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ABSTRACT 
 

The random forest (RF) model is improved by the optimization of unbalanced geological 
hazards dataset, differentiation of continuous geological hazards evaluation factors, sample 

similarity calculation, and iterative method for finding optimal random characteristics by 

calculating out-of-bagger errors. The geological hazards susceptibility evaluation model based 

on optimized RF (OPRF) was established and used to assess the susceptibility for Lingyun 

County. Then, ROC curve and field investigation were performed to verify the efficiency for 

different geological hazards susceptibility assessment models. The AUC values for five models 

were estimated as 0.766, 0.814, 0.842, 0.846 and 0.934, respectively, which indicated that the 

prediction accuracy of the OPRF model can be as high as 93.4%. This result demonstrated that 

the geological hazards susceptibility assessment model based on OPRF has the highest 

prediction accuracy. Furthermore, the OPRF model could be extended to other regions with 

similar geological environment backgrounds for geological hazards susceptibility assessment 
and prediction. 
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1. INTRODUCTION 
 

The geological hazards system is a nonlinear, dynamic and open complex giant system with 

multiple levels of structure, multiple control parameters, multiple time scales, and diverse 
processes [1]. Geological hazards is one of the most serious disasters that can cause not only 

great economic losses and ecological damage, but can also critically threaten the survival of 

human beings and the construction of major projects [2-4]. Therefore, the selection of a suitable 

geological hazards susceptibility assessment method is an important part of geological hazards 
research, which is of great significance to disaster reduction and prevention [4-6]. 
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To date, various models and methods have been developed and applied for assessing geological 
hazards susceptibility in many areas of the world. Among them, the qualitative evaluation method 

based on expert experience is one of the commonly used methods in the early years. Such as 

fuzzy comprehensive evaluation model [7-9], analytical hierarchy process [2,3,7,9-12], and 

weighted linear combination [12], and so on. These methods determine the weight of each 
evaluation factor through expert scoring, being less time-consuming; However dependence on the 

subject experience and analysis judgment of the individual experts leads to lack of consistency 

and portability. 
 

Deterministic model is another commonly used method to evaluate the susceptibility of 

geological hazards, such as the limit equilibrium method. The mode has high reliability based on 

the mechanical models of the relationship between relating factors and geological hazards [13], 
but it requires absolute detailed parameters such as physical, geological environment, tectonic 

lithology, hydrology and so on. Therefore, the availability of data limits the applicability of this 

kind of model to the evaluation of local-scale geological hazards. 
 

In addition, quantitative evaluation is the most widely used method in evaluating the 

susceptibility of geological hazards, such as information value model [2,11,14-16], mathematical 

statistics method [2,6,10,14,16], certainty factor [17,18], logistic regression (LR) [19,20], 
artificial neural network (ANN) [3,4,6,21-23], decision tree (DT) [19,24,25], support vector 

machines (SVM) [6,15,19,26-30], and so on. These methods mainly use mathematical model to 

establish the quantitative relationship between geological hazards and evaluation factors, which 

can quantitatively describe the sensitivity of each evaluation factor in different intervals. 
Meanwhile, the data availability is high and the prediction accuracy is good. However, it is 

difficult to determine the relationship between each factor and geological hazard point in high 

dimensional space, and it is easy to overfit. It’s also hard for these methods to effectively deal 
with the multi-source, multi-class, multi-quantity, multi-modal, and multi-temporal geological 

hazard data accumulated in the long-term geological survey. 
 

Recently, ensemble learning improves the accuracy and generalization ability of the model by 
integrating multiple weak classifiers into a single strong classifier. As a typical and representative 

ensemble learning method, random forests (RF) exhibits robust performance in data classification 

and pattern recognition problems [31]. At the same time, this method does not require the 

background knowledge of the sample and does not need to choose variables, omitting the tedious 
work of data pre-processing. Also, it integrates multiple decision trees by random sampling and 

predicts by majority voting mechanism. Compared with traditional machine learning methods 

such as ANN and SVM, RF has the advantages of fast classification speed, strong noise 
resistance and high prediction accuracy. Moreover, the introduction of randomness makes the 

model not easy to overfit. However, the voting selection mechanism in the RF model will lead to 

some decision trees with low training accuracy have the same voting ability, reducing the voting 
accuracy. Moreover, the number of decision trees and other parameters in RF models may also 

greatly impact the final classification results of RF. 
 

