
Checklist Usage in Secure Software

Development

Zhongwei Teng, Jacob Tate, William Nock, Carlos Olea, Jules White

Vanderbilt University

ABSTRACT

Checklists have been used to increase safety in aviation and help prevent mistakes in surgeries.

However, despite the success of checklists in many domains, checklists have not been universally

successful in improving safety. A large volume of checklists is being published online for helping

software developers produce more secure code and avoid mistakes that lead to cyber-security vulner-

abilities. It is not clear if these secure development checklists are an effective method of teaching

developers to avoid cyber-security mistakes and reducing coding errors that introduce vulnerabili-

ties. This paper presents in-process research looking at the secure coding checklists available online,

how they map to well-known checklist formats investigated in prior human factors research, and

unique pitfalls that some secure development checklists exhibit related to decidability, abstraction,

and reuse.

KEYWORDS

Checklists, Cyber Security, Software Development

1. Introduction

Checklists have become common in industries, such as aviation, where human errors can
lead to significant safety issues. For example, NASA has published detailed design guid-
ance on creating and using checklists for aircraft operation [1]. The World Health Orga-
nization (WHO) has begun encouraging hospitals to adopt surgical-safety checklists [2],
based on the results of a research study conducted by surgical staff in 8 hospitals from
2007 to 2008 which showed checklists reduced complications and mortality rates [3]. By
decomposing a complex system or workflow into a set of deterministic items, checklists can
help to avoid common errors and free up mental capacity for important cognitive tasks.

The promising achievements of checklists in other fields have motivated software developers
to publish their own checklists for secure software development, which can be easily found
online. A Google search for ”secure software development checklist” produces thousands
of results. These checklists typically consist of items listing things that software developers
should do to produce more secure software.

However, the security community needs to determine whether the benefits that checklists
show in other domains carry over to secure software development, and if so, in what sce-
narios [4]. Moreover, the overall quality of the checklists that software engineers and their
managers find online has not been assessed. Because of the sense of ”completeness” that
checking off items on a list can instill, it is critical that checklists be of high quality. For
example, a mismatch between a checklist’s target domain and an individual application’s
domain can make developers assume that they have ”checked off all the critical security
items,” when in fact, they are ignoring critical risks in their codebase that emerge from
unique aspects of their application domain. Checklists have a connotation of ”complete-

David C. Wyld et al. (Eds): NLP, MLTEC, CLBD, SEAPP, NeTIoT, VLSIE, ITCS, ARIA, DMS - 2021
pp. 283-293, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.112322

http://airccse.org/cscp.html
http://airccse.org/csit/V11N23.html
https://doi.org/10.5121/csit.2021.112322

Format {Topic Keyword(s)} {Secondary Keyword(s)} security checklists

Topic Secondary #Unique #Tags in
Keyword Keyword(s) Checklists StackOverflow

Web — 9 492(’web-applications’+’security’)
Development 708(’web’+’security’)

Python Flask 5 248(’flask-security’)
79(’flask’+’security’)

Python Django 7 367(’django’+’security’)

Python Secure Coding 4 972(’python’+’security’)

Java Spring 4 21773(’spring-security’)

Java Android 4 430(’android-security’)
1084(’android’+’security’)

Java Secure Coding 6 311(’java-security’)
5572(’java’+’security’)

Table 1: Search Terms for the Secure Coding Checklist Survey

ness” as shown in the Merriam Webster Dictionary definition of checklists:

a list of things to be checked or done

a pilot’s checklist before takeoff

also : a comprehensive list

Online resources, such as StackOverflow, have become a commonly used resource for soft-
ware developers to learn and gather information about best practices. Especially for small
development teams that may not have substantial support from cybersecurity groups
within their organization, checklists that developers or their managers find online may
create a false sense of security. For example, when a checklist reminds web developers to
avoid SQL injection attacks with a few examples, such as ”Use prepared statements.”, it
is not guaranteed that readers of the checklist will fully understand the concept of pre-
pared statements or how similar issues may arise when using object relational mapping
systems. In this case, even though developers can show that their application passes a
cybersecurity checklist, their underlying code may yet be highly insecure. Further, to
outside non-experts, the knowledge that a checklist was followed (e.g., a secure process)
may generate a more powerful belief in the security of the project than other artifacts.

