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ABSTRACT 
 
IEEE 802.11n/ac introduced frame aggregation technology to accommodate the growing traffic 

demand and increases the performance of transmission efficiency and channel utilization by 
allowing many packets to be aggregated per transmission which significantly enhances the 

throughput of WLAN. However, it is difficult to efficiently utilize the benefits of frame 

aggregation as stations in the downlink MU-MIMO channel have heterogeneous traffic demand 

and data transmission rate. As a result of this, wasted space channel time will be occurred that 

degrade transmission efficiency. In addressing these challenges, the existing studies have 

proposed different approaches. However, most of these approaches did not consider a machine-

learning based optimization solution. The main contribution of this paper is to propose a 

machine-learning based frame size optimization solution to maximize the system throughput of 

WLAN in the downlink MU-MIMO channel. In this approach, the Access Point (AP) performs 

the maximum system throughput measurement and collects the “frame size-system throughput 

patterns” which contain knowledge about the effects of traffic condition, channel condition, and 

number of stations (STAs). Based on these patterns, our approach uses neural networks to 
correctly model the system throughput as a function of the system frame size. After training the 

neural network, we obtain the gradient information to adjust the system frame size. The 

performance of the proposed ML approach is evaluated over the FIFO aggregation algorithm 

under the effects of heterogenous traffic patterns for VoIP and Video traffic applications, 

channel conditions, and number of STAs. 
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1. INTRODUCTION 
 

Due to the advancement of wireless technologies, IEEE 802.11 based networks are becoming 
more popular, and different technologies have been introduced to improve throughput 

performance. Multi-user multiple-input multiple-output (MU-MIMO) is among the ones at the 

physical layer introduced by IEEE 802.11ac standard to accommodate the increasing demand of 

high data transmission rate by allowing a single Access Point (AP) supports simultaneous 
transmission up to a maximum of eight users at a time [1,2]. This is one of the most crucial 

technologies that has driven wireless local area networks (WLANs) toward the gigabit era. 

Moreover, the wireless medium has a high overhead in terms of bytes that can be higher than the 
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actual payload. To amortize these overheads such as the Medium Access control (MAC) and 
physical (PHY) headers, acknowledgments (ACK), backoff time, and inter-frame spacing, the 

standard also introduced a frame aggregation scheme which has contributed to a high data 

throughput by combining multiple frames, also known as MAC Service Data Units (MSDUs), 

into a single transmission unit [1]. The performance of WLAN depends on different performance 
factors such as frequency channel, modulation, and coding schemes, transmitter power, etc. at the 

PHY layer, and retry limit, frame size, contention window size, maximum number of backoffs, 

etc. at the MAC layer have a significant impact on the performance of WLAN. Optimizing these 
parameters would improve the system performance of WLAN. Frame size optimization is the 

main concern of this study. If a wireless frame size is large, a bit error would destroy the whole 

frame thus the frame success rate decreases, and also the throughput performance degrades [3]. 
On the other hand, if the frame size is shorter, the overhead frames such as MAC and PHY 

headers occupy a large portion of the transmitted frame thus degrade the transmission efficiency 

[3]. IEEE 802.11 standard specified a constant length aggregation strategy regardless of the 

traffic pattern and channel conditions. This contributes to the reduction of channel access 
overhead. However, utilizing the maximum aggregation size may not be optimal in all channel 

conditions and traffic patterns because it may lead to an increase in the delivery of error frames 

and retransmissions [4]. This phenomenon particularly degrades the performance of WLAN in 
downlink MU-MIMO channel when streams have heterogeneous traffic demands such that 

variable transmission rate among spatial streams causes space channel time. Therefore, 

determining the optimal frame size is significant to improve the system throughput of WLAN 
[3,4]. 

 

The development of smart devices, mobile applications, and wireless users’ interaction with 

wireless communication systems are significantly increased and caused a massive amount of 
traffic being generated in the communication network [5]. These challenges have pushed the 

wireless networking industry to seek innovative solutions to ensure the required network 

performance. On the other hand, the release of the new IEEE 802.11 standards such as IEEE 
802.11ax and IEEE 802.11ay, and 5G technologies expand the set of available communication 

technologies which compete for the limited radio spectrum resources in pushing for the need of 

enhancing their coexistence and more effective use of the scarce spectrum resources. In response 

to these performance demands, more recently, Machine Learning (ML) approaches have started 
to attract significant attention and are increasingly used in the context of wireless communication 

systems to generate a self-driven networks that can configure and optimize themselves by 

reducing human interventions [6-10]. The developments of mobile edge caching and computing 
technologies also made it possible for base stations (BSs) to store and analyze human behavior 

for wireless communication [8-10]. Therefore, the evolution toward learning-based data-driven 

network systems helps to develop and realize many of the promising benefits obtained from ML. 
ML is used to develop advanced approaches that can autonomously extract patterns and predict 

trends based on environmental measurements and performance indicators as input. Such patterns 

can be used to optimize the parameter settings at different protocol layers, e.g., PHY, and MAC 

layers [5, 6]. Several frame size optimization schemes are proposed to improve the throughput 
performance of WLAN. For instance, [11] proposed the adaptive frame size estimation scheme 

depending on the channel condition to improve the throughput performance of WLAN in the 

error-prone channel based on the Extended Kalman Filter. By studying the relationship between 
throughput and frame size, [12] illustrated that throughput is a monotonically increasing function 

of the frame size, i.e., the larger the frame size, the better the throughput. However, these 

approaches do not provide a machine-learning based optimization solution and the algorithms are 
not applicable in IEEE 802.11 MU-MIMO enabled WLAN. In considering the channel condition 

and contention effects in WLAN, [13] proposed a machine learning-based adaptive approach for 

frame size optimization, however, this approach is not applicable in MU-MIMO enabled WLAN. 