Therefore, the main objective of the current study is to establish a geological hazards 

susceptibility evaluation model based on optimized random forest (OPRF) with strong processing 
ability for high-dimensional and large data sets by combining multiple decision trees. For this 

purpose, the RF model is optimized by optimizing the non-equilibrium data sets, differentiating 

continuous attributes, and improving the similarity calculation. Next, the out-of-bag (OOB) error 
estimation is calculated iteratively to find the best random feature and number. After that, taking 

Lingyun County as the case study, geological hazards susceptibility is divided into four levels for 

Lingyun County by using the OPRF model. Finally, to evaluate the effectiveness of the proposed 
OPRF, field investigation and the area under characteristic (AUC) values of the receiver 
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operating curves (ROC) were used for comparison to the traditional ML classifiers. The 
evaluation results can provide reference for geological hazard prediction and disaster prevention 

and mitigation, and also provide decision support for land use development and rational 

utilization of resources and environment in Lingyun County. 

 

2. STUDY AREA AND DATA TREATMENT 
 

2.1. Study area 
 

Lingyun County is located between longitude 106°23'E to 106°55'E and latitude 24°06'N to 

25°37'N in the northwest part of Guangxi, with a total area of about 2048.40km2 and a total 

population of 193,600, as shown in Figure 1. 
 

 
 

Figure 1.  Location of Lingyun County in Guangxi Province (a) and China (b) 

 

It is situated in the transitional zone of the Yungui plateau and the hilly mountainous area of 
Guangxi. The terrain in the northwest is high and low in the southeast, where in the west it is 

mostly a clastic rock geomorphology area, and in the east it is mainly a carbonate rock 

geomorphology. It belongs to a mountainous area with intervening deep valleys, with the 

mountain area accounting for 93.32% of the total area of the County. There are two main streams 
and 11 tributaries in the county, which belong to the Youjiang River and Hongshui River. Due to 

the strong influence of the southern subtropical monsoon and Karst landform, it is under the 

control of a tropical warm air mass for about half a year. Therefore, heavy rainfalls usually take 
place during the monsoon season (May to September); it has become one of the heaviest rains 

centers in Guangxi, and flood disasters occur from time to time in Lingyun County [32]. 

 
The intricate tectonic framework formed due to the occurrence of three obvious stages of tectonic 

evolution in Lingyun County, such as the Caledonian, Indosinian-Yanshan, and Himalayan 

periods. The exposed strata are mainly clastic rocks of Triassic and Cretaceous, carbonate rocks 

of Devonian, Carboniferous and Permian, accounting for 29.35% and 31.82% of the total area, 
respectively. In addition, there is also 16.30% clastic rock intercalated with siliceous rock, 

11.35% sandstone, shale, conglomerate, 7.35% clastic rock intercalated with limestone. Late 

Cretaceous feldspar quartz porphyry veins with striped distribution, and the thin thickness of the 
Quaternary residual layer is distributed in structural erosion middle-low mountain areas, Karst 

depressions and valleys. 
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In general, it is a fragile geological environment zone and is prone to geological hazards in 
Lingyun County. According to inventory data from the Guangxi Geological Survey Bureau, there 

are 209 geological hazards in Lingyun County (Figure 2), including landslides, unstable slopes, 

collapses, dangerous rocks, and so on. 
 

 
 

Figure 2.  Image of Lingyun County and distribution of geological hazards 

 

2.2. Data source 
 

According to the characteristics of geological hazards and field investigation in Lingyun County, 

it is found that geological hazards susceptibility is closely related to the characteristics of natural 

geography, basic geology, ecological environment, human activities, and so on. In the current 
study, a total of ten geological hazards impacting elements were selected based on the field 

expedition of Guangxi Geological Survey Bureau as model input variables. They are slope, 

aspect, topographic curvature, normalized difference vegetation index (NDVI), annual 
precipitation, strata lithology, tectonic complexity, residential density, road network density, and 

land use and land cover (LULC). The data adopted in the current study are gathered mainly from 

the Guangxi Geological Survey Bureau and Guangxi Meteorological Bureau, as shown in Table 

1. 
 

Table 1.  Data sources of geological hazards impacting elements. 

 

No. Factors Data sources and scale 

1 Slope 

Digital elevation model (DEM) data of 90m 2 Aspect 

3 Topographic curvature 

4 NDVI Landsat 8 OLI image 

5 Annual precipitation Meteorological data 

6 Strata lithology 
Geological map with scale 1:50,000 

7 Tectonic complexity 

8 Residential density 
Topographic map with scale 1:10,000 

9 Road network density 

10 LULC Landsat TM images 
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According to the size of geological hazards, this paper adopts a grid with a resolution of 
30m×30m as the basic unit for the geological hazards susceptibility assessment, with a total of 

2,275,996 evaluation units in Lingyun County. 
 