In this paper, we explore whether or not checklists are truly effective in helping educate
developers on how to produce more secure software. We explore the challenges of adopting
security checklists in secure software development. In particular, we show that the scope
of tasks where security checklists are effective in software development is much narrower
than expected. This narrow scope is a result of significant differences in common tasks in
software development and the types of tasks and contexts where checklists are known to
be efficacious.

Paper organization. The remainder of this paper is organized as follows: Section in-
troduces the survey that we conducted of online checklists. Section presents four key
issues that we found when assessing a set of online secure development checklists. Sec-
tion discusses the results of the survey and highlights key issues that were commonly
found. Section introduces related work on checklists in other industries. Section pro-
vides concluding remarks and future work.

Computer Science & Information Technology (CS & IT)
284

2. Survey of Cybersecurity Checklists found Online

Software developers looking to increase the security of their applications will often turn
to the web for available resources and risks of seeking advice from web search are revealed
by a survey [5]. Checklists can exist on programming-specific sites, blogs, or other sites.
If a programmer is inspired to use a checklist to audit their work, these are the resources
they will find. On a pragmatic level, this is the current state of cybersecurity checklists.

This survey provides initial data on the prevalence and potential failings of checklists
related to secure coding and software implementation that a developer may find online.
This analysis seeks to explore the extent to which checklists found online accommodate,
or fall victim to, the proposed theoretical pitfalls described later in Section . The data
should be considered a work in progress.

Using a variety of search keywords, which developers may use to address security con-
cerns, secure software development checklists were located using the Google search en-
gine. Searches were conducted using the incognito mode on Google Chrome, so that past
searches did not influence results. The search queries for the survey were generated by
concatenating a Topic Keyword & Secondary Keywords, with the term ”Security
Checklists”. For example, as shown in Table 1, ”Python Django Security Checklists” was
one such query. For each query, only links that were on the first page (excluding adver-
tisements) were evaluated, since it is estimated that 95% of search engine visitors click
through to a link on the first page of Google search results [6].

Based on choices of programming applications and trends on Stack Overflow, we chose two
topic keywords, ”Python” and ”Java”, as well as corresponding programming frameworks
as secondary keywords. The number of unique results, excluding ads, is shown in Table 1.

As shown, we analyzed 39 secure coding checklists in total. The application domain
which we focused on was web application development. Selections of central keywords and
auxiliary keywords are based on statistics of StackOverflow Trends. The checklists covered
general security topics (web development security), two languages, including Python and
Java, and four frameworks, such as DJango and Spring. General secure coding checklists
for each topic keyword were also evaluated (e.g. ”Java Security Checklist”).

3. Challenges of Translating Checklists to Secure Soft-

ware Development

It’s an open question whether the benefits seen in other domains, such as from the WHO’s
surgery checklist, can be realized in cybersecurity to better educate software engineers.
Despite this open question, there are a wide variety of cybersecurity checklists for software
engineers available.

The most significant work on human factors considerations when designing checklists has
come from the aviation and space domains [1, 7]. In general, checklist items are expected
to fall into either a ”read-do” format [7] or a ”read-respond” (also known as ”challenge-
response”) [1] format. Read-do items dictate actions that should be taken by the reader
immediately after reading the item (e.g., circle incision site). Read-respond items are
designed to be confirmed after reading (e.g., Is the incision site circled?).

We conducted research to understand the characteristics of the cybersecurity checklists
for software engineers and understand how their items and scope compare to the basic
best practices listed in prior research [1, 7]. Throughout the remainder of this section,
we describe five key qualitative issues that many checklists suffer from and make creating
clean ”read-do” or ”read-respond” items challenging in the secure coding domain. Read-

Computer Science & Information Technology (CS & IT) 285

do and read-respond items are the fundamental expected structure of checklist items. As
described in human factors research on checklists in other domains, secure coding tasks
that can’t fit into a read-do or read-respond format aren’t suited for a checklist. Secure
software engineering checklists composed of items that fail to fit into the read-do or read-
respond format should be approached with caution.

Based on observations of checklists from the survey conducted in Section , we identified
repeated anti-patterns / challenges in secure coding checklists. Although they may appear
sound, checklists that exhibit these patterns fundamentally violate past human factors
research in best practices for creating usable checklists [1, 7]. We will discuss 4 main
challenges for secure software development checklists throughout the remainder of this
section.

