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ABSTRACT 
 

Both benign applications and malwares would take packing for their different purposes to 

conceal the real part of the program processes. According to recent research reports, existing 

machine learning (ML) approach-based malware detection engines are difficult to effectively 

classify the packed malwares, especially when they are in low entropy packed. 

 

Recently, we counted and found that the ratio of low-entropy packed ransomware is extremely 

high. This would cause a high error rate of the result on currently used ML approaches. Thus, 

we propose a new method to extract entropy-related features and use a stack model to build up 
an ML malware engine to effectively detect low-entropy packed malwares. We evaluate our 

method by using over 15,000 malware samples collected from VirusTotal and compare the 

result to related researches. This experience reports our adopted model and features can 

significantly lower the error rate of low-entropy packed detection from 11% to 1%. 
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1. INTRODUCTION 
 
Machine learning has already been widely used in many fields, such as data analytics, predictive 

analytics, natural language processing (NLP), sentiment analysis, computer vision, and 

information security. In the field of information security, malware detection has already been 

applied to improve detection accuracy. 
 

In the normal process of machine learning, the selected features are extracted from each sample 

of the training set. These features are used to train a model that can be used to detect malware. If 
the model learns the features of samples correctly, then it can be used to detect malware, which 

has similar characteristics to such samples. However, the attackers try to use obfuscated 

techniques to disguise malware to a normal executable file. Attackers adopt several common 
obfuscation techniques, such as packing, encryption [12], data confusion. After such processing, 

the extracted features from the sample could differ from the original features. In addition, these 

incorrect features may lead to incorrect prediction results by the pre-trained model, and this case 

was discussed by Aghakhani et al. [4]. 
 

The above-mentioned problem is commonly solved by determining whether packing is performed 

before extracting features from the sample. According to the result of judgment, different 
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processing methods are used for packed and non-packed samples. Thus, the correct judgment 
could be used to extract the correct features. Moreover, the correct features can lead to the correct 

prediction. 

 

Previously, most researchers almost use entropy [1] [9] [10] to judge whether a new sample is a 
packed. Entropy is a metric used to measure the uncertainty in a series of numbers or bytes. 

Moreover, packing is a technique that can hide or disguise the internal behavior of samples. In 

addition, if an attacker uses a packer to pack a sample, the corresponding bytes between the 
original and packed samples differ considerably. Thus, the entropy value of a packed sample is 

assumed to be high. That is, a sample with high entropy is assumed to be the same as a packed 

sample. 
 

However, in some exceptional cases, the results of known methods or tools show the packed 

samples to possess low entropy. Such cases have already been mentioned in previous studies [8]; 

however, these were not considered, because the authors claimed that such a case is extremely 
rare and can therefore be disregarded. 

 

We collected ransomware samples from the VirusTotal dataset [13], with the time interval 
between July 2019 and June 2020. We used YARA tool [14] and PEPackerInfo [15] to judge 

whether these samples are packed and determine their entropy values. The threshold value that 

indicates whether the sample has low entropy is 7, which was also adopted by previous studies 
[2]. Table 1 shows that low-entropy packed samples not only exist but also take a large 

proportion in the dataset of our collected packed samples. Obviously, it is quite different with the 

claim of Han et al [8]. Thus, the larger percentage of low-entropy packing ransomware is, the 

higher possibility of detection error rate is. If the case of ransomware is extended to all malware, 
it is not to ignore the influence of low-entropy packing malware to detection error rate anymore. 

 

Table 2 shows the best detection result of the error rate of the machine learning model with 
entropy-related features in the research of Mantovani et al. [3]. They attempted to determine the 

effect of low-entropy packed samples on machine learning. Table 2 shows an error rate of at least 

11% by the machine learning model in the detection of packing. This proves that the effect of the 

low-entropy sample is too large to disregard. 
 

Table 1. Statistics of the amount of different entropies in packed samples collected from VirusTotal 

 

 packed 

Collected Time high low 

19/7 1 6 

19/8 0 23 

19/9 1 12 

19/10 0 16 

19/11 16 66 

19/12 3 60 

20/1 328 1785 

20/2 16 96 

20/3 29 339 

20/4 18 1209 

20/5 36 1331 

20/6 8 640 
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Table 2. Best result of error-rate detection using machine learning with entropy-related features [3] 

 

Classifier Train-Testing ErrnotPacked(W) Errpacked(W) 

 

MLP 

75%~25% 6.34% 12.70% 

50%~50% 6.87% 16.14% 

25%~75% 6.89% 11.91% 

 