2.3. Treatment and analysis of geological hazards assessment factors 
 

The classification of geological hazards impacting elements is closely related to the evaluation 

results of geological hazards susceptibility grade. In order to more objectively evaluate the 

susceptibility of geological hazards, the geological hazards impacting elements have been 
classified into different levels (Table 2) according to geological hazards characteristic and 

evaluation criterion developed by Guangxi Geological Survey Bureau for Lingyun County. At the 

same time, the geological hazards impacting elements of Lingyun County were differentiated, 
and the distinct effect is shown in Figure 3(a)-(j). 
 

Table 2.  Geological hazards impacting elements and their Classification. 

 

No. Evaluation factor Classification 

(a) Slope (°) 1-[0,7); 2-[7,13); 3-[13,19); 4-[19,25); 5-[25,34); 6-[34,50); 
7-[50,70); 8-[70,79) 

(b) Aspect (°) 1-[337.5,22.5); 2-[22.5,67.5); 3-[67.5,112.5); 4-

[112.5,157.5); 5-[157.5,202.5); 6-[205.2,247.5); 7-

[247.5,292.5); 8-[292.5,337.5) 

(c) Topographic 

curvature 

1-[-25,-5); 2-[-5,-2.5); 3-[-2.5,-1); 4-[-1,0); 5-[0,1); 6-[1,2.5); 

7-[2.5,5); 8-[5,25) 

(d) NDVI 1-[0,0.01); 2-[0.01,0.09); 3-[0.09,0.17); 4-[0.17,0.25); 5-

[0.25,0.33); 6-[0.33,0.4); 7-[0.4,0.5); 8-[0.5,0.57) 

(e) Annual 

precipitation 

1-[0,1930); 2-[1930,1990); 3-[1990,2050); 4-[2050,2110); 5-

[2110,2170); 6-[2170,2230); 7-[2230,2290); 8-[2290,2350) 

(f) Strata lithology 1-Quaternary; 2-carbonate rock; 3-carbonatite with clastic 

rock; 4-clastic rock intercalated limestone; 5-clasolite 
intercalated with siliceous rocks; 6-clastic rock; 7-sandstone, 

shale, conglomerate; 8-granite or basal rocks 

(g) Tectonic 
complexity 

1-[0,1.4); 2-[1.4,2.7); 3-[2.7,3.8); 4-[3.8,4.9); 5-[4.9,6); 6-
[6,7.3); 7-[7.3,8.9); 8-[8.9,14.4) 

(h) Residential density 1-[0,1.2); 2-[1.2,2.4); 3-[2.4,3.5); 4-[3.5,4.5); 5-[4.5,5.8); 6-

[5.8,7.1); 7-[7.1,8.6); 8-[8.6,12) 

(i) Road network 
density (km/km2) 

1-[0,3.2); 2-[3.2,4.7); 3-[4.7,6.1); 4-[6.1,7.8); 5-[7.8,9.7); 6-
[9.7,11.7); 7-[11.7,13.9); 8-[13.9,15.3) 

(j) LULC 1-cultivated land; 2-woodland; 3-grassland; 4-river and lake; 

5-construction land 
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Figure 3.  Attribute value of geological hazards evaluation factors [(a) slope, (b) Aspect, (c) Topographic 

curvature, (d) NDVI, (e) Annual precipitation, (f) Strata lithology, (g) Tectonic complexity, (h) Residential 

density, (i) Road network density, (j) LULC] 

 
Meanwhile, the information values of each geological hazards impacting element was used to 

measure the impact of each element on geological hazards; the greater the information value, the 

greater the impact on geological hazards, which indicates that the higher the probability of 

occurrence of geological hazards in the region, the higher the susceptibility level [33,34]. The 
information values of each geological hazards impacting element in Lingyun County are shown 

in Figure 4. 

 
Slope is an important indicator in the geological hazards survey process to measure the 

probability of movement of the slope deposits or Quaternary cover [21]. In the current study, the 

slope, aspect and topographic curvature was extracted from the digital elevation model (DEM) 
with 30m resolution by ArcGIS, as shown in Figures 3(a)-(c). At the same time, their information 

value is calculated, as shown in Figures 4(a)-(c). Figure 4(a) shows that the information value of 

the slope decreases first and then increases with the increase of the slope. This indicates that the 

impact of the slope with the occurrence of geological hazards also decreases first and then 
increases, and the impact of the slope with the occurrence of geological hazards is the most 

significant in the range of 50-70 degrees, followed by 35-50 degrees. Figure 4(b) shows that the 

information value of the aspect decreases first and then increases and then decreases and then 
increases with the increase of the aspect, which presents that the impact of the aspect on the 

occurrence of geological hazards is relatively complex, with the least impact in the range of 67.5-

112.5, and the most significant in the range of 292.5-337.5. Figure 4(c) shows that the 
information value of topographic curvature decreases first and then increases with the increase of 

the topographic curvature, which states that the effect of the topographic curvature on the 

occurrence of geological hazards also decreases first and then increases, with the least effect in 

the range of -1 to 0, and the most significant in the range of 5 to 25. 
 

