discriminator.

Differently from VAEs, the generator G samples from a random variable to produce output that
can fool the discriminator D into believing they are real, while the discriminator is constantly

learning to distinguish between the real and generated data. The objective of the two models can

formulated as:

min
𝐺

max
𝐷

(𝑉(𝐷, 𝐺)) = 𝐸𝑥∼𝑝𝐷[log(𝐷(𝑥))] + 𝐸ϵ∼𝑝ϵ[log(1 − 𝐷(𝐺(ϵ)))], (2)

where pD and pε are the distribution of the data and of the input noise of the generator,
respectively. When combining GANs with autoregressive text generation, the operation of

sampling the next tokens is non-differentiable, so the application of GANs relies on either the use

of policy gradient algorithms, or the use of continuous approximations, such as the combination
of GANs with autoencoders or VAEs.

2.3. Reinforcement Learning

Approaches that use policy gradient algorithms to allow the training of GANs consider the

generator as the policy πϴ to train, the sampling of the token as an action A from a state S, and the
output of the discriminator as the reward R. As the discriminator only calculates the reward over

finished sentences, the intermediate rewards are obtained through the REINFORCE algorithm

and Monte-Carlo rollout. Optimization of the parameters is performed through gradient ascent:

θ𝑡+1 = θ𝑡 + α∇θ𝐽(θ𝑡), (3)

∇θ𝐽(θ𝑡) ∝ 𝐸π[𝐺𝑡∇θ ln π (𝐴𝑡|𝑆𝑡 , θ)], (4)

where the gradient of the REINFORCE objective, ∇ϴ J(ϴt) is proportional to the discounted

returns Gt=Σt
j=0γ

jRj, so that higher return actions are favoured, and is inversely proportional to the

probability of being selected, so that higher probability actions are not at an advantage compared

34 Computer Science & Information Technology (CS & IT)

to low probability ones. Equation 4 also provides a value that can be sampled at each time step
and only depends on the policy π.

2.4. Related Work

Many works have dealt with the training of GANs in the discrete realm, starting with SeqGAN

[7], LeakGAN [8] and RankGAN [9], where all of them share a similar structure, mostly
differing in the form of the discriminator, and require MLE pre-training followed by adversarial

training with REINFORCE. ScratchGAN [10] is the first model to show that MLE pre-training

can be avoided by carefully combining existing techniques. Other works that train GANs using

continuous relaxations include ARAE [13] and LATEXT-GAN [15], which use autoencoders to
learn a continuous latent representation. Models based on the Gumbel-Softmax distribution are

RelGAN [12] and GSGAN [11]. On the comparison of these methods and the evaluation metrics,

[16][25] have shown the inadequacy of current GANs when compared to MLE and the need for
metrics that can better measure the quality and diversity of the models.

On the topic of exploration of text GAN models and RL are ColdGANs [26], which delve deeper
into the effects of temperature for the text generation. An approach similar to ours, which

involves the use of large pre-trained models and RL is TextGAIL [27], where both GPT-2 as the

generator, and RoBERTa as the discriminator are used for the task of text generation.

Regarding text VAEs, Optimus [21] is the first large pre-trained model of such kind, whereas

previously researchers had tried developing VAEs using either recurrent neural networks [28] or

semi-amortized inference [29].

3. OPTAGAN

Figure 1. Structure of our proposed model OptAGAN. In red is the main process to generate new text,
while in black we show the parts that are present in the training of the model. Finally, in blue is the last bit

of the RL finetuning process.

The architecture that we present in this work is composed of three main processes, as can be seen

from Figure 1. Each process is independent of the others, so each part is trained sequentially.

 In order to fully utilize the strengths of Optimus, we finetune both the encoder and the

decoder on the target dataset. The end results are a more separated and distinct latent

space for each sentence, and a decoder which better reconstructs the original sentences.

 Next, we train the GAN model composed of the generator and the discriminator. In the

case of conditional generation, we also add a classifier, whose loss is then passed to the

Computer Science & Information Technology (CS & IT) 35

generator. Both the generator and the discriminator only consider the continuous latent
embeddings, so they are much lighter and faster to train compared to other text GANs.

