
David C. Wyld et al. (Eds): BIoT, DKMP, CCSEA, EMSA - 2021

pp. 91-111, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.110810

HIERARCHICAL SCHEDULING FOR
REAL-TIME PERIODIC TASKS IN
SYMMETRIC MULTIPROCESSING

Tom Springer and Peiyi Zhao

Fowler School of Engineering, Chapman University, Orange, CA, USA

ABSTRACT

In this paper, we present a new hierarchical scheduling framework for periodic tasks in

symmetric multiprocessor (SMP) platforms. Partitioned and global scheduling are the two main

approaches used by SMP based systems where global scheduling is recommended for overall

performance and partitioned scheduling is recommended for hard real-time performance. Our

approach combines both the global and partitioned approaches of traditional SMP-based

schedulers to provide hard real-time performance guarantees for critical tasks and improved

response times for soft real-time tasks. Implemented as part of VxWorks, the results are

confirmed using a real-time benchmark application, where response times were improved for

soft real-time tasks while still providing hard real-time performance.

KEYWORDS

Real-time systems, hierarchical scheduling, symmetric multiprocessing, operating systems.

1. INTRODUCTION

The next generation embedded systems are working to consolidate large complex workloads onto

multi-core platforms with mixed real-time applications. The existing architecture typically uses
distributed uniprocessors connected over a common backplane where one processor may be

assigned a soft real-time (SRT) task set and another processor a hard real-time (HRT) task set.

The problem with this approach is it limits the computational throughput and increases costs as
compared to multi-core platforms. It is for these reasons; designers are looking to re-host these

new complex workloads onto multi-core platforms to reduce the size, weight and power (SWaP)

requirements of traditional distributed systems.

Therefore, in this paper we look into symmetric multiprocessing (SMP) because most multi-core

systems use SMP architecture. Briefly, SMP is a computing framework that manages the

processing of tasks across multiple homogeneous processors or cores1 that share a common
operating system, memory and I/O data path. One major challenge for SMP in mixed real-time

scheduling is to effectively balance the competing needs of HRT and SRT tasks, such as temporal

isolation, resource allocation or fault mitigation.

There are two main scheduling approaches for a SMP-based system: partitioned and global

scheduling. Partitioned scheduling binds a task to a specific processor or core while global
scheduling allows a task to migrate across multiple cores. Researchers have studied the

1 Note that core and processor will be used interchangeably to indicate the basic computation unit of the CPU

http://airccse.org/cscp.html
http://airccse.org/csit/V11N08.html
https://doi.org/10.5121/csit.2021.110810

92 Computer Science & Information Technology (CS & IT)

schedulability of both approaches and have concluded that no single method dominates the other
for all task sets [1]. Global scheduling provides better average case response times by

performing load-balancing across multiple cores. However, the superior average case

performance of global scheduling is not easily extended to hard real-time performance

guarantees. For example, when performing load-balancing a global scheduler may migrate a task
to another core and as a result invalidate the local cache. This invalidation process proves costly

and can severely impact the determinism of the affected task.

On the other hand, partitioned scheduling statically assigns tasks to a specific core which can

control task migration. Also known as CPU affinity, the idea is the designer can specify which

tasks to run on a specific core then the scheduler obeys the order and only runs those tasks on the
specified core. It also makes logical sense to bind all the tasks that access the same data to the

same core(s) in this way they do not contend over data and ensure the task receives the full

attention of the processor. However, when tasks are statically assigned to specific cores an

unbalanced load distribution is likely to occur leading to a less than optimal utilization of the
overall system.

Another concern involves the diversity and complexity of the various computational workloads in
these next generation systems. Processing and criticality requirements may vary significantly

where different operating modes could have vastly different workloads. In addition to the

computational variations, mission critical type systems must perform continuously in harsh
environments where they are expected to perform at least a subset of some critical functions

under an overloaded or fault condition. The occurrence of an overload or fault must not hinder

the overall survivability of the embedded system. Consequently, what is needed may be a more

collective type of resource allocation where tasks are assigned resources according to their
functionality requirements. In this way, applications can be grouped by service classes based

upon their processing and criticality constraints.

Unfortunately, traditional SMP-based schedulers are not suitable to this type of collective

resource allocation because they perform fine-grained scheduling at the task level. Since, these

schedulers do not differentiate between tasks of different applications system-wide performance

may not be the ideal metric for application specific requirements. Additionally, HRT and SRT
tasks have competing objectives. HRT tasks require strict timing constraints where deadline

misses are not tolerated. While SRT tasks can accept some deadlines misses but place a greater

premium on task response time.

To solve these issues in this paper we present a new multi-core hierarchical scheduling

framework (HSP) for periodic tasks in SMP-based systems. Our objective is to provide a
hierarchical scheduling mechanism that can more effectively adapt to execution time variations in

mixed real-time environments. Traditionally, the approach to scheduling mixed real-time

applications has been to provide conservative WCET values to ensure the timing correctness of

the HRT tasks. The problem with this approach is it usually leads to underutilized resources and
poor response times because the actual WCET value of a task is rarely realized. As a result we

look to exploit this underutilization by utilizing both the partitioned and non-partitioned

scheduling mechanisms of a SMP-based system.

