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ABSTRACT 
 

Each new generation of smartphone gains capabilities that increase performance and power 

efficiency allowing us to use them for increasingly complex calculations such as Deep Learning. 

This paper implemented four Android deep learning inference frameworks (TFLite, MNN, 

NCNN and PyTorch) to evaluate the most recent generation of System On a Chip (SoC) 

Samsung Exynos 2100, Qualcomm Snapdragon 865+ and 865. Our work focused on image 

classification task using five state-of-the-art models. The 50 000 images of the ImageNet 2012 

validation subset were inferred. Latency and accuracy with various scenarios like CPU, 

OpenCL, Vulkan with and without multi-threading were measured. Power efficiency and real-

world use-case were evaluated from these results as we run the same experiment on the device's 

camera stream until they consumed 3% of their battery. Our results show that low-level 

software optimizations, image pre-processing algorithms, conversion process and cooling 

design have an impact on latency, accuracy and energy efficiency. 
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1. INTRODUCTION 
 

Nowadays, mobile devices are in every human hand, replacing slowly but surely our way of life. 

Many mobile applications use artificial intelligence in diverse ways such as gaming, social 

media, artistic filters or augmented reality using different tasks like face detection, real-time 

image classification or object detection. Unfortunately, many artificial intelligence models run in 

the cloud due to the computational resources needed to execute their complexity with millions of 

parameters. Today, more than ever, data privacy represents a major concern for people. On-

device inference is an alternative, protecting data, fixing loss of internet connectivity, and 

reducing computing costs. However, computing power on these devices is clearly insufficient to 

run effectively and submitted to energy limitations. 

 

Recent improvements made on hardware like Neural and Tensor Processing Unit (NPU/TPU), 

Digital Signal Processor (DSP), and other accelerators [1] let Machine Learning and Deep 

Learning on-device execution possible [2, 3]. Several mobile deep learning frameworks have 

been developed by open-source community or industry leader with low-level software 

optimization like General Matrix Multiplication (GeMM), GPU libraries (e.g. OpenCL™, 

Vulkan® and OpenGL® ES) and most recently general hardware accelerators API like NNAPI 

letting on-device inference become a new opportunity [4]. 

http://airccse.org/cscp.html
http://airccse.org/csit/V12N06.html
https://doi.org/10.5121/csit.2022.120603
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But these features are implemented differently in frameworks and combination of both model, 

framework, hardware and device make performance assessment difficult. 

 

Two smartphones and one tablet, based on the two most popular architecture, Qualcomm 

Snapdragon and Samsung Exynos, were chosen. Android devices were selected because of its 

easier framework deployment process compared to Apple iPhone. We used four different 

frameworks with different low-level software optimization techniques such as integration of Arm 

assembly language code portion, integration of GeMM libraries Eigen, OpenBLAS or custom, 

NPU support and different software graphic libraries (OpenCL, OpenGL, Vulkan). Our models 

are pre-trained on ImageNet dataset with both Tensorflow and PyTorch allowing us to easily 

convert them to our two other frameworks. 

 

Our approach is to evaluate frameworks and models designed and developed for mobile devices 

with the objective of providing the community our inference latency, Top-1 and Top-5 accuracy 

and power efficiency results of different models allowing scientists to take the proper decisions 

and save time when choosing software libraries and hardware in order to run image classification, 

object detection, instance segmentation on resource constrained devices based on Arm Cortex A 

architecture. Our work differs from other as we developed an Android Java application for each 

framework where inference took place. 

 

2. RELATED WORK 
 

Bahrampour et al. [5] evaluated Deep Learning frameworks performance but they focused their 

work on desktop computer with a Titan X GPU. 

 

Lu et al. [6] launched their benchmark on different mobile frameworks with a Nvidia TK1 and 

TX1 which are not smartphones or tablet used by customers. 

 

Sehgal and Kehtarnavaz [7] offered a benchmark of multiple deep learning models inferring on 

mobile SoC but they tested TFLite and Core ML only. 

 

MLPerf [8] and AI Benchmark [9, 10] provide an Android application to test various models on 

the device using different scenarios. Limitations are the inference engine which is based on 

TFLite only and the output result, approximated (MLPerf) or displayed as a weighted score (AI 

Benchmark). 

 

Bianco et al. [11] and Almeida et al. [12] proposed the most related works. They evaluated 

multiple models on diverse architecture among which there are mobile SoCs. The main 

difference is they didn't run their test from an Android application. 

 

Benchmarks and previous work to evaluate the performance of deep learning models or 

frameworks on different devices exist but we propose an alternative approach as we focused our 

test on mobile devices, either smartphone or tablet, with frameworks and models optimized for 

them. 

