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ABSTRACT 
 

Vegetation is the major cause of overhead power line failures. According to a recent Hydro-

Quebec analysis, more than 60% of the power outages are related to vegetation. Specifically, 

when branches/trees nearby the distribution network interact with extreme weather conditions, 

e.g., melting snow and heavy rain, they may bend and cause power outages. To ensure the 

reliability of our distribution network, millions of dollars are yearly spent for pruning trees and 
trimming branches. Aiming to reduce these costs, we recently adopted a new approach based on 

light detection and ranging (LiDAR) data. Indeed, we scanned 150 km of Hydro-Quebec’s 

network using a mobile LiDAR system. Through data analysis, we target automatic detection of 

hot spots, i.e., locations of threatening branches to distribution lines. However, such an 

operation cannot be accurately completed without a prior efficient detection of poles and lines 

locations, even for incomplete or missing LiDAR data. Hence, we propose here a low-complex 

and robust method for poles/distribution lines detection and lines modelling. Through 

customized filtering and detection, we efficiently detect poles and distribution lines with high 

accuracy and recall. Indeed, poles are detected with an accuracy of 94.5% and a recall of 

89.7%, while lines are detected with an accuracy of 84% and a recall of 98.9%. Finally, our 

approach reconstructs power lines with a distance deviation from the real ones below 20 cm, in 
89% of the cases. Such accuracy is required to automatically evaluate the closeness of 

vegetation to distribution lines and prevent power outages. 
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1. INTRODUCTION 
 
Distribution overhead power lines are often victims of outages caused by vegetation. According 

to a recent study by Hydro-Quebec, vegetation, specifically tree branches, are the cause of more 

than 60% of the power outages in the province of Quebec, Canada [1]. Such phenomenon is 
mainly triggered by extreme weather conditions, such as melting snow, gust, and heavy rain, 

which force the tree branches to bend and hit the power lines causing outages. To improve the 

reliability of the distribution network, power utilities spend millions of dollars yearly to trim and 

cut vegetation and to secure the space around the power lines. At Hydro-Quebec, to identify the 
lines that require vegetation pruning interventions, past historical data on vegetation outages are 

analyzed, then processed to identify the worst lines requiring an immediate intervention. 

Subsequently, the identified lines information is transferred to the "Department of Vegetation 
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Management", which evaluates the intervention tasks. A forester is then sent to inspect visually 
each line, identify the exact locations of the trees to be pruned, and evaluate the workload. This 

process is complex since it involves several resources and expertise, in addition to a high 

coordination level between different departments. 

 
Aiming to optimize these processes, recently we decided, at Hydro-Quebec, to adopt a novel 

colorized light detection and ranging (LiDAR) based approach. Indeed, using a mobile LiDAR 

system (MLS) mounted over a motorized vehicle; we scanned 150 km of our distribution 
network. The MLS is a new scanning technique that uses a dense point cloud laser to measure 

distances between the laser source and any object in the surrounding three-dimensional (3D) 

space, i.e., according to the x, y and z planes.    
 

The MLS technique is becoming popular as it provides a high-level of details and it returns 

valuable information on the vegetation and the asset’s location. Also, its acquisition costs have 

significantly dropped over the last ten years, thus making it an interesting alternative to the 
airborne laser scanning system [2].  

 

The objective of using the MLS point cloud is to automatically detect, as a forester, "The Hot 
Spot", i.e., locations where branches are close to the distribution network. In this paper, we 

present a novel algorithm that accurately detects the location of power poles and distribution 

lines. The detection of the power lines is possible even using incomplete or highly obstructed 
LiDAR data. Thus, any point cloud that is close to the lines are identified as being vegetation. 

Later, this information will be used as an insight for vegetation workload. 

 

1.1. Related Work 
 

Power line mapping using an airborne laser scanning (ALS) system was studied in several works 

[3]-[5]. In many studies the intensity of the laser beam reflection or the height of the pulses are 

used to locate the lines and the transmission pylon. Such techniques are adequate with LiDAR-

based ALS due to the direct line-of-sight between the lines and aircraft above them. However, 
these specific techniques may not be suitable for the distribution network due to the wire 

diameters of the low voltage network [2]. In contrast, the number of LiDAR points per square 

metre collected by the ALS is between half and a tenth of that collected by the MLS, which 

makes the detection of low-voltage lines very approximate. 
 