The vegetation types are diverse, and the forest coverage rate is 71% in Lingyun County because 

it is a subtropical monsoon forest vegetation area, where the climate is mild, it is wet and rainy, 
and natural soil fertility is good. The NDVI of Lingyun County were extracted by Landsat 8 OLI 

image (2017/5/3, 127/043) and ArcGIS, as shown in Figure 3(d). At the same time, its 
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information value is calculated, as shown in Figure 4(d). Figure 4(d) shows that the information 
values of NDVI decrease with the increase of NDVI, indicating that the effect of NDVI with the 

occurrence of geological hazards decrease with the increase of NDVI. That is to say, the better 

the vegetation cover, the less likely geological hazards will occur. 

 

 

 
 

Figure 4.  Information values distribution of main geological hazards impacting elements [(a) slope, (b) 

Aspect, (c) Topographic curvature, (d) NDVI, (e) Annual precipitation, (f) Strata lithology, (g) Tectonic 

complexity, (h) Residential density, (i) Road network density, (j) LULC] 

 
Precipitation, especially heavy rain or continuous precipitation is the external dynamic factor that 

induces geological hazards [32]. There is plenty of precipitation in Lingyun County, and the 

average annual precipitation is 1235 mm. Under the action of precipitation infiltration, scour, and 
erosion, geological hazards occur from time to time. Meanwhile, the geological hazards and 

frequent periods of heavy rain are basically the same, indicating that the formation of geological 

hazards is closely related to heavy rain in Lingyun County [32]. Figure 3(e) is the annual 

precipitation map and Figure 4(e) is the information value of annual precipitation. Figure 4(e) 
indicates that the information value of precipitation increases with the increase of the 
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precipitation, illustrating that the greater the precipitation, the greater the information value, and 
the greater the impact on the occurrence of geological hazards. 

 

The strata exposed in Lingyun County are mainly carbonate rock and clastic rocks; also there is 

the clasolite intercalated with siliceous rocks, sandstone, shale, conglomerate, and clastic rock 
intercalated limestone, and so on. In the carbonate geomorphology area, rock joints and fissures 

developed, coupled with long-term weathering and dissolution, and rock collapse is easy to occur. 

In Karst depressions and valleys, it is easy to produce collapse under the action of groundwater 
[3], because shallow Karst develops and the thin Quaternary is overburdened. The landform of 

clastic rock is mainly composed of soft mud and shale, alternating with hard sandstone and 

siltstone. The mud shale is easy to weather and soften when it meets water, so it is easy to form a 
weak structural surface, resulting in geological hazards such as landslide, collapse and debris 

flow which are easy to occur. The strata and lithology of Lingyun County is exhibited in Figure 

3(f), and the information value is expressed in Figure 4(f). Figure 4(f) indicates that the 

information value of clastic rock intercalated limestone is the largest, followed by carbonate rock, 
indicating that clastic rock intercalated limestone and carbonate rock are the most advantageous 

for the occurrence of geological hazards. 

 
Fault is a zone with fragile structure and is prone to geological hazards [21]. Different periods 

and different forms of folds and faults with different properties have been formed after the 

occurrence of three strong crustal movements. At the same time, the later crustal rise suffered 
erosion and denudation, which caused some early-formed faults to reoccur, resulting in more 

complex geological structures in Lingyun County. Figure 3(g) states the tectonic complexity and 

Figure 4(g) states the information value of tectonic complexity in Lingyun County. Figure 4(g) 

also states that the information value of tectonic complexity increases with the increase of the 
tectonic complexity, illustrating that the greater the tectonic complexity, the greater the 

information value, and the greater the impact on the occurrence of geological hazards. 