The benefits of this new scheduler are: (1) Better determinism for hard real-time tasks and

improved response times for soft-real time tasks as compared to the global and partitioned
scheduling methods of traditional SMP-based schedulers. (2) An application based resource

allocation scheme which enhances scalability by reducing excessive interprocessor

communication, bus contention and synchronization overhead. (3) A scheduling mechanism

which provides for improved resource utilization and task acceptance rates. (4) Temporal

Computer Science & Information Technology (CS & IT) 93

isolation for hard real-time tasks where lower priority tasks cannot affect the timing behavior
during overload or fault conditions.

The remainder of this paper is organized as follows. Section 2 provides an overview of the

hierarchical scheduling framework used by our scheduling mechanism. Section 3 discusses
previous work on hierarchical scheduling and SMP based scheduling mechanisms. Section 4

provides an overview of our hierarchical scheduler (HSP). Section 5 presents the schedulability

analysis of our scheduler in a multicore environment. Section 6 utilizes task set simulations to
provide comparisons between our hierarchical scheduling approach and the scheduling

mechanisms for a traditional SMP-based scheduler. Section 7 describes the implementation of

our hierarchical scheduling mechanism as an extension to Wind River’s VxWorks RTOS and
ported onto a commercially available multi-core processor. In Section 8 we conclude with future

work and the research summary

2. PRELIMINARIES

This section provides a discussion of the terminology used in the paper as well as an overview of

hierarchical scheduling to provide as a reference for understanding the overall architecture of

hierarchical scheduling in a symmetric multiprocessing environment.

2.1. Terminology

We consider a periodic task model defined as , where is defined as the task

period, and are defined as the average case execution time (ACET) and the worst case

execution time (WCET) respectively and finally is defined as the relative deadline. It is

assumed that each task is a constrained task such that . Each task must receive

 within or it is considered late. It is also assumed that processor units are assigned to a
task in a non-concurrent manner.

A subsystem (i.e. application) consists of a task set defined as a collection of periodic

tasks . A system S consists of n homogenous processors while a subsystem

consists of m processors such that . Each subsystem is characterized by a
multiprocessor resource model [2] which specifies the resource supply provided to the subsystem

(also known as a clustering). The multiprocessor periodic resource (MPR) model is defined as

, where provides the resource budget over time units to a subsystem consisting of

 processors. Therefore, a schedulable subsystem must meet the condition .

In uniprocessor scheduling the supply bound function (sbf) is used to bound the supply required

for schedulability of the subsystem. Authors in [2] extended this approach for hierarchical

multiprocessor frameworks for deriving schedulability conditions of the subsystem. Therefore,

the supply bound function for a multicore subsystem is defined as:

 (1)

where, and . Additionally, a lower bound of the has been derived

for improved schedulability. The lower bound supply function is defined as:

 (2)

94 Computer Science & Information Technology (CS & IT)

The schedule for a subsystem that generates the resource supply in a time interval of is

shown in Figure 1 along with the linear lower bound function. In Figure 2 we define and

.

Figure 1: Supply bound and lower supply function for a subsystem

The MPR model presented by authors in [2] presents a framework that allows a subsystem

exclusive access over a share of the multi-core platform. This share is then guaranteed by the

to provide a minimum resource supply to a subsystem. Therefore, HSP can utilize the MPR

model to provide temporal isolation and schedulability guarantees between subsystems.

2.2. Hierarchical Scheduling

The basic framework of a hierarchically scheduled system [3] [4] for a uniprocessor platform is

composed of multiple applications (subsystems) where each subsystem can be composed of a

single or multiple tasks (see Figure 2). A global scheduler controls which subsystem is allocated
the processor while the local scheduler determines which subsystem’s task should actually

execute

This two-level hierarchical scheduling approach is general enough in that it can be extended to a

multiprocessor platform. In this case the scheduling of tasks within a subsystem, across m

processors can be performed by the subsystem (local) scheduler while the scheduling of
subsystems across the multiprocessor platform is performed by the system (global) scheduler. For

example, consider a system where the overall utilization for each subsystem is and

 then the overall budget is 2.5 and m = 3, then the global

scheduler will provide two units of resource from two processors and the remaining 0.5 units will

be provided by the third processor.

Computer Science & Information Technology (CS & IT) 95

Figure 2: Hierarchical Scheduling Framework example

3. RELATED WORK

Initially an HSF was proposed by authors in [6] [8] as a means to perform composability analysis
for open systems development. The motivation being that it can quickly become intractable to

accurately verify the timing behavior of the embedded system as the complexity increases. The

approach was to verify the timing behavior of each individual subsystem independently then
compose each subsystem into the overall system.

A considerable amount of research has also been performed with hierarchical scheduling in a

uniprocessor environment [4][7][9]. There has also been a fair amount of work in investigating
how resources are shared across subsystems in an HSF [3][5][10]. However, there has not been a

lot of work performed in actually applying a hierarchical scheduler to a multi-core environment.

This lack of research is due in part to the fact that existing hierarchical scheduling algorithms are
not easily extendable to multi-core environments. A couple reasons is that existing algorithms do

not incorporate the inherent parallelism of a multi-core system and unfairness or task starvation

can result if applied in a naïve manner.