 Finally, we finetune the decoder on discrete text using a value head, which estimates the

reward of each single token in a sentence for the generated sequences. The estimated

rewards are also augmented by considering the model entropy of each generated token.

The gradient is then passed to the decoder through simple policy gradient.

The structure of both the generator and the discriminator is a simple feed-forward neural network.

Current literature does not give clear answers about which loss function specification for GANs
is best for continuous data such as text latent embeddings. Our experiments show that

Wasserstein GANs with gradient penalty (WGAN-GP) perform the best over sliced Wasserstein

distances, which produce very homogeneous outputs. Thus, the loss function to optimize for the
generator and discriminator is:

min
𝐺

max
𝐷

𝐸𝑥∼𝑝𝐷 [𝐷(𝑥)] − 𝐸ϵ∼𝑝(ϵ)[𝐷(𝐺(ϵ))] + λ𝐸𝑥∼𝑝(�̂�)[(|∇�̂�𝐷(𝑥)|2 − 1)2], (5)

3.1. Update Strategy

When training GANs, the common update strategy is to have k, usually in the range [5][10],

update steps for the discriminator for each step of the generator, as it has been shown to give

stable training for GANs. We indeed also use this update method, but we also experiment with an
adaptive update strategy proposed in [22], where the choice to update the discriminator or the

generator is given by a comparison of the loss change ratio of the two networks.

𝑟𝐺 =
|(𝐿𝐺

𝑐 − 𝐿𝐺
𝑝)|

𝐿𝐺
𝑝 + 𝑐

, (6)𝑟𝐷 =
|(𝐿𝐷

𝑐 − 𝐿𝐷
𝑝)|

𝐿𝐷
𝑝 + 𝑐

, (7)

where the relative change between the current loss Lc and previous loss Lp for both networks is

used in determining which one gets updated. We also add an arbitrarily small constant c in case

the losses are too close to 0.

A weight λ can be also introduced, so that if rD > λrG the discriminator is updated, and vice versa.

Contrarily to the original paper, which suggests a value λࣙ ࣙ≥ 1, we notice that at the beginning

of training there is a stark imbalance in the number of updates between the networks resulting in
slower convergence. To better balance the training, we end up using a value of λ < 1, which

converges to 1 with each passing epoch of training.

3.2. Value Head

Due to the high computational costs of implementing a text discriminator with a vocabulary of
size equal to GPT-2, we rely on an external value head, whose scalar output for each token

corresponds to the intermediate reward. Let the hidden states of the decoder ρ and the value head

ν, the rewards calculated from an external metric Rex and each state St are:

𝑅𝑡 = ν(𝑆𝑡|ρ), 𝑤𝑖𝑡ℎν(𝑆𝑡|ρ)𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 |∑(ν(𝑆𝑡|ρ))

𝑇

𝑡=0

− 𝑅𝑒𝑥| , (8)

The external head takes as input the frozen hidden states of GPT-2. Freezing the hidden

parameters is necessary because we are not modelling the parameters of the VAE model during

RL. The loss is then calculated according to a MAE objective and passed back to the value head.

36 Computer Science & Information Technology (CS & IT)

This process estimates how much each token contributes to the reward, and comparatively to a
text discriminator is faster to train and showed better results.

3.3. Entropy-Based Rewards

Our external rewards are calculated based on the quality metric BLEU, which we briefly describe

in Section 4.1. Under many considered reward specifications, which included the addition of
diversity metrics, maximum entropy RL, changes of temperature, or a combination of these, the

increase in quality is counterbalanced with a drop in the diversity of the generated sentences. One

approach that managed to balance the quality-diversity trade-off was the addition of an

intrinsically motivated penalty based on the confidence of the model when generating the token,
calculated by the entropy. If again we consider the hidden states ρ, the last layer calculating the

logits as our policy π with parameters ϴ and the entropy as H(π(•|ρ,St)), we calculate the intrinsic

rewards and the performance objective as:

𝑅𝑡
𝑖𝑛 = log (𝑐𝑙𝑎𝑚𝑝(𝐻(π(⋅ |ρ, 𝑆𝑡)), 0.2,1)) , (9)

∇θ𝐽(θ𝑡) = 𝐸π [(∑(γ𝑘𝑅𝑘)

𝑡

𝑘=0

+ 𝑅𝑡
𝑖𝑛)∇θ ln π (𝐴𝑡|ρ, 𝑆𝑡 , θ)] , (10)

This specification favours high-reward actions with high entropy, while low-entropy actions have

to have a high enough reward to be able to keep their high probability, resulting in a more diverse

generation. As a rule of thumb, we found out that penalties should be lower than the maximum
overall reward.