3.1. Challenge: Non-deterministic Read-respond Items

Read-respond items in a checklist are meant to be deterministic in nature. Different users
reading a ”read-respond” item should be expected to always arrive at the same answer
in the same situation. Read-respond items are constructed such that diverse users of the
checklist interpret the item in the same manner, precisely and efficiently. For example, an
aircraft maintenance checklist item that requires verifying that ”the XYZ electrical lead
wire does not exceed 30 metres in length”, can be answered as ”yes” or ”no” in a consistent
fashion. In contrast, if a checklist contains ambiguous items, such as ”no electrical leads
are too long”, it’s not precise enough in definition to be deterministically evaluated. One
user may know the maximum length to be 30 meters, while another may be familiar with
a different standard.

In many circumstances, however, security checklists in software development contain non-
deterministic items, often statements warning developers to avoid a specific type of vul-
nerability, included with limited examples. For example, ”Sensitive transactions require re
authentication” [8] is a non-deterministic read-respond item. What is a ”sensitive trans-
action”? Alternatively, the read-respond item ”Session cookies are encrypted and have
a length of at least 128 bits, are complex”, provides concrete deterministic guidance on
the encryption and length, but provides non-deterministic guidance on ”complex”. Two
developers may arrive at different conclusions on cookie complexity.

When secure coding checklist items are non-deterministic, a number of problems arise.
First, an item may be checked off simply because the developer doesn’t really understand
the original intent of the question. Second, different developers on the same team may
apply varying security standards to their source code analysis / production, leading to
inconsistent security. Finally, since checklists instill a sense of security / completeness,
checking off items that can’t consistently be answered / applied is potentially dangerous.

3.2. Challenge: Undecidable Read-respond Items

The Halting Problem and Rice’s Theorem [9, 10] are well known theoretical proofs that
inform the limits of what we can know about an arbitrary software application. Rice’s
Theorem shows that we cannot decide most semantic properties of arbitrary software
systems, such as ”their security.” A fundamental problem in many secure coding checklists
is that they use read-respond items that would violate Rice’s Theorem or the Halting
Problem if they could be answered for arbitrary software applications.

For example, a web development security checklist item warns developers ”Do not leak
session IDs” [11]. Given an arbitrary web application that uses session IDs, this question
is likely undecidable. A similar read-respond item would be ”do not create inputs that

Computer Science & Information Technology (CS & IT)286

prevent the application from halting”, which is likely not helpful to a software engineer.

Although these types of items appear as helpful reminders to developers, they are unhelpful
when delivered in a checklist format. A web development security guide that explains what
leaking a session ID is and provides educational examples is a better format for delivering
this material. However, this type of material does not fit into a read-respond or read-
do checklist item. Unfortunately, declarative statements that express what they want
accomplished, but not how, tend to be undecidable in security checklists. To fit into a
decidable checklist item, the specific steps on how to do what is stated need to be expressed
and each step decidable in nature. Checklist items that state ”don’t introduce security
vulnerability X” are generally undecidable due to Rice’s Theorem.

3.3. Challenge: Failed Generalization for Reuse in Read-respond Ques-
tions

Checklists are built on the idea of summarizing only essential critical activities or infor-
mation into a short and actionable list to make sure that people consistently and correctly
perform these tasks. However, if we transfer an effective checklist from one context to a
new context, due to differences in architecture, software stacks, etc., there is a significant
risk of introducing non-determinism or irrelevant items. For example, checking for double
freeing of memory may make sense in one programming language, but not make sense in
another language, leading to the introduction of unnecessary items that distract the user.

In software development, however, it is uncommon to create a checklist for exactly one
product – checklists are almost always abstracted and generalized like software to facilitate
reuse. Checklists are usually designed for a domain, a framework, or a programming lan-
guage, such as mobile application/Android/Java. These checklists are then implemented
by developers appropriately within the new product’s software architecture. The issue
then arises: generalizing the use of these domain- or architecture-specific checklists relies
on the assumption that their content will be transferable to other software domains.

There is a tension in developing an item for a cybersecurity checklist between the reusabil-
ity of the checklist and the specificity of the items. Ideally, a checklist can be carefully
crafted and reused, just like we do with software components. This desire for reuse leads
checklist authors into the trap of creating non-deterministic read-respond items. The
greater the number of non-deterministic read-respond items, the more likely that the
checklist will be used incorrectly AND confer incorrect trust in the security of the sys-
tem.