Power line detection using MLS data was initially investigated in [6]-[8]. In [9], Guan et al. 

presented a method for extracting power transmission lines and pylons from MLS data. After 
removing the ground, they extract the power transmission lines according to the height, spatial 

density, shape, and points’ density criteria. A 3D power line was modelled through its projection 

as a horizontal line in the (x, y) plane and as a two-dimensional (2D) catenary curve in the (x, z) 
plane. This projection procedure simplifies the calculation of the 3D catenary curve parameters. 

Then, the detected lines from the top-down view are clustered and used to accurately detect the 

power poles. However, this method requires high density point clouds for accurate power lines 

detection, which would be inefficient for power lines obstructed by vegetation or with low points’ 
density. The overhead power lines with low point density affect the accuracy of the proposed 

method. 

 
Yadav and Chousalkar proposed in [10] a different power lines extraction method. First, the 

horizontal segments containing power lines are filtered based on the distance between the ground 

and the points’ heights. Then, a 2D density approach is used to remove trees and buildings. 
Finally, the Hough-Transform is applied to extract the lines, and missing lines portions are 

reconstructed using a second-order curve fitting technique. They reported a reconstruction 
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precision rate of 84% in an urban site and of 99% in a rural environment. Although their method 
works well in partially occluded environments, it is still limited for areas heavily occluded by 

vegetation.  

 

Recently, the authors of [2] combined several techniques to improve the detection capability. 
After filtering out the ground and buildings, they extracted horizontal lines from the remaining 

LiDAR point clouds using a modified version of the well-known random sample consensus 

(RANSAC) algorithm. Subsequently, the extracted horizontal line candidates were classified 
based on several criteria, i.e., the vertical distance above the ground, the points’ density, and the 

linearity measure. Next, the authors proceeded with the poles’ detection. The main reason is to 

retrieve less false positive pole candidates based on the detected power line data. Specifically, 
poles closer than 2m to the extracted power lines and where the angle between the lines and the 

poles is approximately 45◦ were detected and retrieved. However, this study did not approximate 

the power lines to compensate for the missing LiDAR points. Moreover, if many power lines 
LiDAR points are missing or are occluded by the vegetation, the lines and poles detection 

procedure would fail. 

 

1.2. Contributions 
 

To tackle the limitations of state-of-art works, we propose in this paper an efficient and powerful 
approach for poles and power lines detection and extraction using MLS acquired data. Then we 

reconstruct overhead model power lines. 

 
The contributions of our work can be summarized as follows: 

 

1.  First, unlike the previous works, we start by detecting the power poles before power 

lines. By doing so, we significantly reduce the system’s complexity since power lines 
detection becomes limited into small volumes bounded by subsequent pairs of poles. 

2.  Second, through our proposed colour-based filtering, the accuracy of our line 

detection method is improved and operates efficiently even in heavily occluded areas 
by vegetation. 

3.  Finally, using a 3D parabola equations system, we rapidly reconstruct the 3D power 

lines shapes with a very high precision rate. 

 

2. PROPOSED POLES AND DISTRIBUTION LINES DETECTION APPROACH 
 

In this study, we develop a new approach for poles and power lines detection, whose steps are 

summarized in Figure 1 and are detailed below. All the described steps were developed with the 
C++ point cloud library (PCL) [11]. 

 
For the sake of clarity, we illustrate the following steps using a sample file of LiDAR data 
selected from the Hydro-Quebec dataset. The sample file contains the LiDAR point cloud of a 

rural single-phase distribution lines corridor, as illustrated in Figure 2. The point cloud contains 

many objects within the area, including the road, the vegetation, the power poles, and the power 
lines. 

 

2.1. Power Poles Detection 
 

Prior to the detection of poles, we reduce the search space within the LiDAR point cloud. To do 

so, we start by removing the ground surface points. This is executed using the "Progressive 
Morphological Filter", proposed by Zhang et al. in [12]. A simple implementation of this filter is 
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available in the PCL library. Consequently, the LiDAR point cloud is reduced, on average, by 
40%.   