4. EXPERIMENTAL SETTINGS

In this section, we introduce the automatic metrics and the datasets used for evaluation. For
comparison we consider a MLE model, SeqGAN, RankGAN, as implemented by the

benchmarking platform Texygen[30], and ScratchGAN. We also provide further details on our

RL finetuning and present issues with the current evaluation metrics.

4.1. Evaluation Metrics

BLEU is a metric that measures the overlapping n-grams between a hypothesis text and all the

reference texts. The final score is calculated as the average of the scores over all hypothesis

sentences. Studies have shown [16][25] that BLEU can only detect small syntax problems,
resulting in poor correlation with human evaluations, however it still remains the standard when

evaluating the quality of generated texts. To measure diversity we utilize Backwards-BLEU

(BBLEU) where the generated texts are the reference and the test set becomes the hypothesis,

giving a measure of how much the test set is represented.

Additionally, we consider the Fréchet Distance with the InferSent embedding model (FID). It has

been shown that FID responds better than BLEU at identifying mode collapse and changes in
words usage. However, we show that it can be biased due to its distributional assumptions,

mainly for differences in sentence length distribution. Nonetheless, it can be useful in identifying

very homogeneous outputs, especially in conjunction with BLEU and BBLEU scores.

Computer Science & Information Technology (CS & IT) 37

4.2. Datasets

We consider three of most widely used datasets for unconditional text generation: image COCO

[30], Stanford Natural Language Inference (SNLI) [31] and the EMNLP News 2017
dataset2.Moreover, we consider the YELP review dataset for conditional text generation [33].

Table 1. Average length of the train set and number of sentences for each of the datasets used for

evaluation.

 COCO SNLI EMNLP YELP

Conditional X X X 🗸

Average sentence length 11.3 9.7 28.8 96.4

Size of train set 10k 100k 270k 100k

Size of dev set 10k 10k 10k 10k

Size of test set 10k 10k 10k 10k

Each of the datasets presents different challenges when training: COCO and SNLI are a small and

medium-sized dataset with short sentences, respectively. EMNLP is a large dataset with longer
sentences. Lastly, the YELP dataset is a conditional, medium-sized dataset with very long

sentences. The preprocessing on the datasets is minimal and only on the YELP dataset.

4.3. Experimental Results

Tables 2, 3 and 4 show the results for the quality and diversity of the models. The changes
between standard and adaptive updates mostly favour the adaptive one, with larger gains in

diversity, with the exception of the SNLI dataset. Additional considerations about the two

updates can be found in Appendix B. Therefore, we only apply the RL finetuning on the
adaptively trained model to obtain the OptAGAN results. Our approach shows improvements

under all metrics, albeit small for the COCO and SNLI datasets. In comparison with the other

GAN models, OptAGAN boasts the highest quality, and average, or higher diversity. In

comparison with the MLE model, the quality-diversity trade-off favours our model for quality,
and the MLE approach for diversity. Notably, for the EMNLP dataset, the curiosity-driven

finetuning allows OptAGAN to surpass all models for both BLEU and BBLEU.

We believe that the difference in the magnitude of change between the EMNLP task and the

COCO and SNLI ones is due the starting quality of the model. In fact, as the RL finetuning

slightly prioritizes quality, so increases in BLEU score, over diversity, the actual changes on the
word-by-word generation are very few for those two datasets.

Compared to the other methods, ours is also better able to reproduce longer sequences of words,

as the growing differences between 2,3 and 4 n-grams metrics show. Regarding the FID scores,
they mostly show the same behaviour as BBLEU. However, we show in section 4.5 that the FID

is biased for the sentence length distribution, that, in contrast with other methods such as

ScratchGAN, we do not model.