Authors in [11] have presented a hierarchical multiprocessor algorithm known as H-SMP which

was designed for a SMP-based platform. Their approach is to take a task set (i.e. an application)

and assign it to the various cores in the subsystem based upon the application’s level of
parallelism and service requirements. Applications with higher service requirements would be

allocated a higher bandwidth partition. For example, applications with soft real-time requirements

would be receive a higher service level than applications with a best-effort type of service
requirement. The primary limitation of this approach is that the CPU partitioning is done

statically based upon a priori simulated workloads which may not represent real-world

applications. In particular this static bandwidth partitioning may not achieve the best CPU
partitioning for a dynamically changing workload. Another drawback is there is no explicit

notion of criticality for adaptability to changing computational environments. In other words,

tasks are assigned fixed budgets based upon their pre-determined WCET values where overly

conservative WCET estimates could lead to system underutilization or higher task rejection rates.

96 Computer Science & Information Technology (CS & IT)

-Additional work was done by authors [12][13] to provide a mixed-criticality scheduling
framework for real-time operating systems (RTOS). Their approach was to use hierarchical

scheduling to temporally isolate tasks of different criticality levels. A different scheduling

algorithm was assigned to each criticality level. For example, tasks with the highest criticality

were assigned a cyclic executive scheduler while less critical tasks were assigned other
schedulers like earliest deadline first (EDF). Temporal isolation is enforced by a server with a

specific budget which is statically assigned to each critically level.

There has also been some work done [14][15][16] in semi-partitioned scheduling in

multiprocessors. The idea is that some tasks are assigned according to the partitioned scheduling

approach while other tasks are assigned by global scheduling and therefore allowed to migrate. In
order to determine how tasks are assigned the authors took a look at the task workload and then

tried to assign that tasks to processors accordingly. For example, tasks with a high workload (i.e.

high utilization factor) would be partitioned while tasks with a low workload would be

scheduled globally. Other approaches have looked at how to assign tasks to reduce cache misses

[17] by using partitioned scheduling for the task most likely to generate a high number of cache
invalidations. The main limitation with these approaches are that the processor assignments are

done a priori with no real notion of criticality for HRT or SRT tasks to adapt to computational

changes, such as task overloads.

In our work we take an adaptive approach where non-critical resources are assigned dynamically

based upon environmental changes. Instead of static partitioning tasks are allocated based upon a
feedback mechanism that the scheduler uses to adjust resource allocation to more effectively

adapt to diverse computational workloads at run time. In order to support a service level

requirement approach like H-SMP tasks are guaranteed a certain budget but are allowed to share

any unused budget by employing capacity sharing mechanisms. A type of capacity sharing
algorithm, known as slack stealing [24] is used which allows a lower-priority task to share the

bandwidth of a higher priority task. In this way critical functions can be guaranteed a certain level

of service but any unused resource can then be re-allocated to task with a lower service level
thereby improving the performance, such as reduced response times, of the lower priority task.

4. HSP ALGORITHM DESCRIPTION

This section provides an overview of the HSP scheduling framework which is used to more
effectively manage HRT and SRT tasks on a symmetric multiprocessing platform. Our approach

employs a two-level hierarchical scheduled framework (see Figure 3) to provide resource

partitioning and temporal isolation between subsystems. Additionally, HSP utilizes elements of
both the partitioned and global scheduling approaches to maximize the benefits of both

scheduling mechanisms.

Computer Science & Information Technology (CS & IT) 97

Figure 3: Hierarchical Scheduling for Multicore Processor

However, unlike uniprocessor based hierarchical scheduling SMP-based hierarchical scheduling
needs to contend with tasks that can be stationary or migratory. In order to account for this added

complication SMP-based hierarchical scheduling requires enhanced functionality which includes:

processor assignment, task set schedulability analysis and run-time scheduling. Processor
assignment is the algorithm that determines how an application is assigned to the various

processors allocated by the subsystem. The tasks that comprise an application are assigned to

processors based upon a combination of mixed-criticality scheduling and semi-partitioned

scheduling. The schedulability analysis determines whether the HRT/SRT task set is schedulable
on a specific processor. Run-time scheduling determines when tasks execute as well as manage

when a task should migrate to another idle core in the subsystem.

4.1. Processor Assignment

HSP like other traditional partitioned scheduling approaches assigns each task to a particular
processor based upon some type of bin-packing heuristics. HRT tasks with strict timing

constraints are assigned to a specific core first according to the chosen heuristic and if the

schedulability condition can be satisfied for that core. In this way HRT tasks can get the full
attention of the processor and improve the deterministic behavior of the task. Consider Table 1

that defines a task set for the example Subsystem1 depicted in Figure 3. According to Table 1

tasks that are partitioned (p) are considered HRT tasks are statically assigned to a specific core
and not allowed to migrate. Tasks that are global (g) are considered SRT tasks and allowed to

migrate across cores in the subsystem. This is similar to mixed-criticality scheduling that assigns

highly critical tasks to specific cores but allows less critical tasks to migrate.