 
The geological engineering conditions of Lingyun are more complex because they are in the 

geological engineering environment composed of carbonate rocks, clastic rocks and loose 

accumulated rocks. As the scope of human activities continues to expand and strengthen, human 

activities such as steep slope cultivation and engineering construction strongly disturbed the 
topography and geomorphology in Lingyun County, which led to the occurrence of geological 

hazards, such as landslide, collapse, collapse, ground fissure, flood, water inrush, leakage, soil 

erosion, and so on. Residential density and road density of Lingyun were calculated, as exhibited 
in Figures 3(h)-(i). Meanwhile, their information values were also calculated, as exhibited in 

Figures 4(h)-(i). Figures 4(h)-(i) exhibit that the greater the density of settlements and roads, the 

greater the information value, the greater the impact on the occurrence of geological hazards. 
 

In addition, there is 303.83km2 of arable land and 1687.95km2 of forest in Lingyun County. 

Figure 3(j) reveals the LULC map of Lingyun County, and its information value is exhibited in 

Figure 4(j). Figure 4(j) reveals that the information value of woodland is the smallest, while that 
of the construction land is the largest, indicating that woodland has the least influence on the 

occurrence of geological hazards, while construction land has the greatest influence on the 

occurrence of geological disasters; this further illustrates that the impact of human activities on 
the occurrence of geological disasters is relatively far-reaching. 

 

2.4. Set up the geological hazards susceptibility assessment database 
 

On the basis of the above, the database of the geological hazards susceptibility evaluation factors 

in Lingyun County was established, with a total of 2,275,996 grid evaluation units and 209 
geological hazards points. Among them, 70% of the geological hazards points (146) were 
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randomly selected as the geological hazards training samples, the rest 30% of the geological 
hazards points (63) were selected as the geological hazards testing samples. Accordingly, the 

non-hazards sample points of 10 times the number of geological hazards points (1460) were 

randomly selected as the geological hazards training samples, and 630 non-hazards sample points 

were selected as the geological hazards testing samples. The aim is to reduce the imbalance and 
spatial autocorrelation between the data of geological hazards points and non-hazards points. 

 

3. METHODS 
 

3.1. RF model 
 

RF is an ensemble learning method that generates a large number of independent training sets and 
multiple classification and regression trees (CART) by combining bagging [35,36]. The 

expression of the model is: 

 

    (1) 

 

where  is the classification regression tree without pruning generated by the CART 

algorithm; X is the input vector;  is the random vector of independent distribution. 

 

In geological hazards susceptibility assessment, first, 146 geological hazards and 1460 non-
hazards sites samples were randomly selected by the bagging method as independent spatial 

training sets. Secondly, 10 geological hazards impacting elements were randomly selected for 

internal node branching without pruning to separately set up the CART tree for each training set 
[35, 36]. Thirdly, the other unselected 63 geological hazards and 630 non-hazards sites data as 

OOB data were to estimate the OOB error for each tree, and the OOB error for all trees is 

averaged to the RF [37]. Finally, the class with the most votes is taken as the geological hazards 

assessment result by synthesizing all decision trees. The specific implementation process is 
shown in Figure 5. 
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Figure 5.  Diagram of RF Algorithm 

 

OOB error consists of unbiased estimates, approximated by cross-validation errors, and is 
bounded by generalization errors in RF [38]: 

 

    (2) 

 

where P* is the generalization error of the RF;  is the average of the correlation between CART 

trees; s is the average intensity of the decision tree. 
 

Formula (2) illustrates that to enhance the generalization ability of RF, it can weaken the 

correlation between decision trees or increase the intensity of decision trees. For this purpose, this 
study introduces randomness to the feature selection of CART trees to weaken the correlation 

between decision trees. 

 
The specific steps are as follows: (1) m features were randomly selected, (m≤10); (2) according 

to the principle of minimum non-purity of nodes, the optimal features are selected from these m 

characteristics to split the nodes; (3) the intensity and correlation of the CART tree are affected 

by m [38]. When m is too small, the intensity of the CART tree is weak; when m is too large, the 
intensity of CART tree increases, but the correlation between CART trees also increases. 

 

In addition, this study further optimizes the RF model by optimizing the non-equilibrium data 
sets, differentiation of continuous attributes, and improving the similarity calculation of RF 

samples. 