 

Next, we cluster the 3D points based on a Euclidean distance rule, applied on the points’ 

locations, and using a point cloud density function. Then, clusters are filtered according to their 
size, width, and height. Figure 3 shows the obtained clusters from the original track. We notice 

that it contains 9 distinct clusters including 7 poles.   

  

 
 

Figure 1: Flowchart of the proposed poles and power lines detection approach 
 

 
 

Figure 2: A sample of collected mobile LiDAR data along a distribution power lines in a rural area 
 
Finally, for each cluster, we use the RANSAC algorithm to detect 3D cylinder shapes from point 

clouds [13]. Each detected cylinder must be parallel to the z-axis with a maximal deviation of 15◦ 
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and should not exceed a diameter of 60 cm with a maximum height of 11.5 m. Furthermore, the 
number of points composing a pole must be more than 3k LiDAR points. When several 

collocated cylinders are detected within the same point cloud cluster, it is inferred that these 

cylinders belong to the same pole. The accuracy of our algorithm is summarized in the next 

section. 
 

 
 

Figure 3: Clustering the point cloud 
 

2.2. Power Lines Detection 
 
Once the poles are detected, we create a plane bounded by two successive power poles. This 

plane offers valuable information to detect power lines. First, it tremendously reduces the amount 

of data to process since power lines are necessarily close to the defined plane. Second, all the 
power lines are inevitably parallel to this plane. When a line is not parallel to our plane, it is 

inferred that it is part of the vegetation. Later, this information will be used as an insight for 

vegetation workload.  

 
To create a plane, at least three non-collinear points are required. Since single-phase distribution 

lines are typically attached at the top of poles, we select the first two points of the plane from the 

top of two consecutive poles. Then, the third point is selected from the bottom of one of the 
poles. In the 3D space, a plane P is characterized by the following equation: 

 

P : ax + by + cz + d = 0,            (1)     
 

where the parameters a, b, c, and d are real numbers and (x,y,z) are the coordinates of a point 

belonging to the plane.  
 

Subsequently, we calculate the distances between any points and the defined plane. Assume that 

a point O has coordinates (x0, y0, z0), then the perpendicular distance from the plane P can be 

defined by 
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d(O,P) = |ax0 + by0 + cz0 + d| / √(a2+b2+c2),            (2) 
 

where |.| is the absolute value function. 

 
In the following step, we filter out all points having d(O,P)>50 cm, as illustrated in Figure 4. 

This operation significantly reduces the number of power lines candidate points, compared to the 

original track. Hence, searching lines using the RANSAC algorithm becomes very efficient and 
returns good candidates with a higher probability of being overhead power lines [14]. 

 

 
 

Figure 4: Filtered point cloud close to the planes delimited by the poles 
 

Indeed, the RANSAC algorithm is very efficient when the number of points to process is low. It 
starts by randomly selecting points and calculates the number of inliers and outliers according to 

a mathematical model, e.g., it selects two points to draw a 3D line and finds inliers and outliers 

within the defined line. This process is iteratively repeated until the highest number of inliers is 
obtained.  

 

In our approach, we propose to classify all the lines detected by RANSAC as follows. When a 
line is parallel to P, it is classified as a power line candidate; otherwise, it is listed as a potential 

branch or vegetation. This classification eliminates the false positive candidates, i.e., the detected 

lines falsely seen as candidates of real power lines.  

 
To classify a RANSAC detected line, which is delimited by extremity points O1(x1,y1,z1) and 

O2(x2,y2,z2), as a good candidate or not, we check if it is parallel to plane P through the following 

condition: 
 

a (x2 – x1) + b (y2 – y1) + c (z2 – z1) = 0.            (3) 
 
Remark. Note that the efficiency of RANSAC in this step is highly dependent on the quality of 

the reduced point cloud. If relying only on the 50 cm distance condition to filter points around the 

defined plane, there is a high probability that several non-relevant points, e.g., vegetation and 
other obstacles, would be kept within the area of interest, particularly when heavily occluded by 
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vegetation. The presence of such points may distort the line detection procedure as RANSAC is 
forced to maximize the number of inlier points, while including them as potential line points.  