Table 1: Example subsystem task set

Task Core Ti Di

τ1 p 5 1 2 5

τ2 p 10 2 4 10

τ3 p 15 1 3 15

τ4 p 20 2 5 20

5 g 15 1 3 15

τ6 g 20 2 4 20

τ7 g 25 2 5 25

98 Computer Science & Information Technology (CS & IT)

For the purpose of schedulability guarantees the HRT tasks are allocated a budget, by the

hierarchical scheduler, equal to the task’s WCET value , in this way tasks are guaranteed a

fixed processing time by the subsystem’s local scheduler. The HRT tasks are assigned to a core

based upon the next-fit bin-packing heuristic and since the rate monotonic (RM) algorithm is

optimal for fixed priority scheduling it is used as the determination of schedulability for

partitioned tasks (see Algorithm 1). Therefore, the maximum utilization for a core in a

subsystem as defined by RM is:

 (3)

From the example task set shown in Table 1 and the multi-core system depicted in Figure 3 the

HRT tasks would be assigned a particular core as illustrated in Figure 4.

Algorithm 1: HRT Task assignment algorithm

Figure 4: Partitioned task core assignments

After the HRT tasks are assigned to their respective cores the SRT tasks are assigned based upon

the remaining resource capacity. If the SRT task does not fit onto a particular core to support the
full execution capacity then the task is split across cores in the subsystem. Task splitting is based

upon semi-partitioned scheduling which is defined as a task that is executed on processors

Computer Science & Information Technology (CS & IT) 99

where . There are subtasks denoted by , which are synchronized where no

subtasks can run in parallel and each subtask has a computation time such

that . The algorithm for splitting a task is provided in Algorithm 2.

Algorithm 2: Task splitting assignment algorithm

Consider the example provided below of how a task may be split across more than one processor.
To help identify the core(s) with the maximum slack time potential for SRT task processor
assignment.

Figure 4: Split task across two processors

While Figure 5 illustrates how a split task could be split it does not describe the criteria used to
assign the split tasks to the various processors in the subsystem. Traditional approaches have

been to assign each share to processors with subsequent indexes so that would be assigned to

 and would be assigned to . With semi-partitioned scheduling most tasks are assigned to a

particular processor to reduce overhead while the remaining tasks are split to improve

schedulability. The problem with this approach is there is no real notion of criticality and tasks

are assigned to a processor based upon their respective WCET values which are typically
conservative. Our approach with HSP is different in that task criticality is considered by

assigning HRT tasks first ensuring that the tasks will be fixed to a particular processor thereby

reducing runtime overhead. The schedulability is maintained for the SRT tasks by performing
task-splitting and task response times are improved by taking advantage of the potential unused

processing capacity, also known as slack. This slack potential is then used by HSP for processor

assignment of SRT tasks. SRT tasks whether they requiring splitting or not are then assigned to
available cores based upon the maximum slack potential for that core. Note that this slack

100 Computer Science & Information Technology (CS & IT)

potential is determined not by the WCET of a HRT task but rather by their average execution

time denoted by . In this way the maximum potential can be identified which represents a

much less conservative calculation for improving task response times. The set of algorithms for

identifying slack and taking advantage of it is known as slack stealing. A brief overview of slack
stealing is provided in the subsection below; for more detail readers are encouraged to review the

references.

4.1.1. Slack Stealing

According to Equation (3) a task set that meets the criteria will always make its deadlines. The

problem is this criterion is based upon WCET values which are usually conservative calculations
and there tends to be a large gap between the WCET value and the actual processing time of a

HRT task. This gap, known as slack, presents an opportunity to minimize the response times of a

SRT task. Authors in [24][25] describe how the slack is found by mapping out the processor
schedule of the HRT tasks over their hyper-period in a task mapping table. The table is then

examined to determine the slack present between the deadline and the next invocation of the task.

In turn, this table is then examined by HSP to help identify the core(s) with the maximum slack
time potential for SRT task processor assignment.

4.2. Task Scheduling

The local scheduler of a subsystem in HSP is responsible for scheduling of tasks on the various

cores of the subsystem. Scheduling for the HRT tasks are straightforward in that traditional

scheduling mechanisms, such as RM, where the priorities of each task are assigned so that:〖

τ〗_4< τ_3< τ_2<τ_1. Similar to HRT tasks priorities are assigned according to the RM except

SRT tasks always have a lower priority than HRT tasks, such that SRT < HRT, except during

slack stealing periods. During periods of slack stealing the SRT task is temporarily promoted to
the same priority level as the HRT task that finished with some available slack time. In this way

another HRT task of lower priority cannot preempt a SRT task while it is stealing the slack of

another HRT task.

During run-time after a HRT task completes the local scheduler looks to exploit the slack time of

an HRT tasks to improve a SRT task’s response time. The run-time slack of a HRT task is

based upon the budget () of task provided by the subsystem’s local scheduler. The task’s

budget for the subsystem’s local scheduler of a HRT task along with the feedback from the

task provides the information needed to determine if there is any potential slack available to the

SRT tasks. In order to calculate the slack at some arbitrary time t we look at the unused server

budget of an HRT task in the interval . Therefore, the slack is determined by the

length of that interval less than the actual unused budget available from all of the HRT tasks that

fall into that interval. The slack is defined as (t) = that is available to any

SRT task at some arbitrary time t and is the actual processing time of the HRT task. As an

example consider the example task set in Table 1. Figure 6 represents the tasks scheduled on the
first core while Figure 7 represents the tasks scheduled on the second core. The up arrow

represents task start time and the down arrow represents the task completion time.