The main contribution of this paper is to propose a machine-learning based adaptive algorithm to 
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optimize the frame size that would maximize the system throughput in the WLAN downlink MU-
MIMO channel considering the effect of channel condition heterogeneous traffic patterns and 

number of stations. Thus, our proposed ML approach is significant as it can autonomously extract 

patterns and predict trends based on environmental measurements and performance indicators as 

input. 
   

The rest of the paper is organized as follows, in Section 2, we introduce related works about the 

frame aggregation schemes and the performance challenges of multi-user transmissions in the 
WLAN downlink MU-MIMO channel. A detailed problem description of the proposed machine-

learning approach is given in Section 3. In Section 4, results and discussions are presented to 

evaluate the performance of the proposed approach under various channel conditions, traffic 
models, and number of stations. Finally, the conclusions are given in Section 5.  

 

2. RELATED WORK AND OUR MOTIVATION 
 

In this section, some previous works and the effects of frame size determination approaches on 
the performance of WLAN are discussed mainly focusing on the downlink MU-MIMO channel. 

 

2.1. Related Work 
 

Frame size optimization problem has been studied by several researchers for IEEE 802.11 

networks. For instance, employing a specific procedure of dynamically adjusting the frame size, 
[11] proposed a method that deals with frame size estimation based on the extended Kalman 

Filter for saturated networks. They derive the mathematical equation of throughput, which is a 

function of the frame size. The optimal frame size is obtained using differential calculus. 
Bianchi’s Markov chain model studied the relationship between the throughput and frame size, in 

IEEE 802.11 WLANs [12]. However, the assumption of this work is ideal channel which is 

unrealistic. According to the simulation results, the throughput increases with the frame size, i.e., 

the larger the frame size, the better the throughput. A machine learning-based frame size 
optimization approach in considering both channel conditions and contention effects of users is 

proposed by [13]. According to the simulation results, the frame size optimization is effectively 

achieved to maximize the throughput performance of WLAN. However, this approach does not 
support the frame aggregation mechanism and the algorithm is not suitable for IEEE 802.11 MU-

MIMO enabled WLAN. An adaptive algorithm for frame size optimization is proposed by [14] 

which allows an ARQ protocol to dynamically optimize the packet size based on estimates of the 

channel bit-error. The main strategy of this study is, to make estimates of the channel bit-error-
rate, they consider the acknowledgment history, thus based on that the optimal packet size can be 

determined. However, this approach is not suitable for IEEE 802.11 WLAN environments. 

 
Moreover, some studies contributed frame size aggregation schemes in WLAN downlink MU-

MIMO channels to enhance the throughput performance [15-22]. The algorithm in [15] proposed 

a new approach aiming to enhance the system throughput performance of WLAN employing a 
dynamic adaptive aggregation selection scheme to determine the optimal length of the frame size 

in downlink MU-MIMO transmission. The effects of heterogeneous traffic demand among spatial 

streams are considered under the assumption of ideal channel. According to the simulation 

results, the maximum performance of system throughput performance and channel utilization is 
achieved. By extending the work of [15], an adaptive frame aggregation algorithm is proposed by 

[16] in considering the effect of transmission error. Moreover, a data frame construction scheme 

called DFSC [17] proposed to find the length of a Multi-User (MU) frame aiming to maximize 
the transmission efficiency by considering the status of buffers and transmission bit rates of 

stations in both uplink and downlink multiuser transmissions. However, this work did not 
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consider the effect of channel error that could reduce the transmission performance due to 
excessive retransmissions of frames received in error. A frame size-based aggregation scheme is 

proposed by [18] where the authors demonstrated that both the queueing length and number of 

active nodes have significant impacts on the system throughput performance. The main approach 

of this paper is to generate the same frame length in all spatial streams that could maximize the 
system throughput performance. [19] proposed a novel method to determine frame aggregation 

size in MU-MIMO channel to improve channel utilization in considering delay data frames wait 

in transmission queues. Some works in the literature have also been studied focusing on the 
padding problem. According to [20,21], they improved transmission efficiency in the downlink 

MU-MIMO channel by replacing padding bits with data frames from other users in one stream to 

fill the space of frame padding violating the rules of MU transmissions. However, these 
approaches increased the complexity of both the transmission and reception process in wireless 

communication which requires modification of the standard to allow the transmission to multiple 

destinations within a special stream. A frame duration-based frame aggregation scheme is 

proposed in [22] by employing user selection criteria by providing high priority to the MT 
expecting high throughput in the next MU-MIMO transmission and having a large amount of 

data while reducing signaling overhead. The main approach of this study is, by equalizing the 

transmission time of all spatial streams in all MTs according to their Modulation and Coding 
(MCS) level they could achieve the maximum system throughput and minimize space channel 

time in WLAN the downlink MU-MIMO channel. Although all the above proposals contributed 

several schemes to enhance the performance of WLAN, none of them has proposed a machine-
learning based optimization solutions. To the best of our knowledge, there is little research 

explored with the use of ML techniques to tackle frame size optimization problems in WLAN. In 

contrast to these approaches our work attempt to propose a machine learning-based adaptive 

approach for frame size optimization in the WLAN downlink MU-MIMO channel.  
 