For example, the checklist item ”Do not use eval() and similar functions” [11], is somewhat
deterministic / decidable in the Javascript context, where eval() is a built-in function
that source code can be checked for. However, the ”similar functions” language is trying
to facilitate use of this item in other contexts, possibly outside of Javascript – simply
map eval() to the equivalent function in your context – which is not clearly deterministic
or decidable. The goal of making the item reusable outside of Javascript with ”similar
functions” language creates non-determinism. Contrast this item with the checklist item
”If I handle XML files, I disable entity and DTD processing” [12]. This checklist item
provides more detail on what needs to be accomplished and but is still not necessarily
decidable for an arbitrary language and set of frameworks.

3.4. Challenge: Missing Description of the Expected Checklist Context

Compared to daily-use checklists, such as shopping or errand lists, checklists for most
non-trivial domains have explicit linkages between the items and domain concepts, such

Computer Science & Information Technology (CS & IT) 287

Topic Keywords Web development Python Java

%Determinism Issues 88.9 75 57.1

%Undecidable 100 87.5 57.1

%Improper Generalization 33.3 100 35.7

% Lacking Context 55.6 50 42.9

Table 2: Results from Secure Coding Checklist Survey

as aircraft wing flaps, ailerons, etc. Moreover, the checklists implicitly expect users to un-
derstand key concepts in the application domain, such as Australian aircraft maintenance
workers being expected to understand the Australian Standard 2865[13]. In aviation,
training programs are necessary for practitioners who use checklists to reduce risk and
ensure that pilots know how to deterministically and correctly respond to or do what is
asked. For example, pilots are trained on checklists specific to the aircraft they fly in order
to ensure they understand how the checklist applies to their aircraft.

Many checklists in the secure coding domain, however, do not have a rigorously defined
context where they are applicable nor an explicit set of concepts that the user should be
familiar with. Without an explicit context in which the checklist is applicable, similar to a
software design pattern’s list of context, forces, etc; software engineers may incorrectly as-
sume that the checklist is designed for their application domain / constraints. Developers
that use Google to find and apply security checklists to their codebases, without suffi-
cient knowledge of the assumptions made when the checklist was designed, will inevitably
produce flawed evaluations of their software’s security. When completed, these improper
evaluations cause developers to boast a false sense of security to the desired users of their
products.

In many other domains, particularly aircraft, the exact context that the checklist was
designed for is well-understood. Pilots of a Boeing 777 don’t have to wonder if the checklist
they are using was actually designed for an Airbus a380. Not only is the domain of
the checklist’s applicability well-understood, but the training requirements to effectively
use the checklist are as well. In contrast, there are often few expectations listed in the
surrounding documentation of secure coding checklists to guide developers in determining
if the checklist is applicable to their context. Was the checklist only designed for web
applications built in Javascript with Express and NodeJS or is it equally applicable for
.Net or PHP applications? We found many checklists fail to document this information in
the materials accompanying the secure coding checklist.

4. Survey Results

Table 2 shows the results from our survey of 39 checklists from the Internet. Results in our
survey DO NOT represent human performance of using the surveyed checklists. Our
survey, however, identified the prevalence of the challenges from Section in the checklists
we surveyed. For each checklist, if at least one item had demonstrated the challenge, it
was added to the count of checklists demonstrating that issue. For example, if at least
one item on the checklist was non-deterministic, the checklist was added to the count of
checklists suffering from ”determinism issues.” The reason we allowed a single issue to
add an item to the count is that security is inherently a weakest link game. We provide
detailed per-checklist results in Tables II-V. The list of checklists and URLs is provided
in the appendix.

0https://github.com/zhongwei-teng/security-checklists

Computer Science & Information Technology (CS & IT)288

Keywords Determinism Undecidable Improper Lacking Checklist
Issues Generalization Context

Python
Django
Security
Checklist

2 1 1 2 C1
2 1 1 2 C2
1 1 1 0 C3
2 2 1 0 C4
1 1 1 0 C5
2 2 1 2 C6
0 0 0 0 C7

Python
Flask

Security
Checklist

1 1 1 2 C8
0 0 0 0 C9
1 1 1 2 C10
1 1 1 2 C11
1 1 1 0 C12

Python
Secure
Coding

Checklist

1 1 1 2 C13
0 0 0 2 C14
0 0 1 0 C15
1 1 1 0 C16

Table 3: Secure Coding Checklist Results for Python

Keywords Determinism Undecidable Improper Lacking Checklist
Issues Generalization Context