Computer Science & Information Technology (CS & IT) 101

Figure 5: Core 1 task schedule

Figure 6: Core 2 task schedule

The HRT task set is statically assigned to a core and based upon the next-fit bin-packing heuristic

tasks and are assigned core 1 while tasks and are assigned core 2. The highest priority

SRT task if the first task scheduled to run on either core when there is available processing or

slack time. At time t1 task is allowed to run by stealing the slack from task but at time t2 is

preempted by the HRT task . Task is then allowed to steal slack from task at time t4 and

from task then complete execution by time t7.

5. SCHEDULABILITY ANALYSIS

With the HSP all tasks execute up to their worst case execution time but the local scheduler

prevents the tasks from executing any further. If a task executes further than it is considered

in fault and aborted or considered overloaded and rescheduled until it is safe to be executed

again. This section presents the response time analysis for HSP as it relates to partitioned and
non-partitioned scheduling.

As mentioned in Section 4.1 the tasks are scheduled by a fixed priority preemptive scheduler and
the task priorities are assigned according to the RM algorithm. Priority (p) is derived from the

deadlines of the tasks, such that for any two tasks and their deadlines .

To test for schedulability, the standard Response Time Analysis (RTA) [19] [20] for uniprocessor
scheduling can be extended to HSP. RTA first computes the worst-case completion time for each

task (i.e. response time) and then compares that value to the task deadline, such that

for task . The response time value is calculated using recurrence relations:

102 Computer Science & Information Technology (CS & IT)

 (4)

where hp(i) defines the set of tasks with a higher priority than the task . The general response

time Equation (4) can then be applied to mixed critically systems [12] where the LO-criticality
and HI-criticality mode schedulability can be verified. HSP can then adapt this analysis and apply

it to HRT tasks which are considered HI-criticality and SRT tasks which are considered LO-

criticality. Standard RTA for a uniprocessor can be applied for SRT tasks as follows:

 (5)

where hp(i) is the set of SRT tasks with a higher priority than task . The same analysis can also

be applied to HRT tasks as follows:

 (6)

where hpH(i) is the set of HRT tasks with a higher priority than task . For uniprocessor based

systems the schedulability test is determined by calculating the response times of all tasks in an

interval starting with a critical instant (case where all tasks experience their WCET) and
comparing that to the task deadlines. However it has been shown [20] that it is a NP-hard

problem when analyzing globally scheduled periodic tasks. The issue is that it is not easy to find

a “representative” interval to represent the start of the critical instant. As a result, in a multicore
system only sufficient results can be determined in a reasonable amount of time. Authors in [22]

provide a sufficient RTA-based approach for schedulability tests for global scheduled multicore

systems. The test is based upon the RTA test of Equation (4) and operates as follows:

 (7)

The schedulability analysis for semi-partitioned systems can then be derived by combing

equation (4) and equation (7). To determine the schedulability for SRT and HRT tasks using

average case execution time:

 (8)

where represents the SRT task set average execution times such that:

 (9)

And represents the HRT task set average execution times such that:

 (10)

where hpH(i) is the set of HRT tasks that are assigned to processor . Additionally, to determine
the schedulability for SRT and HRT tasks using worst case execution time:

Computer Science & Information Technology (CS & IT) 103

 (11)

 (12)

 (13)

Consider the task set represented by Table 1 in Section 4.1 the schedulability analysis for both

SRT and HRT would be as follows.

Table 2: Example Task Set with Response Times

Task Core Ti Di
τ1 p 5 1 2 5 1 2

τ2 p 10 2 4 10 2 4

τ3 p 15 1 3 15 2 5

τ4 p 20 2 5 20 4 9

5 g 15 1 3 15 4 15

τ6 g 20 2 4 20 7 29

τ7 g 20 2 5 25 8 58

6. PERFORMANCE ANALYSIS

For the purpose of comparisons, we used a combined SRT/HRT periodic task set that comprised

a single subsystem (i.e. application) and spanned up to m cores, where m = 2, 4, 8. Task periods

 were chosen using a uniform random distribution from the list {0.25Hz, 0.5Hz, 1Hz, 2 Hz,
4Hz, 5Hz, 8Hz, 10Hz, 20Hz, 25Hz, 50Hz, 100Hz, 200Hz}. The list was created to represent

some typical rates of periodic tasks. Overall system utilization () for each processor ranged

from [0.50, 1.00] in increments of 0.05. Individual task utilization (was randomly generated

with an expected value of 0.20 and a standard deviation of 0.15. The number of tasks in the set

were determined by the summation of the individual tasks where . The execution

time was calculated based upon the task period and task utilization such that .
The HRT/SRT tasks were randomly divided from the generated task set with an expected value

of and a standard deviation of n-2.

HSP was compared against four other semi-partitioning algorithms used in mixed-criticality
systems, DU-RM, DU-Audsley [26], DC-RM and DC-Audsley. Each algorithm, including HSP

utilizes the next-fit bin packing heuristic but differ on processor and priority assignment. The

DU-RM algorithm decreasingly assigns tasks based upon the task utilization and determines
feasibility based upon the RM scheduler. In other words the task with the highest utilization

factor is assigned to the first available processor. DU-Audsley is similar to DU-RM except

Audsley’s priority assignment is optimal for a given processor but the complexity is much higher
than RM assignment. The DC-RM algorithm performs processor assignment based upon the

decreasing criticality of a task so HRT tasks would be assigned to a processor before a SRT task.