We have had considered an assumption that if the threshold value is changed from 7 to another 
nearby values, the error rate of machine learning may be decreased. However, this assumption 

has been proved that it is almost not effective for reducing the threshold value. On the contrary, 

the error rate could be increased. Figure 1 shows 341 distinct entropy values in each range in our 
collected low-entropy dataset and the sum of the amount of the different entropies within the 

ranges 5-6 and range 6-7 is 93.5% of the total amount. Because the values are centralized near 7, 

if this threshold is decreased, the error rate could increase. Therefore, we tried to find a method to 
lower error rate without changing threshold value. That is, the objective of this study is to 

decrease the detection error rate of machine learning in low-entropy packing malware so that a 

new model could detect all low-entropy packing malware correctly. 
 

 
 

Figure 1.  Distribution of the amount of distinct entropy values  

in each integer range in the low-entropy dataset 

 

The remainder of this paper is organized as follows: Section 2 provides an overview of literature 

on entropy packing detection and describes the central concept of our adopted model. Section 3 

introduces and details our proposed model. Section 4 details the results of experiments with 
different datasets. Section 5 presents the conclusions of this study. 

 

2. RELATED WORKS 
 
This section first reviews the literature on entropy packing detection in recent years, and then we 

detail as to why we adopted our model as the solution. 
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As described in section 1, entropy has become an indicator of packing in research. Thus, many 
studies [7] [8] have adopted it as main feature or use some of its features in packing. 

 

In 2008, Perdisci et al. [11] proposed features that captured specific anomalies introduced by 

packers in the portable executable (PE) [29] file format. The authors applied pattern-recognition 
techniques for fast detection of packed executables so that only executables detected as packed 

are sent to an universal unpacker such as UPX [16], PackerID [17], and NFD [18]. However, the 

limitation of such a method is that unknown packed files cannot be unpacked because of the use 
of universal unpacking tools. In contrast, we aimed to detect all packing samples that are not 

limited to only those packed by universal packers. 

 
In 2012, Ugarte-Pedrero et al. [5] selected entropy as the main unpacking feature, and conducted 

several experiments by using some samples of the Zeus botnet. Zeus is one of the first bot 

families to adopt a low-entropy packing scheme. However, their proposed method was 

customized to a single specific case. Thus, it fails to consider the samples that use other common 
low-entropy techniques. 

 

In 2016, Raphel et al. [6] attempted to refine the use of entropy to recognize samples adopting an 
XOR-based scheme. XOR encryption is recognized as a form of obfuscation that is mainly used 

to encrypt small parts of a code such as shellcodes. However, their solution aims to a specific 

problem, and the method is therefore not applicable to common packing detections. In contrast, 
our solution can be used for common packing detection. 

 

These researches attempted to solve the entropy-packing detection problem, but their methods 

could not either be a general solution or handle samples which are packed with unusual packers. 
As described in section 1, low-entropy packing problem displays that entropy does not be a 

directly indicator of packing anymore. However, we believe that entropy is still an effective 

factor to judge packing problem. Thus, we proposed a new usage of entropy-related features and 
used these features in our proposed model. Several different algorithms have been proposed for 

packing detection in recent years, for example, random forest [19], deep neural network [20]. 

Although each algorithm has its own advantages, we combined these advantages for building our 

model. Thus, we adopted a stacked model that can combine the results of different models to 
output a balanced result. As a result, the error rate of the model that uses new entropy-related 

features decreases effectively. 

 
The contribution of this study to literature is two-fold. First, we propose a new method for 

extracting entropy-related features. Second, our adopted stacked model effectively decreases the 

error rate by verifying 15,000 samples from two datasets with 0.25% and 0.46% error rates. 
 

3. PROPOSED METHOD 
 

3.1. Detailed Description for Our Adopted Model 
 

In this subsection, we discuss in detail why we chose to combine the advantages of algorithms. 

The first reason is the stability of performance of different algorithms. As described earlier, 

different algorithms have their own advantages because of their own characteristics. For example, 
the support vector machine (SVM) [21] is good at bisection question [33]. However, SVM does 

not perform well in other aspects. Thus, the total performance of a single algorithm is considered 

unstable, and therefore we disregarded the use of only one algorithm to build a model. The 
second reason is the overfitting problem. Each model has the possibility to overfit a specific 

dataset under different conditions. However, the possibility of overfitting multiple models is 
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lower than the possibility of overfitting of a single model. Thus, we adopt a stacked model for 
machine learning. The model comprises three characteristics: the use of multiple models, 

merging the results of multiple models, and lowering the error rate. 