In order to tackle this limitation, we propose for the first-time colour-based filtering. Indeed, we 

noticed that typically power line points have a brighter colour than other objects in the 

environment. Hence, we apply a filter that removes dark-coloured points after the distance-based 
filtering. This process is conducted with respect to a selected colour intensity threshold. 

Practically, we only keep the following red-green-blue (RGB) values: 

 

        RGB = (185 ± 75, 185 ± 75, 185 ± 75).             (4)                
 

Although this approach may sacrifice several relevant points, it doesn’t affect RANSAC’s 
performance due to the latter’s robustness using a low number of points. 

 

2.3. Power Lines Modelling 
 

The power lines recorded by the MLS are sometime incomplete or obstructed. Indeed, depending 

on the power line location with respect to the LiDAR scanner’s position, on the height and 
diameter of the line and on the extent of the vegetation’s encroachment, important sections of the 

line are frequently missing or invisible. In this situation, it becomes mandatory to accurately 

model those missing line parts and fully exploit them to recover the absent line sections and 
correctly evaluate the encroachment of the tree branches along the power line. 

 

For the single-phase distribution network, we reconstruct the 3D parabola shape of a power line 
by strategically selecting three points. The first and second points, denoted by O1(x1,y1,z1) and 

O2(x2,y2,z2), are selected from the top of two consecutive poles, while the third point, O3(x3,y3,z3), 

is taken from the detected lines between the same poles. The 3D parabola can be characterized by 

two equations as follows. By projecting the parabola on the (x,y) horizontal plane, it can be seen 
as a line with equation L1 : y=a1x+b1 whereas, when projected on the (x,z) vertical plane, it is 

modelled as a 2D parabola with equation L2 : y=a2x
2+b2x+c2.  

 
By substituting the coordinates of the selected points into L1 and L2, respectively, two systems of 

equations are obtained and solved to determine the parameters. The latter can be given by: 

 

a1 = (y2 – y1) / (x2 – x1)            (5a) 

b1 = y1 – a1 x1                          (5b) 

a2 = [y3 (x2 – x1) + y2 (x1 – x3) + y1 (x3 – x2)] / [(y1-y2) (y1 – y3) (y2 – y3)]            (5c) 

b2 = [(y3)
2

 (x2 – x1) + (y2)
2 (x1 – x3) + (y1)

2 (x3 – x2)] / [(y1-y2) (y1 – y3) (y2 – y3)] (5d) 

c2 = z1 – a2(x1)
2 – b2x1.            (5e) 

 

Figure 5 shows the 3D parabola curves built from the detected poles and lines. As it can be seen, 
it efficiently recovers the line's missing points and returns, with high accuracy, the exact location 

of the single-phase power lines. 
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3. CASE STUDY AND RESULTS  
 

3.1. Case Study 
 

3.1.1. MLS Setup and Datasets  
 

The 3D mobile LiDAR point cloud data was collected with the Leica Pegasus mobile mapping 

system using seven 4 Megapixels cameras and a ZF 9012 sensor, having the accuracy of 9 mm at 
50 m. Data acquisition was realized in Mont-Laurier, Quebec, in October 2019, and the linear 

surveyed distance was 150 km long and included both urban and rural sections. 

 

For this work, we used two datasets of LiDAR points. The first, used for the approach’s 
development and fine-tuning, contains subsections of 68 poles. The second, used for the 

approach’s testing and validation, possesses subsections of 98 poles. Both sets of data are Hydro-

Quebec’s property and cannot be publicly shared. 

 

 
 

Figure 5: Power lines modelling using 3D parabola equation (in red) 

 

3.1.2. Poles Detection Setup 
 

During the clustering step, we keep all the clusters that have a point cloud size between 3k and 

100k points (i.e., the “Point cloud density function” and “Number of points limits” criteria). The 

height of the cluster should not exceed 11.5 m and the width should be less than 2 m. With this 
technique, we only keep potentially good candidates.  