2.2. Motivation for this Work 
 

The dynamic adaptive frame aggregation selection scheme can maximize the system throughput 

performance of WLAN while enhancing system throughput performance by minimizing space 

channel time. However, this approach does not consider a machine learning-based optimization 
solution. The motivation of this work comes with the aim of extending the previous work [16] to 

contribute a machine learning base adaptive approach for frame size optimization to maximize 

the system throughput performance of WLAN in the downlink MU-MIMO channel. Thus, we 
can generate a self-driven networks that can configure and optimize themselves by reducing 

human interventions. Moreover, for the growing diversification of services, users, and the 

constantly changing channel and traffic dynamics in a networking system, a ML solution is 

relevant and should be adopted in more effective ways to speed up the decision-making process 
[4–7]. 

 

3. PROPOSED APPROACH 
 
In this topic, the problem definitions and the proposed machine learning approach are discussed. 

 

3.1. Problem Definition 
 

In this paper, we tackle the frame-size optimization problem using a machine-learning-based 

adaptive approach in considering the effects of traffic patterns, channel conditions, and number of 
stations in WLAN downlink MU-MIMO. In this approach, the simulation environment proposed 

by [16] is used to collect the “frame size–system throughput “patterns. The frame size represents 

the average offered traffic load in [Mbps] generated in the system by employing different traffic 
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models (Pareto, Weibull, or fractional Brownian Motion (fBM)) [15, 16]. System throughput is 
defined as the average system data rate at which the AP can successfully transmit to all receiving 

stations. The collected patterns contain knowledge about the effects of traffic patterns, channel 

conditions, and number of stations. Suppose frm is the frame size and Thr is the corresponding 

throughput. Based on these patterns, our approach uses neural networks to build the knowledge 
and accurately model the throughput Thr as a function with respect to the frame size frm. The 

neural network is a good approach to model a system effectively that may contain some noise 

[13, 23]. Thus, after the knowledge building, we obtain the gradient information from the neural 
networks and adaptively adjust the frame size based on the gradient information. In the formation 

of frame-size optimization problem, the throughput Thr is a complex function of the frame size 

frm under some channel conditions and traffic patterns and number of stations, i.e., Thr= f(frm). 
The function f varies with the channel conditions, traffic pattern and number of stations in the 

network. Therefore, how the throughput Thr can be maximized by optimizing the frame size frm 

is the main focus of the problem in this study. 

 

𝑓𝑟𝑚𝑂𝑝𝑡 =  argmax
𝑓𝑟𝑚

𝑇ℎ𝑟 = argmax
𝑓𝑟𝑚

𝑓(𝑓𝑟𝑚) (1) 

 

Therefore, the goal of this approach is to choose the optimal frame size that would maximize the 

objective function Thr. The objective function of this optimization problem defined as the 
throughput Thr= f(frm). However, due to the dynamic effects of channel conditions and traffic 

patterns, it is difficult to analyze and obtain an accurate throughput function f(frm) in all network 

conditions. Thus, we solved such an optimization problem by adopting the well-known gradient 
ascent algorithm [24]. Such that the local maximum of the throughput function Thr = f(frm) can 

be found by adaptively adjusting frame size frm using gradient ascent, by taking steps that are 

proportional to the gradient. Suppose that, at the nth time of adjustment, the frame size is frm(n), 
and the throughput is Thr(n). At the next time of adjustment, the frame size frm is set as: 

 

𝑓𝑟𝑚(𝑛 + 1) = 𝑓𝑟𝑚(𝑛) + ∆𝑓𝑟𝑚(𝑛)                                              (2) 

 
Where ∆𝑓𝑟𝑚(𝑛)  depends on the gradient of the estimated throughput 𝑇ℎ𝑟(𝑛)  with respect to 

𝑓𝑟𝑚(𝑛), i.e., 

 

∆𝑓𝑟𝑚(𝑛) = 𝜇
𝜕𝑇ℎ𝑟(𝑛)

𝜕𝑓𝑟𝑚(𝑛)
          (3) 

 

The parameter μ is a variable adjustment rate heuristically selected for different network 

scenarios. Then, to solve the gradient problem (∂Thr(n))/(∂frm(n)), a machine-learning-based 

adaptive approach is elaborated in the following sub section.  
 