DC-Audsley also performs processor assignment based upon the task criticality but its priority

assignment is different than DC-RM. Our approach with like DC-RM and DC-Audsley assigns a
task based upon criticality but differs in that if there is not enough available utilization HSP will

spilt tasks across any available processors. This has the potential to significantly improve

schedulability.

104 Computer Science & Information Technology (CS & IT)

For the simulations we generated 10,000 task sets from the parameters described in the previous
paragraph. The task sets were determined to be schedulable if every task in the set was

successfully assigned to the group of cores defined by the subsystem . The performance criteria

for the processor assignment algorithm was determined by the success ratio of the number of

tasks scheduled by the number of submitted tasks accepted, defined as follows:

The overall subsystem utilization was determined by , so that 1.0, 2.0 and 4.0 represents

50% utilization for respectively. The data in Figures 8, 9 and 10 illustrates the results

from = [0.5, 1.0] where HSP clearly provides better schedulability than the other processor

assignment algorithms. Note that the other algorithms start to report failure around 0.5 to 0.7

while HSP does not start to report failure until close to 0.7 to 0.8. This coincides with other work

[21][23] that states maximum schedulability for RM or DM is about 88% for uniprocessors. Also

notice that HSP outperforms the other algorithms as the number of cores increase because this
provides HSP the opportunity to share more of the computation across the various cores in the

subsystem.

Figure 7: Task Set simulation 2 cores

Computer Science & Information Technology (CS & IT) 105

Figure 8: Task Set simulation 4 cores

Figure 9: Task Set simulation 8 cores

7. IMPLEMENTATION

This section defines the design and implementation of HSP in the VxWorks real-time operating

system (RTOS). The work is based upon the architecture presented in [27] and extended to work

in a SMP-based platform.

7.1. Local Scheduler Implementation

The native VxWorks scheduler can schedule tasks using either a preemptive priority based or a

round-robin scheduling policy. In VxWorks 6.x and greater Wind River introduced the concept of

real-time processes (RTP) which more closely resemble processes in general purpose operating

106 Computer Science & Information Technology (CS & IT)

systems like Linux. Tasks in kernel mode or processes in RTP mode are scheduled in the same
way. Processes are created with memory protection so kernel memory space, ISRs and direct

hardware access are prohibited. Tasks that operate in kernel mode have full access to kernel

resources and are not subject to the same limitations as processes in RTP mode

We choose to implement HSP in kernel mode because the overhead in RTPs are prohibitive and

HSP needs access to the kernel resources for task management. HSP was implemented on top of

the native VxWorks scheduler as a type of extension or middleware that sits between the
hierarchical scheduler and the VxWorks native scheduler. The VxWorks RTOS provides

functions to extend the capability so various kernel mechanism can be customized to support

HSP. For example, the scheduler can be extended with either a customized ready queue structure
or to attach an interrupt handler that is executed at every clock tick.

The native VxWorks scheduler dispatches the highest priority task in the ready queue. Our

approach utilizes the system call tickAnnounceHookAdd() that is invoked at every tick interrupt
and called before the native scheduler accesses the ready queue to dispatch the highest priority

task. The ready queue is then manipulated by resuming a task taskResume(), suspending a task

taskSuspend() or setting/changing priorities taskPrioritySet(). The kernel’s tick counter is also
utilized to read tickGet() and set tickSet() as a means to manage the notion of time when the tick

interrupt ISR is invoked.

The primary function of the local scheduler is to arrange tasks in the ready queue at every period

start, in effect extend the VxWorks scheduler to support periodic tasks. The local scheduler is

implemented as part of a custom ISR that is attached with the tickAnnounceAdd() system call.

The system call routines mentioned previously are then called to change the status of the task or
to change task priorities. The native VxWorks scheduler is then invoked to perform the necessary

functions (i.e. context switching) to dispatch the task on the appropriate processor. The pseudo

code listed in Algorithm 3 below provides an overview of the local scheduler.

Algorithm 3: Local scheduler algorithm

The first step of the algorithm is to check if the task is still in the ready queue (lines 2-4) the then
the deadline event queue (DEQ) is updated (line 5) to track the task deadlines. At each period

start tasks are inserted into the ready queue (7-8). Tasks deadlines and periods are updated in the

Computer Science & Information Technology (CS & IT) 107

periodic event queue (PEQ). The next event is then updated by extracting the closet
deadline/period from event queue (lines 11-12). The interrupt is set at the next event and the local

system counter is updated (lines 12-14).

Figure 10: HSP Implementation in VxWorks

7.2. Global Scheduler Implementation

Global scheduling is used to implement the notion of servers in a hierarchical scheduled system.

The global scheduler is responsible for managing all the events in the system which can include

subsystem events, server events and server budget events. The global scheduler itself is a task in
VxWorks with its own task control block (TCB) and task event queue. Figure 11 below illustrates

the implementation of the required data structures to support global scheduling in HSP for

VxWorks.

The TCBs needed to support global scheduling in VxWorks are described in the list below.