 

For each cluster, we execute the RANSAC 3D cylinder detection algorithm. The diameter and the 
height of the cylinder should not exceed 60 cm and 11.5 m, respectively (i.e., “Cylinder height” 

and “Cylinder diameter” criteria), while its orientation is below 15◦, along the Z-axis. 
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3.1.3. Power Lines Detection and Modelling Setup 

 
After the poles’ detection step, we link the poles two-by-two according to their Euclidean 

distances that should be more than 20 m and less than 65 m. A plane can be created between two 
linked poles, and points that are within a distance up to 50 cm from the plane, with respect to the 

RGB colouring criterion (4), are extracted. The obtained region of interest is then analyzed to 

detect sticks (i.e., 3D lines) that have a radius ranging between 1 cm and 3 cm, and a minimum 
point cloud density of 40 LiDAR points. When the sticks are parallel to the plane and have the 

appropriate length and size, they are selected to mathematically model a parabola between two 

poles.  

 
All the modelled parabolas are ranked according to their proximity with the previously detected 

sticks. The distance between the sticks and the parabola is incrementally processed and should 

not exceed 20 cm.  
 

Finally, the parabola with the highest number of LiDAR sticks points is selected as the best one 

representing the overhead power line.  
 

3.2. Results 
 
In Table 1, we present the pole detection performances in terms of the number of true positive 

poles (i.e., real detected poles), the number of false positive poles, the accuracy, and the recall, 

for different values of the RANSAC minimum height parameter. 
 

Table 1: Poles detection accuraccy and recall for different RANSAC poles height 

 

Min. pole height No. of true 

positive poles 

No. of false 

positive poles 

Accuracy Recall 

7.5 m 154 26 92.7 % 85.5 % 

6 m 157 18 94.5 % 89.7 % 

 
As it can be seen, an accuracy of 92.7% and a recall of 85.5% are obtained for the minimum pole 

height of 7.5 m, while the accuracy and recall increase to 94.5% and 89.7%, respectively, for the 

minimum pole height of 6 m. This is expected since lowering the minimum pole height parameter 

to 6 m allows considering more relevant poles cloud points in the RANSAC algorithm. However, 
going below 6 m would consider irrelevant cloud points causing a high number of false positives.   

The obtained results are promising; however, they require extensive probing to ensure that the 

minimum height parameter value of 6 m is valid for any recorded point cloud cluster. Also, 
depending on the LIDAR hardware tuning and speed of the vehicle, the LIDAR points density 

may vary, thus affecting our algorithm’s performances in terms of accuracy and recall. Hence, 

prior to any LIDAR recording, we strongly recommend using the same hardware settings to have 
reproducible results. 

 

For power lines detection, we reached in our experiments the accuracy of 84%, given minimum 

pole height of 6 m. Such a high result is achieved due to the efficient poles detection and LiDAR 
data filtering steps prior to RANSAC based lines detection. Also, an outstanding line detection 

recall of 98.9% is realized. This result is mainly since all sticks candidates are representative of 

the final solution. Moreover, highly obstructed lines were correctly detected, thus making lines 
detection very efficient compared to state-of-art methods.  
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In order to emphasize the performance of our lines modelling approach, we illustrate in Figure 6 
the distribution of the distance gap between the real and reconstructed power lines, given three 

different reconstruction methods. The latter differ in the selection of the poles’ points O1(x1,y1,z1) 

and O2(x2,y2,z2) when modelling the power lines with 3D parabolas. In each pole, the zi coordinate 

of point Oi (i = 1, 2) is selected as the highest point of the pole. However, optimally selecting (xi, 
yi) coordinates is not straight-forward. Indeed, the extracted cylinder that represents the pole is 

not perfectly cylindrical and can contain cloud points of vegetation, wires, signs, or any 

equipment attached to the pole. 
 