3.2. The Proposed Machine- Learning-based Adaptive Solution 
 

Machine Learning (ML) is an innovative solution that can autonomously extract patterns and 

predict trends based on environmental measurements and performance indicators as input to 

provide self-driven intelligent network systems that can configure and optimize themselves. 
Under the effects of heterogeneous traffic demand among users and varying channel conditions in 

WLAN downlink MU-MIMO channels, achieving the maximum system throughput performance 

is challenging. Online learning (also called incremental learning) and offline learning (or batch 
learning) are types of learning strategies in machine learning [26]. In online learning, the 

algorithm updates its parameters after learning from each individual training instance i.e., it is 

feeded with individual data or mini-baches [25, 26]. This allows the learning algorithm keep 

learning on the fly, after being deployed as new data arrives. The weight changes in online 
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learning made at a given stage depend specifically only on the current training instance being 
presented and possibly on the current state of the model. When an online model has learned from 

new data instances, it no longer needs to use them and can therefore discard them. This can save 

a huge amount of memory space.  

 
Whereas traditional machine learning is performed offline using offline learning which is the 

opposite of online learning [26]. On the contrary, in offline learning, the learning algorithm 

updates its parameters after consuming the whole batch, and the weight changes depending on the 
whole (training) dataset, defining a global cost function [26]. Therefore, in this study to cope with 

the effects of time-varying channel conditions and heterogeneous traffic patterns, the online 

machine learning strategy is employed to achieve the data collection, knowledge building, and 
frame-size adjustment kept online. 

 

The proposed Multi-Layer Perception (MLP) ML approach consists of one hidden layer with four 

neurons and an output layer. The backpropagation algorithm only consists of two passes: 1) a 
forward pass and 2) a backward pass [27]. To obtain the gradient information 𝜕𝑇ℎ𝑟(𝑛)/

𝜕𝑓𝑟𝑚(𝑛) which is used to adjust the frame size, we add a third pass, i.e., the tuning pass as shown 

in Figure 1. In the proposed MLP approach, the backpropagation algorithm is used to adjust the 
network and minimize the error between the actual response and the desired (target). The detailed 

description of the tuning pass is provided as follows including a summary of notations in Table I. 

 

3.2.1. Tuning Pass Strategies 

 

The diagram shown in Figure 1 illustrated the signal flow of the tuning pass in the machine 

learning model to estimate the gradient 
𝜕𝑇ℎ𝑟(𝑛)̃

𝜕𝑓𝑟𝑚(𝑛)
, and the key to adjusting the frame size to 

maximize the throughput. The initial weight is denoted as 𝑤𝑖𝑗
𝑖  in the neural network is randomly 

chosen. The synaptic weights that have been well adjusted in the backward pass are set as fixed 
in the tuning pass. An adaptive learning rate is adopted to improve the convergence speed [25].  

 

 
 

Figure 1. Flow chart of the proposed machine learning approach consisting of tuning pass, which depicts 

the derivation of the local gradients and the gradient for frame size adjustment. 
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In the following discussion, the procedure how the estimated gradient 
𝜕𝑇ℎ𝑟(𝑛̃ )

𝜕𝑓𝑟𝑚(𝑛)
 can be obtained is 

presented. Considering the hidden layer, the local gradient 𝜆𝑗  
(𝑙)

(𝑛) for the tuning pass is defined as 

follows:   

 

𝜆𝑗
(𝑙)

(𝑛) =  
𝜕𝑇ℎ�̃�

𝜕𝑣𝑗
(𝑙)

(𝑛)
  (4) 

Where 𝑣𝑗
(𝑙)

 in equation (4) is the weight sum of synaptic input plus bias of neuron j in layer l. 

 

Similarly, considering the output layer, the local gradient 𝜆1  
(2)

(𝑛) is defined as follows: 

 

𝜆1  
(2)

(𝑛) =  
𝜕𝑇ℎ�̃�(𝑛)

𝜕𝑣1
(2)

(𝑛)
=  𝜕ˊ( 𝑣1

(2)(𝑛) ) = 𝜕(𝑣1
(2)(𝑛))(1 − 𝜕(𝑣1

(2)(𝑛))  (5) 

 

While considering the hidden layer, the local gradient 𝜆𝑗
(𝑙)

(𝑛) can be expressed as follows using 

the chain rule: 

 

𝜆𝑗
(1)

(𝑛) =
𝜕𝑇ℎ�̃�(𝑛)

𝜕𝑣𝑗
(1)(𝑛)

=  
𝜕𝑇ℎ�̃�(𝑛

𝜕𝑣1
(2)(𝑛)

 .   
𝜕𝑣1

(2)(𝑛)

𝜕𝑦𝑗
(1)(𝑛)

  .  
𝜕𝑦𝑗

(1)(𝑛)

𝜕𝑣𝑗
(𝑙)(𝑛)

 

 

𝜆1  
(2)(𝑛).  𝑤1𝑗

(2)(𝑛) .  𝜕ˊ ( 𝑣𝑗
(1)(𝑛))         (6) 

 

Therefore, using the results (5) and (6), the gradient can be written as follows:  
 

𝜕𝑇ℎ�̃�(𝑛

𝜕𝑓𝑟𝑚(𝑛)
=

𝜕𝑇ℎ�̃�(𝑛

𝜕𝑣1
(2)(𝑛)