2http://www.statmt.org/wmt17/

http://www.statmt.org/wmt17/

38 Computer Science & Information Technology (CS & IT)

Table 2. EMNLP results of the automatic metrics for OptAGAN, the two base VAE-GAN models with

standard and adaptive updates and the other models implemented for comparison.

Metrics MLE SeqGAN RankGAN ScratchGAN Standard Adaptive OptAGAN

BLUE-2 0.829 0.796 0.764 0.835 0.825 0.816 0.860

BLUE-3 0.548 0.471 0.399 0.556 0.554 0.544 0.605

BLEU-4 0.304 0.228 0.159 0.313 0.285 0.284 0.356

BBLEU-2 0.840 0.762 0.728 0.824 0.765 0.805 0.841

BBLEU-3 0.563 0.563 0.383 0.545 0.488 0.526 0.586

BBLEU-4 0.317 0.317 0.221 0.303 0.261 0.278 0.350

FID 0.926 1.934 3.509 0.466 1.153 0.784 0.674

Table 3. SNLI results of the automatic metrics for OptAGAN, the two base VAE-GAN models with

standard and adaptive updates and the other models implemented for comparison.

Metrics MLE SeqGAN RankGAN ScratchGAN Standard Adaptive OptAGAN

BLUE-2 0.841 0.838 0.784 0.795 0.867 0.888 0.889

BLUE-3 0.635 0.599 0.514 0.564 0.693 0726 0.727

BLEU-4 0.428 0.380 0.309 0.363 0.484 0.524 0.525

BBLEU-2 0.843 0.768 0.771 0.800 0.786 0.764 0.764

BBLEU-3 0.639 0.546 0.523 0.564 0.570 0.547 0.548

BBLEU-4 0.433 0.347 0.347 0.362 0.374 0.361 0.362

FID 0.376 0.919 1.486 0.539 1.424 1.764 1.765

Table 4. COCO results of the automatic metrics for OptAGAN, the two base VAE-GAN models with

standard and adaptive updates and the other models implemented for comparison.

Metrics MLE SeqGAN RankGAN ScratchGAN Standard Adaptive OptAGAN

BLUE-2 0.854 0.866 0.834 0.862 0.917 0.919 0.920

BLUE-3 0.664 0.667 0.641 0.678 0.792 0.792 0.794

BLEU-4 0.459 0.452 0.423 0.478 0.627 0.617 0.620

BBLEU-2 0.844 0.813 0.775 0.791 0.755 0.775 0.778

BBLEU-3 0.656 0.616 0.553 0.573 0.550 0.579 0.584

BBLEU-4 0.455 0.415 0.344 0.377 0.368 0.396 0.399

FID 0.588 0.756 2.347 1.001 2.297 1.908 1.903

From the computational cost point of view, the full training of our model took at most 24 hours

using a single Tesla V100 GPU. Additional details about the training can be found in Appendix

A.

4.4. Conditional Generation

For the conditional generation task, we follow the same procedure as the unconditional one, with

the only exception of the addition of a classifier network to better model the GAN generation

depending on the label. The results of table 5 are very similar to the ones of the COCO and SNLI,

where the entropy regularized finetuning performs slightly better than the base adaptive VAE-
GAN model, with small gains in diversity and quality. We present some examples of the

generated sentences in Appendix C.

Computer Science & Information Technology (CS & IT) 39

Table 5. Yelp results of the automatic metrics models and the entropy regularized OptAGAN.

Metrics Standard Adaptive OptAGAN

BLUE-2 0.880 0.886 0.887

BLUE-3 0.675 0.683 0.685

BLEU-4 0.448 0.456 0.458

BBLEU-2 0.860 0.854 0.854

BBLEU-3 0.666 0.660 0.661

BBLEU-4 0.453 0.449 0.451

FID 2.598 2.539 2.562

4.5. Analysis on FID Space

We discuss problems with the FID metric by showing an heatmap of the two-dimensional

principal component analysis (PCA) representation and the length distribution of the sentences
for the SNLI dataset. Previous works [10] already investigated the dependency of the FID scores

on the length distribution, which can overshadow other problems with the generated samples.