ID is a unique number associated with each server.

period_event_queue is a reference to the server’s event queue which contains the task period.

period is the period of the server.

deadline_event_queue is a reference to the server’s task queue which holds the task deadline.

budget is the server defined budget.

remaining_budget is the current remaining budget of the server.

priority is the server’s priority.

scheduling algorithm is the server’s local scheduling algorithm.

Task_TCB is a list to the VxWorks TCB task list. It references those task TCB’s that are
associated with the server.

108 Computer Science & Information Technology (CS & IT)

7.3. Hardware Platform

HSP was implemented as described in the previous section with VxWorks 6.9 on a Freescale

T4240: QorIQ 12 core (24 virtual-core) communications processor.

For evaluation purposes we ported the SNU Real-Time Benchmark Suite [18] and compared

response times and overall system utilization using partitioned, non-partitioned (global) and
hierarchical scheduling. The SNU real-time benchmark suite contains small C programs used for

worst-case execution time analysis. This benchmark was chosen because it is completely

structured (no unconditional jumps, no loop body exits,), no switch or do-while statements and no

library calls or specific systems calls. The programs are mostly numeric and DSP algorithms.
In order to represent the periodic task model of an embedded system a subset of the programs in

the benchmark suite were chosen and assigned arbitrary task rates (see Table 3).

Table 3: Simulated Periodic Task Set

C Program Task Rate
matmul 50Hz 1.7ms 5.1ms

fft1 40Hz 2.7ms 5.4ms

fir 20Hz 10.4ms 20.8ms

lms 10Hz 12.6ms 25.2ms

ludcmp 40Hz 6.8ms 13.6ms

minver 10Hz 3.5ms 10.5ms

qsort-exam 5Hz 2.2ms 11.0ms

The tasks sets were assigned as HRT = { } and SRT = { }. The HRT/SRT task

sets comprised a single subsystem which was allocated two cores in the hierarchical system.

The HRT/SRT task sets were conceived so that if the value for each SRT task was realized

then the task set is not schedulable and an overload condition would result. In order to evaluate
the effectiveness of HSP the execution times of the overall task sets were increased from [0.00,

1.00], where 0.0 indicates all tasks are executed at their respective levels and 1.0 indicates all

tasks are executed at their respective levels. The task response times were measured by the

high resolution counter/timer used as part of the timestamp mechanism by WindRiver’s System
Viewer application. Table 3 was used to represent their respective average case and worst case

execution times for each task in the set.

Computer Science & Information Technology (CS & IT) 109

Figure 11: HRT Task Set Response Time Average

Figure 12: SRT Task Set Response Time Average

Figure 12 represents the measured response times of the HRT task set. To represent each

individual task would create an overly crowded graph so the individual task response times were
normalized and then averaged over the whole task set. Specifically each task response time was

recorded then compared to the respective task’s estimated response time. Let the actual task

response time be defined as , the estimated lower bound response time is , the upper

bound response times is so that the averaged response time difference is defined as:

then the total task set response time average is defined as the average of all for the HRT task
set. What this means is a value of 0.0 indicates the measured task response times were at or near

their respective values and a value of 1.0 indicates values. A value greater than 1.0

signifies that one or more tasks exceeded their deadline. Notice that for HSP the response time

difference hover around 1.0 this is because the local scheduler does not allow other HRT tasks to

execute before a higher priority task execution time. Therefore, before the system starts to

110 Computer Science & Information Technology (CS & IT)

become overloaded around 0.6 the response times for both the partitioned method (RM-P) and
the non-partitioned method (RM-G) outperform those of HSP. Recall, this is an acceptable

situation because with HRT tasks we are less concerned about response times as we are with

HRT timing constraints. Note, that at times 0.6 to 0.7 both RM-P and RM-G methods start to

exceed 1.0 which indicates that tasks in the HRT set are beginning to experience deadline misses
while with HSP no HRT tasks experience deadline misses.

The SRT task set performance is illustrated in Figure 13. Notice that early on before the system
becomes overloaded from 0.0 to 0.4 HSP clearly outperforms both the RM-P and RM-G

methods. This is because the HSP is able to take advantage of the slack generated by the HRT

task set. Once the system starts to become overloaded at 0.5 HSP starts to converge to RM-G
because there is no longer any available slack time. Both the RM-G and the HSP methods

outperform RM-P because they are allowed to migrate across the cores in the subsystem.

8. CONCLUSIONS/FUTURE WORK

In this paper we considered the problem of how to assign and schedule HRT and SRT tasks in a

symmetric multiprocessor environment to more effectively adapt to environmental changes.

Those changes such as unexpected computational workload deviation were managed by
hierarchical scheduling to provide the temporal isolation between tasks. The efficient assigning

and scheduling of processors was accomplished by combining mixed-criticality and semi-

partitioned scheduling. The result was demonstrated improvement of response times for SRT

tasks and schedulability guarantees for HRT tasks where no deadlines were missed during
periods of overload. As further confirmation for the validity of this approach we also

implemented HSP as part of the VxWorks RTOS.

Future work includes evaluating the additional overhead HSP incurs in VxWorks as compared to

traditional scheduling. Additionally, tasks as well as task sets are considered to be completely

independent with no shared resources. A more practical implementation would include HSP
scheduled tasks or subsystems that would have to share a mutual resource such as a semaphore.