 .   
𝜕𝑣1

(2)(𝑛)

𝜕𝑓𝑟𝑚(𝑛)
 

= 𝜆1  
(2)

(𝑛) .  
𝜕𝑣1

(2)
(𝑛)

𝜕𝑓𝑟𝑚(𝑛)
(7) 

 

Where 𝑣1
(2)(𝑛), can be defined as  𝑣1

(2)(𝑛)  =  ∑ 𝑤1𝑗
(2)(𝑛)4

𝑖=1 .  𝑦𝑗
(1)(𝑛) . Thus, the second term at the 

rightmost side of equation (7) can be written as: 

 

𝜕𝑣1
(2)(𝑛)

𝜕𝑓𝑟𝑚(𝑛)
= ∑ 𝑤1𝑗

(2)(𝑛)

4

𝑖=1

.  
𝜕𝑦𝑗

(1)(𝑛)

𝜕𝑓𝑟𝑚(𝑛)
 

= ∑ 𝑤1𝑗
(2)(𝑛)

4

𝑖=1

.  
𝜕𝑦𝑗

(1)(𝑛)

𝜕𝑣𝑗
(1)(𝑛)

  .  
𝜕𝑣𝑗

(1)(𝑛)

𝜕𝑓𝑟𝑚(𝑛)
 

= ∑ 𝑤1𝑗
(2)

(𝑛)

4

𝑖=1

.  𝜕ˊ( 𝑣𝑗
(1)

(𝑛) )   .  𝑤𝑗1  
(1) (𝑛) 

= ∑ 𝜆1  
(2)

(𝑛).  𝑤1𝑗
(2)(𝑛)

4 

𝑖=1

.  𝜕ˊ( 𝑣𝑗
(1)(𝑛) )   .  𝑤𝑗1  

(1)
(𝑛) 

=  ∑  𝜆𝑗  
(1)

(𝑛)4 
𝑖=1  .  𝑤𝑗1  

(1)
(𝑛)(8) 

 

Therefore, the gradient 
𝜕𝑇ℎ�̃�(𝑛

𝜕𝑓𝑟𝑚(𝑛)
= ∑ 𝜆𝑗  

(1)
(𝑛)4

𝑖=1 .  𝑤𝑗1  
(1)

(𝑛) (9)  
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The derivation of the local gradients at each layer and the gradient 
𝜕𝑇ℎ�̃�(𝑛)

𝜕𝑓𝑟𝑚(𝑛)
 is depicted in Figure 

1. Based on the result from equation (9), the frame size frm is adjusted as shown in the equations 
in (2) and (3). 

 

In general, Figure 2 illustrates the basic components and flow of the proposed ML approach. As 

shown in the figure, once the AP collects the instant learning dataset from the simulation 
experiment [16] as a pattern of frame size-system throughput, the neural network performs the 

training and adjusts the weight by employing the collected data set. Then, the AP performs the 

knowledge-building task. The gradient information obtained from the neural network is adopted 
by the Tuning pass to adjust the frame size. Finally, the optimal frame size and corresponding 

throughput are recorded to analyze the results.      

 

 
 

Figure 2. Basic components and flow of the proposed ML model. 

 
Table 1. Simulation Parameter and Notation Summary 

 
Parameters Symbol Value 

# Of Antenna at AP NAnt 4 

# Of Stations NumSTA 2–4 

VoIP traffic payload size  100Byte 

Video traffic payload size  1000Byte 

Learning Rate  ɳ 0.5 

Mean Square Error Threshold MES 0.00001 

Epoch Threshold  1000 times 

Activation Function Sigmoid (σ)  

Number of training patterns n  

Indices of neurons in different layers i, j  

Frame size(input) of nth training patten frm(n)  

Target response for neuron j Thr(n)  

Actual response of the nth training patten      𝑇ℎ𝑟(̃𝑛)  

Synaptic weight in layer l connecting the output 

neuron of i to the input neuron j at iteration n 
𝑤𝑗𝑖

(𝑙)
 

 

Weight sum of all synaptic inputs plus bias of 

neuron j in layer l at iteration n. 
𝑣𝑗

𝑙(𝑛) 
 

Signal of output of neuron j in layer l at iteration n 𝑦𝑗
𝑙(𝑛)  

Local gradient of neuron j in layer l in the tuning 

pass of hidden layer 
λ𝑗

𝑙(𝑛 
 

Local gradient of neuron j in layer l in the tuning 
pass of the output layer 

λ1
2(𝑛 

 

Adjustment rate µ  
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4. RESULTS AND DISCUSSION 
 

In this section, we evaluate the performance of the proposed machine learning-based adaptive 

approach to optimize the system frame size in the WLAN downlink MU-MIMO channel that 
aims to maximize the system throughput performance by considering the effects of channel 

conditions, heterogeneous traffic patterns, and number of stations. 