 

3. ALGORITHMIC APPROACH 
 

For our experiment, we chose two smartphones which had a SoC generation gap and one tablet 

with a boosted SoC. Four frameworks were implemented on which we executed seven models, 

five 32-bit floating point and two quantized (8-bit integer) used as image segmentation 

backbones. To simulate the most representative use cases for real-time image segmentation tasks, 
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we needed a dataset with enough images. Our choice was to use the ImageNet 2012 validation 

dataset containing 50,000 images. We kept the results from this first benchmark to evaluate the 

device power consumption and the image inference latency from the device's camera. 

 

3.1. Devices 
 

We selected the latest Samsung Galaxy Tab S7 containing a Qualcomm Snapdragon 865+ SoC, 

the OnePlus 8 with a Qualcomm Snapdragon 865 and the newest Samsung Galaxy S21 with a 

Samsung Exynos 2100. The two Snapdragon are on the same architecture to explore if the extra 

260 MHz on one big core and the 87 MHz boost on the GPU provided by the 865+ produce a 

significant impact on the latency. Recent release of the Exynos 2100 represents a generation gap 

with the Snapdragon 865. It's based on the new Arm Cortex X1 which, giving to Arm, is 30% 

faster and have twice the ML performance over the Cortex A77 [13]. The three devices have 

Android 11 operating system. Table 1 shows their specifications in-depth. Our experiment was 

launched on all hardware available on each device which was CPU, GPU and NPU/DSP with 

different hyper-threading scenarios. When we run on GPU, we inferred with OpenCL, OpenGL 

or Vulkan graphic libraries. Manufacturers consider CPU, GPU and NPU/DSP, as a whole, 

named the AI engine which can only run quantized models with specific software frameworks. 

 
Table 1. Device SoC’s specifications with quantity of RAM, type of cluster with number of cores in it, 

Arm reference and core frequencies 

 

SoC RAM (Gb) Cluster Number Ref Freq (GHz) 

8
6

5
 

8 

LITLLE 4 A55 1.80 

big 3 A77 2.42 

big 1 A77 2.84 

8
6

5
+

 

6 

LITLLE 4 A55 1.80 

big 3 A77 2.42 

big 1 A77 3.10 

2
1

0
0
 

8 
LITLLE 4 A55 2.20 

big 3 A78 2.80 

big 1 X1 2.90 

 

3.2. Frameworks 
 

We tested four open-source frameworks, TensorFlow Lite 2.4.0, MNN 1.1.0, NCNN 20201218 

and PyTorch mobile 1.7. 

 

They all had Arm NEON optimizations and OpenMP library integrated in their source code. 

TFLite [14] is, at the time of this paper, the only framework to have a general hardware 

accelerator library, NNAPI, which allow inference on the AI engine. MNN and NCNN use a 

custom GeMM implementation whereas PyTorch does not have a GPU and NPU inference 

option yet. 

 

We selected these frameworks due to their mobile context. All of them are compatible with 

Android and iOS devices. 

 

3.3. Models and Dataset 
 

The inference was launched on ImageNet 2012 [15] pre-trained models commonly used as image 

segmentation backbone. 
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The main difficulty was to find different models available on both PyTorch and Tensorflow but 

we manage to download five 32-bits floating point models: SqueezeNet v1.1 (sqn11) [16], 

MobileNet v2 (mob2) [17], Inception v3 (inc3) [18], ResNet50 v1 (res50), ResNet101 v1 

(res101) [19] and two TFLite quantized models: MobileNet v2 (mob2q) and Inception v3 (inc3q) 

to run on the AI engine. 

 

Table 2 shows the Top-1 and Top-5 accuracy provided by Tensorflow and PyTorch Hub [20, 21, 

22, 23]. 

 
Table 2. PyTorch and TensorFlow Top-1 and Top-5 model accuracies provided by the sources. Best 

accuracy for each model is in bold text 

 

Framework Model Top-1 (%) Top-5 (%) 

P
y

T
o

rc
h

 

SqueezeNet v1.1 58.19 80.62 

MobileNet v2 71.88 90.29 

Inception v3 77.45 93.56 

ResNet50 v1 76.15 92.87 

ResNet101 v1 77.37 93.56 

T
en

so
rf

lo
w

 

SqueezeNet v1.1 49.00 72.90 

MobileNet v2 71.90 91.00 

MobileNet v2 (quant) 70.80 89.9 

Inception v3 78.00 93.90 

Inception v3 (quant) 77.5 93.70 

ResNet50 v1 75.20 92.20 

ResNet101 v1 76.40 92.90 

 

3.4. Model conversion process 
 

The frameworks implemented for our experiment can't use the downloaded models, they need to 

be converted. TFLite and PyTorch mobile models were the easiest to switch because of the tools 

provided by their parent training framework but MNN and NCNN don't support all of the 

PyTorch and TensorFlow operations. 