We further reinforce those analysis, as a prime example of this issue can be seen in Figure 2,

where the FID scores get progressively higher the more the length distribution of the generated

sentences is close to the one of the test data, while ignoring the fact that the actual distribution
may not match the test one.

Figure 2. On the left, the PCA representation of the FID space of the SNLI test set (top left), OptAGAN

(top right), ScratchGAN (bottom left) and MLE (bottom right) dataset. On the right, the length distribution

of the four datasets and the FID scores for the generated data.

In fact, the score for the ScratchGAN model is much lower than the one for OptAGAN, although

the distribution of the sentences of ScratchGAN in the space misses most of the distribution of

the test sentences, as can be seen from the PCA representation. Although only 10-15% of the
overall variability, over the InferSent embedding dimensions, is explained by PCA, there is a

huge mismatch that is not addressed by the use of the Fréchet distance, which favours

homogeneous length distributions over correct representation of the space.

40 Computer Science & Information Technology (CS & IT)

4.6. Experiment on RL Finetuning

In order to fully gauge the strengths and weaknesses of our entropy penalty approach we set up

an experiment where we train a GAN model using the pre-trained Optimus encoder and decoder
that are not finetuned on the dataset, so we can finetune a lower quality model. We compare this

model with two curiosity-driven regularized model for 1000 and 5000 epochs, respectively. We

also use a higher learning rate as we are not interested in preserving the structure of the original
sentences and present the results in Table 6.

The starting model achieves much worse results than the fully optimized OptAGAN, especially

with regards to the BLEU score. After 1000 epochs of RL finetuning, the model improves over
both quality and diversity. However, when finetuning for longer, the model cannot balance

anymore between exploration and exploitation.

Table 6. Yelp results of the automatic metrics models and the entropy regularized OptAGAN.

Metrics Base VAE-GAN RL 1000 Epochs RL 5000 Epochs

BLUE-2 0.641 0.707 0.829

BLUE-3 0.370 0.444 0.624

BLEU-4 0.198 0.243 0.402

BBLEU-2 0.752 0.752 0.717

BBLEU-3 0.478 0.497 0.479

BBLEU-4 0.266 0.286 0.283

FID 2.441 2.369 2.892

We believe this behaviour is because of the bias that the model has in finding high reward tokens.

The RL finetuning does not evaluate all the tokens in the vocabulary, so there might be multiple

good scoring tokens which are never considered during the finetuning. This means that our
approach is limited by the quality of the original model.

A countermeasure that might prevent this kind of behaviour from happening could be to increase
the penalty for models with higher average entropy, and tuning its value depending on the use

case, to further encourage heterogeneous generation.

5. CONCLUSIONS AND DISCUSSION

In this work, we benchmark the combination of Optimus and GANs for a text VAE-GAN model,

with results that already surpass current methods for the quality of generated texts. We further

improve this baseline using entropy-based curiosity-driven rewards to improve both the quality
and the diversity of the model. This novel approach could benefit many models utilizing RL for

text generation, and supplementary research could be done into exploring advantage policy

gradient, or proximal policy optimization with intrinsic rewards. This specification of the reward

also allows researchers to prioritize quality, diversity, or to balance between both.

Due to our limited computational resources, we utilize smaller batch sizes than we would

otherwise have preferred, as larger batch sizes could help in reducing the high variance gradients
of these approaches. Moreover, further research on the automatic metrics could be beneficial not

only for evaluation, but also for better reward signals to improve the speed and quality of the

finetuning.

Computer Science & Information Technology (CS & IT) 41

REFERENCES

[1] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,

Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson,

Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith

Stevens, George Kurian, NishantPatil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex

Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural machine

translation system: Bridging the gap between human andmachine translation.

[2] Mehdi Allahyari, Seyed Amin Pouriyeh, Mehdi Assefi, SaeidSafaei, Elizabeth D. Trippe, Juan B.
Gutierrez, and Krys J. Kochut. Text summarization techniques: A brief survey.

[3] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. Deep

reinforcement learning for dialogue generation.

[4] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence

prediction with recurrent neural networks.

[5] Ofir Press, Amir Bar, Ben Bogin, Jonathan Berant, and Lior Wolf. Language generation with

recurrent generative adversarial networks without pre-training.