For the sake of simplicity, we developed three methods to adequately select the (xi, yi) 

coordinates (i = 1, 2). Specifically, “Method 1” selects the averaged (x, y) location on the upper 
half subsection of the pole, “Method 2” takes the averaged location on the lower half subsection 

of the pole, whereas “Method 3” selects the average (x, y) location on the central subsection of 

the pole. In Figure 6, both “Method 1” and “Method 3” present the best performances with a 

preference to “Method 1”. Indeed, the obtained distance gap between the real and reconstructed 
lines is less than 10 cm and 20 cm in 66% and 89% of the cases, respectively. In contrast, 

“Method 2” has the worst performance, with a gap of 20 cm or less in 78% of the cases. We 

conclude that the selection of the 3D parabola reconstructing points’ locations is crucial for  
 

accuracy. Hence, a precise 3D parabola model of power lines would allow accurately estimating 

the vegetation closeness and thus evaluating the risk of outages. 

 
 

Figure 6: Distribution of distance gap between real and reconstructed overhead power lines for three 
modelling methods 

 

4. LIMITATIONS AND FUTURE WORK 
 

As demonstrated in the previous section, our approach is effective in detecting poles and power 
lines. However, it is limited to single-phase lines, and still experiences some issues in fully 

occluded environments. In any case, we believe that our approach’s accuracy can be further 

improved using the following rules.  
 

First, more selective filtering techniques should be applied. For instance, we noticed that relevant 

LiDAR data is located at distances less than 7.5 m from the MLS detector. Indeed, the poles are 

usually close to the road and within a clear view from the MLS. Hence, only this data should be 
processed and analyzed. Second, the poles are typically located within one side only of the road. 

Thus, our algorithm can be used on the right or left side of the motorized LiDAR. Once the poles 

and cables are detected on one side of the road, it can skip processing remaining data on the 
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opposite side. To do so, an indicator can be used to guide the detection algorithm and can help 
decide which side of the road to process first. This simple rule reduces the algorithm’s processing 

time by at least 25%.  

 

Finally, recent MLS systems have, in addition to the laser scanner, six digital cameras recording 

360◦ images. These 2D pictures are recorded along the LiDAR scanner data at different 

timestamps.  
 

Since deep learning neural networks are highly efficient in detecting objects in 2D images [15], it 

becomes interesting to integrate this feature into our approach to improve the LiDAR data 

segmentation process. Indeed, combining several images of the same object at different 
timestamps allows building a corresponding frustum in the 3D LiDAR space [16], [17]. The latter 

reduces the original LiDAR space into a small 3D box. Thus, object detection and segmentation 

of the LiDAR data become a simple clustering process. We conducted preliminary experiments 
on this approach, and we had promising results.  

 

In order to generalize our algorithm’s application beyond single-phase line detection, e.g., to 
three-phase power lines detection, additional steps have to be introduced into our approach. For 

instance, since the horizontal distances between the three-phase lines are known, it is easy to 

mathematically split the 3D box between two poles (steps 1-2 in “Power lines detection”, Figure 

1) into three adjacent and parallel planes and their corresponding new 3D boxes. In each new 
plane, a line parabola modelling the phase is then built. Hence, generalization to three-phase line 

detection can be processed with minimum change. 

 

5. CONCLUSION 
 

In this paper, we proposed a new method to recognize and model the overhead power lines. We 

detected with high accuracy poles and power lines, even in heavily occluded environments.  

 
To do so, we proposed an original approach that relies on multiple filters to parse the point cloud 

data, detects at first the poles, detects segments of the lines in second, and finally model the 

distribution lines with precise parabolas. The key idea is to use the locations of the detected poles 
to guide the lines detection and extraction process through simple geometrical operations.  

 

Through our approach, we were able to detect power poles with accuracy up to 94.5%, while 

power lines were detected with the best accuracy of 84% and recall of 98.9%. Also, the 
reconstructed distribution lines, using the 3D parabolas, have a maximum deviation of 20 cm 

from the LiDAR data in 89% of the cases, which is very accurate for our application. 

 
As a future work, further refinements will be applied to generalize our algorithm to detect three-

phase power lines. Also, since 2D poles’ images can be automatically segmented using 

convolutional neural networks, we start using image segmentation to automatically extract 
frustum. First experiments revealed that the power poles cloud detection within a frustum is 

highly accurate and the number of false positive is close to zero. With these promising results, 

our next step is to start detecting all the poles and the distribution lines for the recorded Lidar 

track of 150 km including both urban and rural sections. 
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