 

4.1. Experimental Procedure 
 

The training data set is collected by adopting the simulation environment proposed by [16] as a 
pattern of “frame size - system throughput”. The training data set is collected once every 50 

seconds. Thus, 50 samples will be collected for each training in considering different network 

scenarios such as channel conditions, traffic patterns, and number of stations to train the neural 

network. The system throughput in the data set is the maximum system throughput values 
obtained from the maximum system throughput achieved by the adaptive aggregation algorithm 

in [16]. Similarly, the frame size which is used as the input data set in this experiment represents 

the average offered traffic load generated in the network to obtain the corresponding output i.e., 
the target system throughput. The weight is updated using these data following the procedure in 

the backward pass. Forward and backward passes are iteratively performed until the stopping 

criteria of Mean Square Error (MES) fall below 0.00001 or when the training epoch exceeds 
1000 times. The error threshold and the maximum number of iterations determine the accuracy of 

the function and the computing cost. Then, the tuning pass is executed to adjust the frame size 

frm by adopting the gradient information from the neural network.  

 
The performance of the proposed approach is evaluated by comparing with the system throughput 

performance achieved by FIFO (Baseline Approach) which was used as a baseline approach to 

evaluate the performance of the adaptive aggregation approach in [16]. FIFO (Baseline 
Approach) is an aggregation algorithm which does not consider adaptive aggregation approach 

[15,16]. Likewise, in this work, we compare the performance of the proposed machine learning 

approach denoted as Proposed ML Approach in this experiment with the baseline FIFO (Baseline 
Approach) obtained from [16]. Moreover, we considered the Maximum Throughput achieved by 

the adaptive aggregation algorithm in [16] to compare it with the Proposed ML Approach to 

examine how much the Proposed ML Approach effectively optimized the frame size to the 

maximum system throughput comparably. 
 

In general, the proposed machine-learning based adaptive approach will be evaluated under the 

following performance factors. The performance of the proposed ML approach is evaluated under 
the effects of different traffic models such as Pareto, Weibull, and fBM in Section (4.2). Then the 

performance of the proposed approach under the effect of channel conditions considering SNR= 

3, 10, and 20 dB is evaluated in Section (4.3). The performance of the proposed approach under a 

varying number of STAs (2,3,4) is evaluated in Section (4.4). Finally, the performance of the 
proposed ML approach is evaluated in terms of system throughput versus optimal system frame 

size in Section (4.5). All experiments are conducted with a traffic mix of 50% VoIP and 50% 

video with a constant frame size of 100 Byte and 1000 Byte, respectively.  
 

4.2. Performance Under the Effect of Various Traffic Models 
 
In this experiment, the proposed approach is evaluated under the effects of different traffic 

models such as Pareto, Weibull, and fBM [16], SNR = 10 dB, and NumSTA= 4. This experiment 

demonstrates how heterogeneous traffic patterns affect the optimal throughput performance in the 
WLAN downlink channel. Table 2 illustrates quantitative comparative results of the average 
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maximum system throughput obtained by optimizing the frame size for the proposed ML 
approach, the baseline FIFO approaches, and Maximum Throughput under the conditions of 

different traffic models.  

 
Table 2. Quantitative results achieved by the Proposed ML Approach, Maximum Throughput, and FIFO 

(Baseline Approaches) for average system throughput performance in Mbps under the effects of different 

traffic models. 

 

Comparative Approaches     Traffic Models  

           Pareto           Weibull    fBM 

 FIFO (Baseline 

Approach) 

511.3145 760.629 497.7865 

Maximum Throughput 708.9975 820.52775 728.33775 

Proposed ML Approach 708.724 820.4445 728.74575 

 

 
 

Figure 3. Performance of average system throughput under the effects of heterogenous  

traffic models when SNR = 10dB. 

 

As the result shows in Figure 3, the proposed ML approach achieved the maximum performance 
for all traffic models. For instance, for the Weibull traffic model, the maximum performance of 

820Mbps is achieved compared to the Pareto and fBM models. Whereas the lowest performance 

of 708Mbps is achieved for the Pareto traffic model. This indicates that the performance of the 
proposed ML Approach better copes with the Weibull traffic which is less bursty compared to the 

other traffic models according to [15]. Thus, these results indicate that traffic patterns in the 

network determine the system performance. Moreover, the result also demonstrated that the 

proposed ML approach achieved a compatible result with the maximum system throughput 
achieved by the adaptive aggregation algorithm i.e., Maximum Throughput proposed by [16]. 

The FIFO (Baseline Approach) is the worst performance of all traffic models compared to the 

proposed approach due to its non-adaptive aggregation policy employed in it [15]. 
 

4.3. Performance Under the Effects of Channel Conditions 
 
In this section the performance of the proposed approach under different channel conditions when 

SNR = 3, 10, and 20dB, and NumSTA =4 is evaluated as shown in Figure 4 (a), (b), and (c) for 

the case of different traffic models such as Pareto, Weibull, and fBM. According to the results, 
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the system throughput performance increases when the channel quality improved from 3dB to 
20dB better than that of the FIFO (Baseline Approach) due to the adaptive aggregation approach 

adopted in the Proposed ML Approach. In this regard, the Proposed ML approach achieved the 

lowest performance of 125Mbps in fBM traffic model as shown in Figure 4 (c), and the 

maximum of 143Mbps is achieved in the Weibull traffic, when the traffic condition is worst i.e., 
SNR=3dB. In the contrary, under the near-ideal channel condition, e.g., in SNR of 20dB in the 

figure, the system throughput performance is almost optimal in all approaches due to lower frame 

error rate occurred under the near-ideal channel condition. However, the proposed approach 
achieved the maximum performance of 892Mbps using the Weibull traffic model and the lower 

732Mbps is achieved in the Pareto traffic model. 