Web
Development

Security
Checklist

1 1 2 0 C17
1 1 2 2 C18
1 1 2 0 C19
1 1 2 2 C20
1 1 1 2 C21
0 1 1 0 C22
2 1 2 0 C23
1 1 1 2 C24
1 1 2 1 C25

Table 4: Secure Coding Checklist Results for Web Development

A single flaw is all that is needed – or a single misunderstanding of what a checklist item
is asking for. If a checklist item is created, it should be deterministic, decidable, have
proper generality, and an appropriate context. Otherwise, although it may communicate
important information, it should be moved out of a checklist format and into a ”guide”
or ”tutorial” where appropriate explanation can be given and there is no connotation of
”security completeness” due to the delivery format.

We observed some interesting variation in the results based on the programming language.
Checklists for Java web applications exhibited the lowest percentage (25%) of determinism
issues, that only 2 of 8 checklists have part of determinism issues. Their lower non-
determinism was primarily attributable to the fact that the majority of the Java checklists
in the top ten Google search results specifically targeted the Spring Framework and gave
concrete guidance on configuration of Spring beans and the Spring Security Framework
that could easily be checked. Secure coding checklist results found with the Spring keyword
overall struck a fine balance between specificity, breadth, and relevance. Checklist items
were confined to addressable, framework-specific programming prescriptions, and gave

Computer Science & Information Technology (CS & IT) 289

Keywords Determinism Undecidable Improper Lacking Checklist
Issues Generalization Context

Java
Security
Checklist

1 1 2 0 C26
1 1 2 0 C27
2 1 2 2 C28
2 2 2 2 C29
2 1 2 2 C30
2 2 2 2 C31

Java Spring
Security
Checklist

2 2 2 2 C32
2 2 2 2 C33

Java
Android
Security
Checklist

0 0 0 0 C34
0 0 1 2 C35
1 0 0 0 C36
1 2 1 2 C37
1 2 2 0 C38
0 0 0 0 C39

Table 5: Secure Coding Checklist Results for Java

extensive context as to when the checklist is pertinent. Additionally, these checklists
either provided proper code examples, or proposed existing third-party tools for identifying
common mistakes. For example, in the blog [14] from top search results of ”Java Spring
Security Checklist”, each checking item, which is usually a general security suggestion,
are elaborated in the context of Java Spring with detailed code snippet, so that readers
can easily check if their projects fit this secure coding rule. Besides regular security
suggestions, they also recommend users to use OWASP ZAP [15], a security tool, to
perform penetration testing in their Spring application.

Results for Android secure coding checklists, overall, scored most poorly out of all Java
checklists, that 4 of 6 checklists have bad performance in our evaluation metrics. Though
nearly every checklist highlighted the best-known Android vulnerabilities, most lacked
any additional context. Furthermore, several checklists provided many non-deterministic
items for developers to act on. For instance, a checklist mentions that developers should
adopt Firewall to secure the server and API, while it doesn’t either explain assessment of
secure server or provide an external link as a suggestion. Checklists which were specific
to Android often warned developers of broad classes of vulnerabilities to check for, absent
of a decidable action for developers to determine if the vulnerability was actually present
in their codebase.

Django, which is a Python web framework, provides an official security checklist and
an automated checker to apply to your codebase – demonstrating the decidability and
determinism of their items. Each item has a concrete instruction to check it. For example,
instead of only emphasizing keeping secret keys properly, it provides two ways to keep
secret keys(from environment variables or files) [16]. Further, it’s notable that in the
beginning of the official Django checklist, a link to key information that users need to
know in order to understand the related security risks was provided. On the other hand,
we found numerous personal blogs that provided Django security checklists that were not as
carefully crafted and suffered from frequent determinism, generalization, and decidability
issues. For instance, a checklist [17] mentions that outside data is not reliable and should
be validated without providing readers with detailed examples. Users may also have
trouble in deciding if all outside data in their application has been validated.

Computer Science & Information Technology (CS & IT)290

5. Related Work

Checklists have emerged as a popular decision aid in the last decade. Popular books,
such as the best selling novel The Checklist Manifesto [18], have promoted their benefits.
However, checklists do not always provide benefits and can be potentially detrimental if
they create a false sense of cybersecurity. Even in aviation, one of the most successful fields
where checklists are used, significant effort is dedicated to carefully designing checklists [1]
and it would be unheard of to use a casually designed checklist downloaded from a blog.