[6] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, SherjilOzair,

Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

[7] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets

with policy gradient.

[8] Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, and Ming-Ting Sun. Adversarial ranking for
language generation.

[9] Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long text generation via

adversarial training with leaked information, 2017.

[10] Cyprien de Masson d’Autume, Mihaela Rosca, Jack Rae, and Shakir Mohamed. Training language

gans from scratch, 2020.

[11] Matt J. Kusner and José Miguel Hernández-Lobato. Gans for sequences of discrete elements with the

gumbel-softmax distribution, 2016.

[12] WeiliNie, Nina Narodytska, and Ankit Patel. RelGAN: Relational generative adversarial networks

for text generation. InInternational Conference on Learning Representations, 2019.

[13] Junbo Jake Zhao, Yoon Kim, Kelly Zhang, Alexander M. Rush, and Yann LeCun. Adversarially

regularized autoencoders for generating discrete structures.
[14] David Donahue and Anna Rumshisky. Adversarial text generation without reinforcement learning.

[15] Md. Akmal Haidar, Mehdi Rezagholizadeh, Alan Do-Omri, and Ahmad Rashid. Latent code and text-

based generative adversarial networks for soft-text generation.

[16] Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau, and Laurent Charlin.

Language gans falling short, 2020.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.CoRR, abs/1706.03762, 2017.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep

bidirectional transformers for language understanding.

[19] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language

models are unsupervised multitask learners. 2019.

[20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-

Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey

Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,

Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

and Dario Amodei. Language models are few-shot learners, 2020.

[21] Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiujun Li, Yizhe Zhang, and Jianfeng Gao.

Optimus: Organizing sentences via pre-trained modeling of a latent space, 2020.

[22] Xu Ouyang and GadyAgam. Accelerated wgan update strategy with loss change rate balancing,

2020.

[23] Yanghoon Kim, Seungpil Won, Seunghyun Yoon, and Kyomin Jung. Collaborative training of gans

in continuous and discrete spaces for text generation, 2020.
[24] Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul F.

Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.

42 Computer Science & Information Technology (CS & IT)

[25] Stanislau Semeniuta, Aliaksei Severyn, and Sylvain Gelly. On accurate evaluation of gans for

language generation,2019.

[26] Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, and Jacopo Staiano.

Coldgans: Taming language gans with cautious sampling strategies, 2020.

[27] Qingyang Wu, Lei Li, and Zhou Yu. Textgail: Generative adversarial imitation learning for text
generation, 2021.

[28] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, RafalJózefowicz, and SamyBengio.

Generating sentences from a continuous space.

[29] Yoon Kim, Sam Wiseman, Andrew C. Miller, David Sontag, and Alexander M. Rush. Semi-

amortized variational autoencoders, 2018.

[30] Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. Texygen: A

benchmarking platform for text generation models.

[31] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and C.

Lawrence Zitnick. Microsoft COCO captions: Data collection and evaluation server.

[32] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large

annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing, pages 632–642, Lisbon, Portugal, September
2015. Association for Computational Linguistics.

[33] Nabiha Asghar. Yelp dataset challenge: Review rating prediction.

APPENDIX

A. TRAINING DETAILS

For the finetuning of Optimus we follow the original work and train for one epoch with the

hyperparameters that give the best reconstruction quality, namely:

 Pre-trained model epoch = 508523

 Training epochs3 = 1

 Learning rate = 5 • 10-5

 Batch size = 5

 Latent size = 768

 β = 0

 Annealing ratio = 0.5

 Ratio increase = 0.25

We follow a similar approach for the training of the GAN part of the model, where we use

standard hyperparameters for the training of WGAN-GP. The best performing epoch of the GAN
according to the sum of the BLEU and BBLEU partial scores with 500 texts for both reference

and hypothesis is saved.

 Training epochs = 50

 Learning rate = 10-4

 Batch size = 256

 Latent size = 768

 Maximum sequence length = 100

 Number of blocks of generator and discriminator = 10

 Gradient penalty λ = 10

3Due to the size of the COCO dataset, it is the only one where we finetune for 5 epochs

Computer Science & Information Technology (CS & IT) 43

Finally, these are the details for the entropy regularized finetuning. Empirical results showed next
to no difference for the BLEU n-gram choice, so we choose 1-gram due to slightly faster

computational times, and it also translates into a clearer understanding of the intermediate values.