 

Original data sets 

Boostrap sampling (Random sampling of 146 hazards and 

1460 non-hazards sites as sample data) 

Training sets 1 Training sets 2 …… Training sets n 

Feature sampling, optimal segmentation, generate CART decision tree 

…… 

 

Result 1 Result 2 …… Result n 

CART 1 CART 2 …… CART n 

63 hazards and 630 non-hazards sites as testing data to 

calculate OOB error 

The final geological hazards assessment result was obtained by voting 



Computer Science & Information Technology (CS & IT)                                   41 

 

3.2. Optimization of non-equilibrium data sets 
 

The sample data in the geological hazards susceptibility evaluation of Lingyun County are 

typically unbalanced data, because the number of geological hazards sites is far less than that of 

non-hazards sites, based on field investigations by the Guangxi Geological Survey Bureau. 
In order to improve the evaluation accuracy, the C_SMOTE algorithm was applied to solve the 

non-equilibrium problem of the sample data. The steps are as follows: 

 

(1) Calculate the central of the hazards sites, recorded as . The formula is as follows: 

 

    (3) 

 
(2) Synthesis of “artificial” samples. The formula is as follows: 

 

    (4) 

 

where  is the total sample number of the hazards sites; r is the attribute of each sample; 

 is the hazards sites sample;  is the center of the hazards sites 

sample;  is the synthetic "artificial" sample; and  is a random 

number within the interval (0, 1). 

 

(3) If the synthetic hazards sites sample number exceeds the actual required sample number, 

then use the under-sampling method to remove some samples far away from the center, 
finally, make the synthesized sample number reach the required equilibrium rate.The flow 

chart is shown in Figure 6: 
 

 
 

Figure 6.  Flow chart of the C_SMOTE algorithm 

 
 

 

 

End Start 

Getting hazards sites dataset 

Calculating the center of gravity 

of the hazards sites dataset 

Calculating the Euclidean distance of all 

hazards sites samples from the center of 

gravity 

Using formula (2) to synthesize new 

samples for each hazards sites samples 

Adding the "artificial" 

samples to the hazards sites 

dataset 

Yes 

Getting the final samples dataset 

Removing hazards sites samples far from the 

center of gravity using under-sampling 

method 
Calculating the distance of the new dataset 

hazards sites samples from center of gravity 

Is the non-

equilibrium rate of 

the dataset less than 

the target value? 

No 



42               Computer Science & Information Technology (CS & IT) 

 

3.3. Differentiation of continuous attributes 
 

There are 2 discontinuous attribute elements and 8 continuous attribute elements for geological 

hazards susceptibility evaluation in Lingyun County. To improve the accuracy of the RF model, 
this study adopts the entropy based on minimal description length principle (Ent-MDLP) to 

differentiate the attribute values of continuous evaluation factors. The steps are as follows: 

 
(1) Dichotomy recursion to find breakpoints. First of all, find the adjacent points of different 

classes, and takes the midpoint between them as the candidate breakpoint T; secondly, each 

candidate breakpoint T can divide the sample set R into two subsets, calculate the information 

entropy of the two subsets respectively, then weight the summation to obtain the classification 
information entropy E(A,T,R); Finally, take the breakpoint T that makes the classification 

information entropy minimum as the final selected breakpoint. 

 
(2) Determine the recursive downtime condition. The minimal description length principle 

(MDLP) is introduced here [38], and the downtime condition is that the information gain G 

should be satisfied: 
 

    (5) 
 

where A is an input variable, T is a breakpoint, R is a sample set, N is the total sample size, k is 

the number of categories; E(R) is the entropy of the sample set R; E(R1) and E(R2) are the 

entropy of the instance set R1 and R2 in each subinterval; and k1 and k2 are the number of 
categories in each subinterval. 

 

3.4. Improving the similarity calculation of RF samples 
 

It is an outstanding advantage of RF over other classifiers that RF can calculate the degree of 

similarity between samples and obtain the similarity matrix between samples. The similarity 
between the two samples can be measured by the frequency at which the two samples appear on 

the same leaf node on each tree, or by the probability that the two samples belong to the same 

class. 
 

Assuming that the number of samples is N, the calculation process of the similarity matrix is as 

follows: First, the sample similarity matrix prox(i,j) is initialized as the all-zero matrix of N row 
N column. Then, all samples are discriminated with each tree generated, and each sample falls on 

one of the leaf nodes of the tree. Finally, for samples i and j, if they all land on the same leaf node 

of the tree, add 1 at row i and column j corresponding to the prox(i,j) matrix. Meanwhile, for the 

similarity between samples falling on different leaf nodes, the prox(i,j) matrix is improved by 
calculating the distance (d) between different leaves. The formula is as follows: 

 

    (6) 

 
where d is the distance between the leaf nodes of sample i and j, and m is any positive real 

number. 

 



Computer Science & Information Technology (CS & IT)                                   43 

 

The above procedure is repeated for each tree in the RF, traverse each tree to get a total addition 
value. Then each element is divided in the prox(i,j) matrix by the total number of trees to get the 

final prox(i,j) matrix. It is a symmetric matrix of N row N columns for prox(i,j) matrix, in which 

the diagonal elements are all 1, and the element of prox(i,j) in line i column j is defined as the 

similarity between sample i and sample j. 
 