Many domains have dedicated significant research to showing the contexts in which check-
lists provide benefit. For example, research [19] indicates that checklists can improve the
efficiency of students and teachers in the classroom in certain scenarios. Using checklists
for educational purposes combines the goal of ”providing a list of critical tasks” with the
goal of ”educating users on what tasks they need to know.” However, there is conflict-
ing guidance on whether or not checklists are valuable for educational purposes. Many
resources, such as the ”Checklist for Checklists” published by Project Check [20] explic-
itly warns against using checklists to teach: ”A checklist is NOT a teaching tool or an
algorithm”.

Application of checklists in healthcare has also not been universally successful. Given the
complexity of patient care, checklists were proposed to aid in suppressing the frequency
of a number of potentially life-threatening medical errors. For example, in one checklist
study, infections fell to zero after a doctor at John Hopkins University implemented a
checklist to remind doctors of the necessary steps to prevent infection during a number
of procedures. A WHO pilot project to incorporate surgical checklists proved successful
in a number of pilot hospitals. However, when the project was scaled up outside of the
pilot hospitals, the original benefits were not seen. After evaluating the original checklist,
a new 19-item checklist [21] was developed by WHO, which has demonstrated improved
performance in ensuring surgical safety [22, 23].

In contrast to many other domains, however, secure software development checklists are
not well-studied. The closest research is by Bellovin et al. [4], which investigated potential
risks to using arbitrary checklists to enhance software cybersecurity. Much more additional
research is necessary to help developers and organizations determine when checklists are
appropriate in cybersecurity and the qualities that checklists need to be successful.

The importance of assessing the quality of online materials available for secure software
development has been explored in other literature. Results from a survey illustrated
that informal but more accessible online resources usually have negative effects on coding
security [24], showing the necessity of paying more attention to the quality of online
resources with respect to security. Our research is complementary to this prior work and
specifically focuses on how well checklists are crafted to convey security information.

6. Conclusion

The domains where checklists have been successful are those where the most effort is put
into careful design and testing of the checklists. Aircraft manufacturers put significant
effort into designing checklists for take-off and other operations and have dedicated human
factors experts evaluating them. In the domain of secure coding, however, there are a lot of
checklists focused on helping developers produce secure software. Some of these checklists,
such as the official checklist for Python’s Django web framework, are well-designed and
offer concrete guidance.

At the same time, there are a large number of checklists available that are not nearly as

Computer Science & Information Technology (CS & IT) 291

well crafted. These checklists suffer from significant problems in their decidability, deter-
minism, level of abstraction, and context communication. For example, many checklists
include items of the form ”ensure you are not vulnerable to X”, with no specific guidance
on how to decide if you are vulnerable. Often, determining if a codebase is vulnerable to
”X” is fundamentally undecidable.

Our survey of checklists taught us a number of valuable lessons regarding their design and
usage in the cybersecurity domain:

• Framework-specific checklists provided by the framework developers themselves
were of much higher quality than other checklists. As opposed to many other check-
lists, framework developers would create extremely specific checklist items that were
deterministic and decidable. We assume that framework developers aren’t tempted
to generalize, since they are interested in seeing increased adoption of their frame-
work and not competing frameworks/approaches. Thus, they tend to produce very
precise and actionable checklist items.

• Business marketing content formed some of the poorest quality checklists in
our survey. We found many company blog posts are often structured as ”secure
coding checklists” but are written to be as general as possible and attract a large
number of readers. The checklist items inherently suffer from non-determinism and
undecidability because they are too general to be useful.

• Aiming for reuse may end up being an anti-pattern in cybersecurity checklist de-
sign. The best checklists are highly specialized to the context / language / framework
to ensure that items are deterministic, decidable, not overly broad, and clearly com-
municate what is expected of how they are used. Communicating key vulnerabilities
and ideas in a reusable way is important – but should be done outside of the context
of a checklist. Instead of using the ”checklist” term that connotes ”completeness”,
lists should be used to communicate this type of information.

7. References

[1] A. Degani and E. L. Wiener, “Human factors of flight-deck checklists: the normal
checklist,” 1991.

[2] WHO, “Who surgical safety checklist,” https://www.who.int/teams/integrated-health-
services/patient-safety/research/safe-surgery/tool-and-resources, 2020.