 

3.2. Model Framework Description 
 

Figure 2 depicts the structure of stacked model the inputs of which are the features extracted from 
samples. The model outputs the percentage of unpacking and packing. The process of the stacked 

model is divided into two stages. 

 

The first stage portrays multiple models, the inputs of which are the same as those of the stacked 
model. Although we adopted the four models displayed in the top part of Figure 2 in the first 

stage, they can be replaced by the other models when needed. The outputs of each model display 

the corresponding percentage value of unpacking and packing. 
 

In the second stage, the inputs of the stack model comprise eight output values of the models in 

the first stage. These values are processed by the stacked model, and the balanced values obtained 
after processing are the outputs of the stacked model. 

 

 
 

Figure 2.  Structure of the proposed stacked model 

 

3.3. Feature Selection 
 

In this study, we adopted 7,068 features in our model, and the detailed composition is described 

as follows. Our features are divided into three categories: assembly, byte and keyword features. 
Moreover, we used IDA pro [22] and xxd [23], which is a Linux command, to generate the 

required assembly and byte files. 
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For assembly features, we adopted opcode, registers, and metadata, for which we selected 26 
common registers in the x86 [24] architecture. Similarly, we also chose 93 common opcodes in 

the x86. Finally, we selected 26 metadata of a sample, comprising data such as file size and total 

lines of assembly file. 

 
For byte features, we adopted 1-gram, metadata, byte string lengths, image, and entropy as bytes 

features. The image features were acquired using mahotas [25], which is a Python package, to 

calculate haralick [26] features of a byte image. Further, we adopted 15 entropy-related features 
in this study. Figure 3 shows the distribution of the number of sections in each sample in the 

collected dataset. As shown, the most common number of sections in a sample is five. However, 

15 is the largest number of sections in a sample. To adapt the model itself to most sample cases, 
we decided to adopt 15 entropy values from sample sections. Assuming that the total number of 

sections in a sample is k; if k  15, the remaining 15-k parameters will be assigned as zero. On 

the contrary, if k  15, only the first 15 entropy values will be used, while the others are 
disregarded by the system. 

 

 
 

Figure 3.  Distribution of amounts of sections in each sample in collected dataset 

 

For keyword features, we counted the number of occurrences of 6,482 keywords. The keywords 
were decided by the following process. First, we filtered the keywords that occur over 100 

assembly files. Then, these keywords were filtered twice using the feature_importance function 

of the XGBoost [32] model per 10,000 keywords. Next, we acquired 8,580 keywords from the 

filtered processing, and then erased unnecessary keywords, such as memory locations and 
uncompiled data. Finally, we obtained a total of 6,482 keywords. 

 

3.4. Model-Training Method 
 

To prove the effectiveness of the new usage of entropy-related features, we generate two feature 

sets: one containing all of the extracted features from the sample and the other containing the 
extracted features without the 15 entropy-related features. Then, these two feature sets were used 

to train their models separately. 
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4. EXPERIMENTS 
 

4.1. Dataset 
 

We used two datasets in our experiments: one was acquired from [3], and the other was collected 
from VirusTotal; these are termed as dataset1 and dataset2, respectively. The samples collected 

from VirusTotal are all ransomware, and the collecting period is between May 29 and June 30, 

2020. We selected 15,000 and 5,000 samples from dataset1 for training and testing, respectively. 
Similarly, for dataset2, we selected 10,000 samples each as the training and testing sets. 

 

4.2. Data Labelling 
 

For dataset1, we adopted the labels used by Mantovani et al. [3]. The training set of dataset1 

comprises 7,500 packed and unpacked samples each. In addition, the testing set of dataset1 

comprises 2,500 samples each as packed and unpacked. For dataset2, the labels were decided 
using our proposed processing procedure, which is described in the following text. As a result, 

we obtained 5,000 samples each as packed and unpacked samples in the training set as well as in 

the testing. 
 

The proposed processing procedure has two stages. In the first stage, the input was a new 

unknown sample, which was filtered by known tools first. The tools that we used in this stage 
were PackerID, NFD, DIE [27] and ExeScan [28]. If the output of any tool indicates that the 

unknown sample is packed, then this sample will be labelled as packed. However, if all of the 

outputs of the four tools indicate that the unknown sample is unpacked, it will enter the second 

stage. 
 

The second stage uses five static features to distinguish whether the sample is packed. The names 

and detailed descriptions are listed in Table 3. We also tested the performance of several other 
static features, such as the amounts of executable sections, entropy of Portable Executable (PE) 

[29] header, and entropy of whole file. However, the most distinguishable features are the five 

features that we adopted. 
 