Moreover, we use a small learning rate, in order to keep the same structure as the original

sentences.

 BLEU reward n-grams = 1

 Finetuning epochs = 1000

 Learning rate = 10-6

 Batch size = 32

 Epochs value head pre-training = 200

 Learning rate value head pre-training = 10-4

B. ADAPTIVE STRATEGY DETAILS

Figure 3 shows the validation BLEU and BBLEU for the COCO and YELP datasets. We show

the results over these two datasets due to the stark difference between them.

Figure 3. Differences in BLEU scores duringtraining for the standard and adaptive updatein GANs,

evaluated on the COCO dev set on the left and on the YELP dev set on the right.

It is evident that the adaptive strategy is slightly slower to converge. Since the YELP dataset is 10

times larger than COCO, in both cases after about 200,000 samples the two models reach the

same quality. The remainder of the training appears to be very stable for the standard update,
with little to no changes in both the scores. Meanwhile, the adaptive updates look slightly more

volatile, with changes that impact the two scores both positively and negatively, usually

following the quality-diversity trade-off principle. However, it also means that the adaptive
updates is more likely to find higher scores than the standard one, as happens for all the datasets

analysed in this work.

C. GENERATED SAMPLES

Table 7. Examples of the generated unconditional sentences from OptAGAN trained on COCO, SNLI and
EMNLP dataset.

Dataset Sentences

COCO

a man posing with a bike inside of a forest .

a man sitting on a swinging chair pulled by some purple ducks .

a woman holding a bird over some flowers on the beach .

44 Computer Science & Information Technology (CS & IT)

SNLI

the man is sweating because they are blue .

the man is getting more thank with the dog .

a man in white clothes stands next to a marketplace where he can store plastic .

EMNLP

Republican presidential nominee , Donald Trump , has said that 20 to 30 years might be

the way to try and narrow it out .

Whether or not agenda minutes can deliver , it would , therefore , encourage the

majority of Scottish MPs to think about that .
Earlier in the day , Bell travelled to Sydney ' s Supreme Court and was effectively

blocking a vote of no - one that would produce the album .

Table 8. Examples of the generated sentences from OptAGAN trained on

the YELP dataset, conditioned on the label.

Stars Generated review

1

i was disappointed with this company . for the 2 visits to this location on the _UNK

highway i paid a ridiculous amount to visit . got stuck there , and ignored and messed up on

my money . . the wait staff must know the difference between sink of vinegar and fresh

vinegar !haha . i have seen orange juice _UNK when they used to serve it but now the
juice i am getting from juice bar in sanfrancisco had no consistency at all .i asked the

waitress if they could rotate me out of soda in the microwave in exchange for a new glass ...

hmmm , if that's your way of saying bad customer service you are talking a rip off . wait

staff can do anything .

2

i have been to some great buffets , but this was mediocre at best . my husband ordered a

turkey sandwich and it was just like anyone else's sandwich . for the service , there wasn't

much seating . the food and the _UNK were stale , awful bread . something to do if you go

to vegas for dinner and want to have some classic awesomeness ... maybe try a dim sum

instead .

3

this place is pretty good .i like the burgers , the selection is pretty good and they have a

ginormous amount of steak . being a vegetarian ,i took one bite of everything i ordered and

went back again . for the friday afternoon rush - they brought me the french fries instead of

the turkey , a mousse and mgr .

4

loved this place .i had the corned beef burrito , which was very good , though a bit greasy

and lacking . they have a good selection of veggie options and happy hour specials and are

very attentive to your meal . it's clean , spacious , and the ambiance is great . i have

definitely come here when my friends visit vegas to see if they have any other option . the

best part about going here is the sitting area outside where you can hang out while eating all

you could eat .

5

love this place .i have visited all of the great restaurants that offer all sorts of flavors , and

to top it all off , all the facilities are extremely clean . _UNK is the guy . he came for a

quick check up , took my dad to the bar and came out free of charge !! seriously !

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Keywords
	Text Generation, Variational Autoencoders, Generative Adversarial Networks, Reinforcement Learning.