 
In general, from these results, we can conclude that the performance of the proposed approach is 

affected by the conditions of traffic patterns and channel conditions. The FIFO (Baseline 

approach) aggregation policy is the worst compared to the proposed approach in all scenarios 

because of the non-adaptive aggregation strategy it employs. Moreover, the results also 
demonstrated that the Proposed ML Approach always archived the maximum performance close 

to the maximum system throughput achieved by the adaptive aggregation algorithm proposed by 

[16]. Table 3 illustrates quantitative performance results of the average system throughput 
performances achieved by the Proposed ML Approach, FIFO (Baseline Approach), and 

Maximum Throughput under the effects of different channel conditions and traffic models. 

 
Table 3. Quantitative results achieved by the Proposed ML Approach, Maximum Throughput, and FIFO 

(Baseline Approach) for average system throughput performance in Mbps under the effects of different 

traffic models and channel conditions. 

 

 

 

 
 

 

 

 

 

Comparative Approaches         Traffic Models    SNR (dB)  

  3(dB)   10(dB)    20(dB) 

FIFO (Baseline Approach 

Maximum Throughput 

Proposed Approach 

 

      Pareto 

78.569725 511.3145 587.10275 

139.19 708.9975 732.4925 

139.21475 708.724 732.435 

     

FIFO (Baseline Approach 

Maximum Throughput 

Proposed Approach 

 

     Weibull                   

99.8366 706.629 806.74175 

143.7976 820.52775 892.26925 

143.5908 820.4445 892.46475 

     

FIFO (Baseline Approach 
Maximum Throughput 

Proposed Approach 

 

      fBM 

86.87635 497.7865 566.02125 

124.09275 728.33775 785.82175 

125.05782 728.74575 786.1 
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Figure 4. Illustrates System throughput versus SNR for different traffic models such as Pareto, Weibull and 

fBM when NumSTAs= 4. 

 

4.4. Performance Under the Effects of Number of Stations 
 
The performance of the proposed approach is evaluated under the effect of different number of 

stations (NumSTA =2, 3 and 4), and when the channel condition is SNR=10dB for the case of 

Weibull, Pareto and fBM traffic models. As the results show in Figure 5 (a), (b), and (c), when 
the number of stations ranges from 2 to 4, the system throughput performance significantly 

increases in all traffic models as the traffic rate increase with increasing number of stations. 

However, due to the effect of heterogeneous traffic patterns in different traffic models the 

performance of the Proposed ML Approach achieved varies even under the same number of 
stations. Table 4 illustrates quantitative comparative results of the average optimal system 

throughput achieved by the Proposed ML Approach, Maximum Throughput, and FIFO (Baseline 

Approaches) under the effects of variable number of STAs. 
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Table 4. Quantitative results achieved by the Proposed ML approach, Maximum Throughput, and FIFO 

(Baseline Approach) for average system throughput in Mbps under the effects of variable number of 

stations in Weibull, Pareto, and fBM traffic models. 

 

Comparative Approaches    
Traffic   
Models 

 
Number of 
STAs 

 

       2     3        4 

FIFO (Baseline Approach) 
Maximum Throughput 

Proposed Approach 

 

Weibull 

431.467 507.87425 706.629 

438.04875 620.19375 820.52775 

437.902 620.18075 820.4445 

     

FIFO (Baseline Approach) 

Maximum Throughput 

Proposed Approach 

 

Pareto 

338.65 357.08 511.3145 

425.56325 554.08825 708.9975 

425.377 553.0695 708.724 

     

FIFO (Baseline Approach) 

Maximum Throughput  

Proposed Approach 

 

fBM 

311.0525 417.13275 497.7865 

396.22 566.40875 728.33775 

396.0355 566.284 728.74575 

 

 
 

 
 
Figure 5. Performance of system throughput versus number of stations when the channel condition is SNR 

=10dB for the Weibull, Pareto, and fBM traffic models. 
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As shown in the results in Figure 5, the proposed approach always outperforms the FIFO 
(Baseline Approaches) in all scenarios due to the adaptive aggregation strategy it adopts. In this 

regard, the proposed approach achieved the maximum performance of 820Mbps in the case of 

Weibull traffic whereas the lower performance of 708Mbps is achieved in the Pareto traffic with 

the same number of STAs. Likewise, when the number of stations equals 2, the worst 
performance of 396Mbps is achieved by the fBM traffic. These results show that number of 

stations affects the performance of the system throughput behavior under the conditions of 

heterogeneous traffic patterns among streams in the downlink MU-MIMO channel. However, the 
proposed approach always achieved the maximum system throughput performance better than the 

FIFO (Baseline Approach) closest to the Maximum Throughput of the adaptive aggregation 

algorithm [16].    