REFERENCES

[1] J. Carpenter, S. Frank, P. Holman, A. Srinivasan, J. Anderson and S. Baruah. A categorization of

real-time multiprocessor scheduling problems and algorithms. Handbook of Scheduling: Algorithms,

Models and Performance Analysis. CRC Press LLC, 2003.

[2] I. Shin; A. Easwaran, I. Lee. Hierarchical Scheduling Framework for Virtual Clustering of

Multiprocessors. Real-Time Systems, 2008. ECRTS '08. Euromicro Conference on, vol., no.,

pp.181,190, 2-4 July 2008.

[3] R.I. Davis and A. Burns. Resource Sharing in Hierarchical Fixed Priority Pre-emptive Systems. In

RTSS’06.

[4] P. Goyal, X. Guo and H.M. Vin. A hierarchical CPU scheduler for multimedia operating systems. In

OSDI, pp. 107-121, 1996
[5] N. Fisher, M. Bertogna and S. Baraugh. The Design of an EDF-Scheduled Resource-Sharing Open

Environment. In RTSS ’07.

[6] T-W. Kuo, C-H. Li. A Fixed Priority Driven Open Environment for Real-Time Applications. In Proc.

of IEEE Real-Time Systems Symposium, 1999, pp. 256-267.

[7] R.I. Davis and A. Burns. Hierarchical Fixed Priority Pre-emptive Scheduling. Dept. Comp. Sci. Univ

of York, 05.

[8] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open environment. In Proc. of

IEEE Real-Time Systems Symp, 1997, pp. 308–319.

[9] G. Lipari and S.K. Baraugh. Efficient scheduling of real-time multi-task applications in dynamic

systems. In Proc. 6th IEEE Real-Time Technol. Appl. Symp. (RTAS’00), pp166-175.

Computer Science & Information Technology (CS & IT) 111

[10] M. Behnam, T. Nolte, M Sjodin and I Shin. SIRAP: A synchronization protocol for hierarchical

resource sharing real-time open systems. In Proc. 7th ACM and IEEE Int. Conf. Embedded Software

(EM-SOFT 07).

[11] A. Chandra, P. Shenoy. Hierarchical Scheduling for Symmetric Multiprocessor. In IEEE Trans. on

Parallel and Distributed Systems. 2013.
[12] M. Mollison, J. Erickson, J. Anderson, S. Baruah, J. Scoredos. Mixed-Criticality Real-Time

Scheduling for Multicore System. IEEE (CIT 2010).

[13] J. Herman, C. Kenna, M. Mollison, J. Anderson. D. Johnson, RTOS Support for Multicore Mixed-

Criticality Systems. (RTAS 2012)

[14] O. Kelly, H. Aydin, B. Zhao, On Partitioned Scheduling of Fixed-Priority Mixed Criticality Task Set.

(TrustCom 2011)

[15] S. Kato, N. Yamasaki. Semi-Partitioned Fixed-Priority Scheduling on Multiprocessor. (RTAS 2009).

[16] S. Kato, N. Yamasaki, Y. Ishikawa. Semi-Partitioned Scheduling of Sporadic Task Systems on

Mulitprocessor. (ECRTS 2009)

[17] B. Andersson, J. Jonsson. Fixed-priority preemptive multiprocessor scheduling: to partition or not to

partition. (RTSA 2000)

[18] SNU Real-Time Benchmark, http://www.cprover.org
[19] M. Joseph and P. Pandya. Finding response times in a real-time systems. BCS Computer Journal

pp390-396, 2009

[20] N. Audsley, A. Burns, M. Richardson, K. Tindell, A. Wellings. Applying new scheduling theory to

static priority preemptive scheduling. Software Engineering Journal, pp284-292, 1993

[21] L. Papalau, P. Samalik. Design of an Efficient Resource Kernel for Consumer Devices, Stan

Ackermans Institute, Eindhoven University if Technology, Eindhoven, Holland 2000.

[22] M. Bertogna, M. Cirinei. Response-Time Analysis for globally scheduled Symmetric Multiprocessor

Platforms, RTSS 2007.

[23] J. Lehoczky, L. Sha, Y. Ding, The Rate Monotonic Scheduling Algorithm: Exact Characterization

and Average Case Behavior, IEEE Real-Time Systems Symp. 1989.

[24] R. Davis, K. Tindell, A. Burns, Scheduling Slack Tine in Fixed-Priority Pre-emptive Systems. In
Proc. Real-Time Systems Symp. 1993.

[25] U., José M., J. Orozco, and R. Cayssials. Fast Slack Stealing methods for Embedded Real Time

Systems. 26th IEEE International Real-Time Systems Symposium (RTSS 2005)-Work In Progress

Session. 2005.

[26] N. Audsley. Optimal priority assignment and feasibility of static priority tasks with arbitrary start

times. Technical Report, The University of York, 1991.

[27] M. Behnam, T. Nolte, I. Shin, M. Asberg. Towards Hierarchical Schedling in VxWorks. OSPERT

2008, Proc. of the Fourth International Workshop on Operating Systems Platforms for Embedded

Real-Time Applications. 2008

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://www.cprover.org/
http://airccse.org/

	Abstract
	Keywords
	Real-time systems, hierarchical scheduling, symmetric multiprocessing, operating systems.
	7.3. Hardware Platform