Table 3. Description of static features 

 

Features name Descriptions 

rwx section number (rwx) The amounts of sections that can read, write, and 
execute simultaneously 

Non-standard section number (nss) The amounts of sections, the name of which do 

not exist in the Microsoft list 

Execution only section number (exe) The amounts of sections that can only perform the 

execute task 

[.text section] virtual size > rawdata size (.text) In general, the size of a virtual address is greater 

than the size of rawdata in the .text section 

Import number of address table & .dll (iat & 

dll) 

The amount of import address tables < 50 and dll 

< 4 

 

Figure 4 shows the processing flow chart of the second stage. The sample was judged according 
to a specific order of static features sequentially. This process involves the following five steps, 

the results of which is one of True or False. Step 1 analyzes the sample to check whether there 

exists at least a section with the access authorization of read, write and executable 

simultaneously. In step 2, the sample is examined to check whether there exists at least a section 
name that is not listed in the standard section name list of Microsoft [30]. In step 3, the sample is 
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examined to check whether the virtual size of .text section is greater than the rawdata size of .text 
section. In step 4, the sample is analyzed to check whether there exists at least one section that 

owns only the accessibility of executable. In step 5, the sample will be checked to determine 

whether there exists at least one section with 50 import address table and 4 dynamic link 

library (dll) [31]. 
 

 
 

Figure 4.  Diagram of processing flow chart of second stage in data labelling 

 

There are five levels in Figure 4, and the concepts of labelling process in each level described as 

follows:  

 
Level 1: judge if there exists any section that owns access authority of read, write and execute at 

the same time  

Level 2: judge if there exists any non-standard section in sample 
Level 3: judge if there exists the case that the size of virtual address > the size of rawdata in the 

text section 

Level 4.a: judge if there exists any section which only owns execution authority 
Level 4.b: judge if there exists any section whose amount of import address tables < 50 and dll < 

4 

 

4.3. Experimental Result 
 

We conducted two experiments, one using dataset1 and the other using dataset2. In each 
experiment, we trained two models with different features. One uses all extracted features from 

the dataset, while the other uses all extracted features except the entropy-related features from the 

same dataset. 

 
Table 4 shows the result of the error rate of dataset1. We also compared our results with the 

results of Mantovani et al. [3]. Parameter w indicates the vectors of all features, and parameter w’ 

indicates the vectors of all features except the entropy-related features. We observed that the error 
rate of the proposed model with all features of packed samples is better than that of the model in 

[3]. Moreover, the error rate of the packed samples with all features in our model was only 

0.25%. 
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Table 4. Performance of error rate of dataset1 

 

 Errunpack(w) Errpacked(w) Errunpack(w’) Errpacked(w’) 

Dataset1 0.76% 0.25% 0.8% 0.29% 

Mantovani et al. 

[3] 

6.89% 11.91% 6.33% 12.93% 

 

Table 5 displays the results of the error rate of dataset2 compared with the results of Mantovani et 

al. [3]. As shown, the error rate of packed samples using the proposed model with all features is 

still better that of the previous model [3]. In addition, the error rate of our model to dataset2 is 

0.46%. 
 

Table 5. Performance of error rate of dataset2 

 

 Errunpack(w) Errpacked(w) Errunpack(w’) Errpacked(w’) 

Dataset2 1% 0.46% 0.88% 0.48% 

Mantovani et al. 

[3] 

6.89% 11.91% 6.33% 12.93% 

 

Moreover, we observed that the error rate of packed samples with all features is better than the 

error rate of packed samples without entropy-related features, as shown in Tables 4 and Table 5; 
therefore, the effectiveness of the proposed usage of entropy-related features is proved. In 

summary, our proposed model can effectively lower the error rate of detection of packed 

samples, and our new usage of entropy-related features helps to reduce the error rate of the 
model. 

 

5. CONCLUSION AND FUTURE WORK 
 

In this paper, we proposed a new method for extracting entropy-related features. We combined 
these features and other common features and applied them to our adopted stacked model. 

Moreover, our stacked model effectively decreases the error rate. We verified the performance of 

our model using 15,000 samples from two different datasets, the error rates of which were 
obtained as 0.25% and 0.46%. 

 

The training samples of dataset2 that we used in the experiments were collected from 29 May to 

30 June, 2020. Moreover, we continuously collected ransomware samples from VirusTotal. We 
hope to train new models with different lengths of time intervals and evaluate their performances. 

Then, we can decide the best time interval to retrain the model to keep a better performance. 
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