3.5. Set up the geological hazards susceptibility assessment model based on OPRF 
 

In order to find the optimal random feature number, the OOB error of OPRF with a different 

random feature number was calculated by the cyclic iterative method, as shown in Figure 7. 

 

 
 

Figure 7.  OOB Error distribution of OPRF with different numbers of random feature 

 

Figure 7 indicates the variation characteristic of the OOB error with the increase of random 

feature number. When the number of random features is 6, the OOB error is the smallest, which 
indicates that the prediction accuracy of the geological hazards susceptibility evaluation model 

based on the OPRF established in the present study is the highest. Currently the number of 

decision trees in this OPRF is 81 and the maximum depth is 20. 
 

4. RESULTS AND DISCUSSIONS 
 

4.1. Model evaluation metrics 
 

Model precision and validation analysis is one of the essential steps for geological hazards 

susceptibility assessment and prediction [39]. Here, to test and verify the improvements and 
scientific significance of the proposed method in the current study, the proposed OPRF model 

was recommended and compared for comprehensive performance comparison with the RF and 

three other models, including LR, ANN, and SVM. The remaining 30% testing samples were 

used to test the five models, and the receiver operating characteristics (ROC) curves and the area 
under the curve (AUC) of each model prediction result were calculated (Figure 8), which is a 

widely used independent performance valuator [40-42]. The prediction performance is assessed 

by the AUC compared with the total plot area. If the AUC is equal to 1, it represents excellent 
prediction capability, while the AUC close to 0.5 represents a poor prediction capability [6, 8, 24, 

30, 43, 44]. Figure 8 exhibits the ROC curves of the LR, ANN, SVM, RF and OPRF models in 

the current study. 
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Figure 8 shows that the AUC values of the LR, ANN, SVM, RF and OPRF models are 0.766, 
0.814, 0.842, 0.846 and 0.934, respectively, which states that the prediction accuracy of five 

models for geological hazards susceptibility assessment in Lingyun County are 76.6%, 81.4%, 

84.2%, 84.6%, and 93.4%, respectively. This result demonstrates that the geological hazards 

susceptibility assessment model based on OPRF has the highest prediction accuracy. which is 
mainly owing to the large number of elements selected in present study, the OPRF model, a type 

of ensemble learning, presented superiorities over a traditional method by not only accounting for 

different types of elements but also assessing the relative importance of the elements in terms of 
geological hazards stability [25]. At the same time, the result also demonstrates that the 

improvements proposed in the current study increase the performance of the RF model in 

evaluating and predicting the geological hazards susceptibility. Consequently, the OPRF model 
can be applied to the geological hazards susceptibility assessment under the same natural 

ecological environment. 

 

 
 

Figure 8.  ROC curves and AUC values of test set for LR, ANN, SVM, RF and OPRF models 

 

4.2. Evaluation results 
 

The geological hazards susceptibility index of Lingyun County is calculated between 0 and 1, 

using the OPRF model, corresponding to the geological hazards susceptibility from low to high. 
At the same time, the Ent-MDLP method was used for the grading treatment, which was divided 

into four grades: [0-0.6776], (0.6776-0.7074], (0.7074-0.7372], and (0.7372-1], corresponding to 

the non-prone region, low-prone region, middle-prone region, and high-prone region, as shown in 
Figure 9. 
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Figure 9.  Evaluation results of geological hazards susceptibility in Lingyun County 

 

Figure 9 shows that the high-prone region of geological hazards is 59.93 km2, accounts for 2.93% 

of the total area in Lingyun County, mainly distributed in the regions of the carbonate rocks, 
where the slope is steep at 34-70 degrees, the aspect is between 292.5-337.5 and 157.5-202.5 

degrees, the topographic curvature is between ±5-25°, vegetation coverage is low, the geological 

tectonic is complex, and the density of residents and road network is large. These regions are 

affected by multi-stage tectonic movement, which makes the joint fissure of rock mass develop, 
and the rock differentiation is strong, causes the frequent occurrence of disasters such as 

dangerous rocks, unstable slope, landslide, and collapse, indicating that carbonate rocks have a 

profound influence on the stability of geological hazards in the region. At the same time, there 
are many towns and traffic lines in these regions, indicating that these regions are strongly 

influenced by human activities. 