 

4.5. Performance of System Throughput Vs. Optimal Frame Size   
 
The results in Figure 6 (a), (b), and (c) show the performance of system throughput behavior with 

increasing optimal frame size considering SNR= 10 dB, NumSTA = 4, under the effects of 

different traffic models Weibull, Pareto, and fBM. This experiment examines the optimal frame 
size and the corresponding system throughput achieved by the Proposed ML Approach under the 

effect of different traffic models compared with the FIFO (Baseline Approach).  

 

 
 

 
 
Figure 6. Performance of system throughput versus optimal System frame size when NumSTAs = 4 and SNR 

=10dB for the Weibull, Pareto, and fBM traffic models. 
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According to the results shown in Figure 6 (a), (b), and (c), the proposed ML approach achieved 
the maximum performance in all traffic models because of the adaptive aggregation approach 

employed in it in considering channel conditions, traffic patterns, and number of stations. For 

instance, in the Weibull traffic model, the performance increases with increasing frame size thus 

achieved the maximum system throughout 880Mbps at the optimal frame size of 1Mbyte. In the 
case of the Pareto traffic model, the proposed ML approach achieved a maximum system 

throughput performance of 820Mbps at the optimal system frame size of 1Mbyte. Moreover, as 

the result shows, the system throughput performance in the Weibull traffic model achieved 
630Mbps better than that of the Pareto 470Mbps at the beginning of the result and when the 

frame size increases. In fBM traffic model the proposed approach achieved the maximum 

performance of 846Mbps at the optimal system frame size of 0.93Mbyte. However, FIFO 
Baseline approach achieves the lowest performance in all scenarios because it does not allow 

adaptive aggregation approach. These results demonstrated that the optimal system frame size 

achieved is affected by the traffic condition in the network. In this regard, the proposed adaptive 

ML approach achieved a significant performance by efficiently optimizing the frame size that 
would maximize the system throughput of WLAN in the downlink MU-MIMO channel taking 

into account the traffic conditions better than that of the FIFO (Baseline Approach) non-adaptive 

aggregation approach.  
 

5. CONCLUSIONS 
 

IEEE 802.11n/ac introduced frame aggregation technology to accommodate the growing traffic 

demand and increases the performance of transmission efficiency and channel utilization by 
allowing many packets to be aggregated per transmission which significantly enhances the 

throughput of WLAN. The performance of WLAN depends on different performance factors 

such as frequency channel, modulation, and coding schemes, transmitter power, etc. at the PHY 
layer, and retry limit, frame size, contention window size, maximum number of backoffs, etc. at 

the MAC layer have a significant impact on the performance of WLAN. Optimizing these 

parameters would improve the system performance of WLAN. Frame size optimization is the 
main concern of this study. However, it is difficult to efficiently utilize the benefits of frame 

aggregation in downlink MU-MIMO channel as stations have heterogeneous traffic demand and 

data transmission rates. As a consequences, wasted space channel time will be occurred that 

degrades transmission efficiency. Moreover, the release of the new IEEE 802.11 standards such 
as IEEE 802.11ax and IEEE 802.11ay, 5G technologies, and the massive amount of traffic 

generated in the communication network, allow to expand the set of available communication 

technologies to compete for the limited radio spectrum resources in pushing for the need of 
enhancing their coexistence and more effective use of the scarce spectrum resources and to speed 

up decision-making process. In response to these performance demands, Machine Learning (ML) 

is the recent innovating solution to maintain a self-driven network that can configure and 

optimize itself by reducing human interventions and it is capable of overcoming the drawbacks of 
traditional mathematical formulations and complex data analysis algorithms. However, most of 

the existing approaches did not consider a machine-learning-based optimization solution. The 

main contribution of this paper is to propose a machine-learning-based frame size optimization 
solution to maximize the system throughput in WLAN downlink MU-MIMO channel by 

considering the effect of channel conditions, heterogeneous traffic patterns, and number of 

stations. In this approach, the AP performs the system throughput measurement and collects the 
“frame size – throughput’’ patterns as a data set. To cope with the effects of time-varying channel 

conditions and heterogeneous traffic patterns, we use online training and iteratively operate the 

three passes (forward pass, backward pass, and tuning pass) to model the instantaneous (frm, Thr) 

relationship and optimize the frame size. The neural network is used to train these training 
datasets to accurately model the system throughput with respect to the frame size. Frame size is 

adjusted according to gradient information which is abstracted from the neural network after the 
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knowledge building. We have performed a simulation experiment to validate that the proposed 
approach can effectively optimize the system frame size under various channel conditions, traffic 

patterns, and number of STAs to maximize the system throughput performance of WLAN as 

compared to the bassline FIFO baseline aggregation algorithm. Moreover, the proposed ML 

approach can achieve the maximum performance close to the Maximum Throughput of our 
earlier adaptive aggregation algorithm. 

 

Future work will be conducted by considering the real traffic scenarios. Moreover, the cost of 
delay and the effects in different channel models such as Rayleigh and Rician on both uplink and 

downlink WLAN channels will be studied.  
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