[3] A. B. Haynes, T. G. Weiser, W. R. Berry, S. R. Lipsitz, A.-H. S. Breizat, E. P.
Dellinger, T. Herbosa, S. Joseph, P. L. Kibatala, M. C. M. Lapitan et al., “A surgi-
cal safety checklist to reduce morbidity and mortality in a global population,” New
England Journal of Medicine, vol. 360, no. 5, pp. 491–499, 2009.

[4] S. Bellovin, “Security by checklist,” IEEE Security & Privacy, vol. 6, no. 2, pp. 88–88,
2008.

[5] Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and S. Fahl, “Developers
need support, too: A survey of security advice for software developers,” in 2017 IEEE
Cybersecurity Development (SecDev). IEEE, 2017, pp. 22–26.

[6] M. Malik, “Search engine optimization seo: Business digital marketing success,” 2018.

[7] A. Degani and E. L. Wiener, “Cockpit checklists: Concepts, design, and use,” Human
factors, vol. 35, no. 2, pp. 345–359, 1993.

[8] S. Secured, Secure Code Review Checklist, December 5, 2018. [Online]. Available:
https://www.softwaresecured.com/secure-code-review-checklist/

Computer Science & Information Technology (CS & IT)292

https://www.softwaresecured.com/secure-code-review-checklist/

[9] H. G. Rice, “Classes of recursively enumerable sets and their decision problems,”
Transactions of the American Mathematical Society, vol. 74, no. 2, pp. 358–366,
1953.

[10] L. Burkholder, “The halting problem,” ACM SIGACT News, vol. 18, no. 3, pp. 48–60,
1987.

[11] WikiBooks, Web Application Security Guide/Checklist, November 26, 2011.
[Online]. Available: https://en.wikibooks.org/wiki/Web Application Security
Guide/Checklist

[12] T. Mendo, “Web application security checklist,” https://blog.probely.com/web-
application-security-checklist-ee0479bf60c6, December 6, 2018.

[13] A. B. Licence and I. S. (ABLIS), “Australian standard as 2865-2009: Confined spaces
- western australia,” https://ablis.business.gov.au/service/wa/australian-standard-as-
2865-2009-confined-spaces/29626, 2020.

[14] M. Raible, “10 excellent ways to secure your spring boot application,”
https://developer.okta.com/blog/2018/07/30/10-ways-to-secure-spring-boot, 2018.

[15] OWASP, “Zap,” https://www.zaproxy.org/.

[16] D. S. Foundation, “Django deployment checklist,”
https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/, December
6, 2018.

[17] O’Reilly, “A handy security checklist,” https://www.oreilly.com/library/view/django-
web-development/9781787121386/ch33s02.html.

[18] A. Gawande, Checklist manifesto, the (HB). Penguin Books India, 2010.

[19] K. D. Rowlands, “Check it out! using checklists to support student learning,” English
Journal, pp. 61–66, 2007.

[20] P. Check, A Checklist for Checklists, January 14, 2010. [On-
line]. Available: https://www.projectcheck.org/uploads/1/0/9/0/1090835/
checklist for checklists final 10.3.pdf

[21] W. H. O. (WHO), “Who surgical safety checklist,”
https://www.who.int/patientsafety/ safesurgery/checklist/en/, 2017.

[22] T. G. Weiser, A. B. Haynes, G. Dziekan, W. R. Berry, S. R. Lipsitz, A. A. Gawande
et al., “Effect of a 19-item surgical safety checklist during urgent operations in a
global patient population,” Annals of surgery, vol. 251, no. 5, pp. 976–980, 2010.

[23] A. Fudickar, K. Hörle, J. Wiltfang, and B. Bein, “The effect of the who surgical
safety checklist on complication rate and communication,” Deutsches Ärzteblatt In-
ternational, vol. 109, no. 42, p. 695, 2012.

[24] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky, “You get
where you’re looking for: The impact of information sources on code security,” in
2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp. 289–305.

Computer Science & Information Technology (CS & IT) 293

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

https://en.wikibooks.org/wiki/Web_Application_Security_Guide/Checklist
https://en.wikibooks.org/wiki/Web_Application_Security_Guide/Checklist
https://www.projectcheck.org/uploads/1/0/9/0/1090835/checklist_for_checklists_final_10.3.pdf
https://www.projectcheck.org/uploads/1/0/9/0/1090835/checklist_for_checklists_final_10.3.pdf
http://airccse.org