 
The middle-prone region of geological hazards is 93.44 km2, accounts for 4.56% of the total area 

in Lingyun County, mainly distributed in the regions of clastic rocks, clastic rock intercalated 

with limestone, and clastic rock intercalated with siliceous rock. Here the slope is from 7 to 34 

degrees, vegetation coverage is low, and moderate density of population and road network. These 
regions have poor rock stability and strong weathering erosion, which provide a good material 

basis for the development of geological hazards. 

 
The low-prone region of geological hazards is 139.31km2, accounts for 6.8% of the total area in 

Lingyun County, mainly distributed near rural settlements where the rock mass is stable, the 

vegetation covers well, and is less disturbed by human activities. 
 

The remaining region is the non-prone area of geological hazards, accounts for 85.71% of the 

total area in Lingyun County, where the rock mass is stable, the vegetation coverage is high, and 

is rarely affected by human activities to maintain its original natural ecological environment. 
 

Figure 9 also indicates that the occurrence of geological hazards has a strong correlation with the 

vegetation index, road network density, and residential density, indicating the far-reaching impact 
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of human activities on the occurrence of geological hazards in Lingyun County. It also indirectly 
illustrates that the construction of human engineering strongly interferes with the natural 

ecological environment of the region and leads to the frequent occurrence of geological hazards. 

Therefore, the research results of the current study also suggest that the stability and carrying 

capacity of the regional natural environment system should be fully considered in human 
engineering construction. 

 

5. CONCLUSIONS 
 
Geological hazards susceptibility evaluation is considered as an important task of geological 

hazards survey and is also the first important step in geological hazards risk assessments. 

Therefore, it is essential to accurately assess and predict geological hazards susceptibility regions 

with high performance-based models. Since performance of all kinds of proposed methods and 
techniques for simulating geological hazards is still being discussed, explorations of new methods 

for the evaluation of geological hazards are highly essential. These explorations will help obtain 

enough background knowledge to achieve some rational conclusions. The rapid development of 
advanced machine-learning allows for systems such as RF with high accuracy and better overall 

performance; use of these is recommended in disaster assessment and prediction. In this current 

study, the geological hazards susceptibility evaluation model based on OPRF was set up to assess 
and divide the hazards levels for Lingyun County. Meanwhile, field investigation and ROC curve 

were used to verify the evaluation results. The following conclusions have been reached in this 

study: 

 
(1) The C_SMOTE algorithm is re-sampled on the line between the negative sample of the 

geological hazards point and the gravity center of the data set, so that the newly generated 

"artificial" sample is always between the center point and the negative sample of the geological 
hazards point; its position is determined by a random number, so it will not deviate from the 

geometric space of the negative sample set of the geological hazards point, and so it will not 

produce the tendency of marginalization, but will be directed towards the center point, thus 
reducing the randomness and blindness. 

 

(2) The Ent-MDLP can better solve the differentiation problem when continuous geological 

hazards factors are increased and there is a lack of enough experience in the geological hazards 
susceptibility evaluation. At the same time, the discrete results show obvious trend characteristics 

and avoid the inconvenience of RF randomness to continuous factor analysis.  

 
(3) When calculating the similarity between samples, for the similarity between samples falling at 

different leaf nodes, the loss of the sample similarity measure caused by “one-size-fits-all” is 

avoided by calculating the path distance d between different leaves to improve similarity matrix 

prox. 
 

(4) The optimal random characteristic number is determined by finding the smallest OOB error of 

OPRF under different random characteristic numbers, which is calculated by iterative method.  
 

(5) AUC values of the ROC curves and field investigation proved that the prediction accuracy of 

the geological hazards susceptibility evaluation model based on OPRF is higher than the original 
RF and the other three models. 

 

In general, the improvements proposed in the current study aim to improve the accuracy and 

overall performance of the RF model for the geological hazards susceptibility evaluation. The RF 
model is improved in three aspects: optimization of unbalanced geological hazards data sets, 

differentiation of continuous geological hazards evaluation factor and the sample similarity 
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calculation. On this basis, the geological hazards susceptibility evaluation model was set up based 
on OPRF. At the same time, the geological hazards susceptibility evaluation model was 

optimized by iteratively calculating the OOB error to find the best number of random features. 

Finally, geological hazards susceptibility is assessed by using the OPRF model, and the 

geological hazards susceptibility levels of Lingyun County are divided. Meanwhile, the accuracy 
and overall performance of evaluation results is verified by field investigation and ROC curves. 

The results indicate that the optimization strategies proposed in the current study are effective for 

the RF model. Furthermore, the OPRF can be expanded to the geological hazards susceptibility 
evaluation under the same natural ecological environment. 
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