 

To be compatible, PyTorch models had to be converted in ONNX format. We run different 

converters to make them compatible with MNN and NCNN. 

 

For Tensorflow models, the MNN and NCNN tools were unable to convert ResNet v1 and 

Inception v3 architecture. 
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3.5. Image pre-processing 
 

During the training phase of our models, each image was transformed to fit in the input tensor. 

We had to reproduce the pre-processing steps to reproduce the best accuracy. 

 

TensorFlow crops or pads the image to the littlest size followed by a scale down then it 

normalizes each image color channel, Red, Blue, Green, with mean and standard deviation equal 

to 127.5 for floating point models and mean to 0.0 and standard deviation to 1.0 for quantized 

models. 

 

It is quite the opposite for PyTorch as it resizes the image before cropping or padding it. Its 

normalization parameters are respectively for red, blue and green channels and for mean: 0.485, 

0.456, 0.406 and standard deviation: 0.229, 0.224, 0.225. 

 

3.6. Algorithm 
 

For each framework, we developed a Java Android application which looped on all the converted 

models and inferred each of the ImageNet 50,000 images for any hardware available (CPU, 

OpenCL, OpenGL, Vulkan or NNAPI) from one to ten threads. 

 

At each inference the time elapsed by the device to output the probabilities was gathered. We 

compared the result to the image key contained in the ground truth file provided with the dataset 

to know if the highest probability and the five best were in it. Latency and accuracy are saved in a 

CSV file in the internal memory. When the test was launched, the device was plugged to the 

power source in plane mode and screen luminosity was at its minimum level. The energy 

consumption was not measure in this algorithm. 

 

From the results collected in the previous algorithm, the same experiment parameters were 

executed from a camera stream acquired on the device. The energy efficiency of all the 

components as well as the image pre-processing time were evaluated. In addition, the screen and 

the camera power consumption were collected separately to isolate the hardware used during the 

inference. 

 
Algorithm 1. Experiment algorithm 

 

Input  image = 1,…,50000 

Output latency = inference latency of the image 

isInTop1 = ground truth compared to the best probability 

isInTop5 = ground truth compared to the five best probabilities 

Parameters hardware = CPU,…,NNAPI 

thread = 1,…,10 

model = sqn11,…,inc3q 

for hardware = CPU to NNAPI do 

 for thread = 1 to 10 do 

  for model = sqn11 to inc3q do 

   for image = 1 to 50000 do 

    preProcessedImage  preProcessImage(image); 

    startTime  getSystemTime(); 
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    probs infer(preProcessedImage); 

    stopTime  getSystemTime(); 

    latency  (stopTime – startTime); 

    descendantOrderSort(probs) 

    isInTop1  false; 

    isInTop5  false; 

    if ground truth == probs[0] then 

     isInTop1  true; 

     isInTop5  true; 

    end 

    else if ground truth in probs[1:4] then 

     isInTop5  true; 

    end 

    appendToCSV(latency, isInTop1, isInTop5); 

   end 

  end 

 end 

end 

 

4. EXPERIMENTAL RESULTS 
 

For our experiment, we chose two smartphones which had a SoC generation gap and one tablet 

with a boosted SoC. Four frameworks were implemented on which we executed seven models, 

five 32-bit floating point and two quantized (8-bit integer) used as image segmentation 

backbones. 

 

4.1. ImageNet dataset latency 
 

We ran Algorithm 1 on two smartphones and one tablet to get the closest real-world use case 

results. Our algorithm was looping on 50,000 images which could come closest to a video feed 

from the device camera to simulate an image segmentation backbone in real-time. An acceptable 

latency for this task is under 30 ms letting display around 30 frames per second while providing 

room for image pre-processing and decoding functions. One of the intrinsic limitations of our 

devices was the thermal protection mechanism also known as Dynamic Voltage Frequency 

Scaling (DVFS) or CPU throttling. The system downscales the CPU frequency to dissipate the 

heat. Figure 1 shows two different DVFS behaviours when we ran NCNN on the Snapdragon 865 

with one CPU thread. DVFS effect of Inception v3 pre-trained with PyTorch (1a) is not obvious, 

resulting in a stable inference with a narrow range around 4 ms (1b). On the contrary, ResNet 50 

v1 pre-trained with the TensorFlow framework (1c) shows two inference levels, 165 ms and 280 

ms (1d). From the 30,000th image, the SoC is so hot it stands longer at 280 ms. DVFS is less 
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present on the Snapdragon 865+ because it is an 11-inch tablet which contains more space to 

dissipate the heat, unlike the two other devices as shown on Figure 2. 

 

  

 

(a) Raw inference latency (in ms) of Inception v3 (PyTorch) 

without DVFS effect 

 

(b) Kernel density estimation of Inception 

v3 (PyTorch) without DVFS effect 

 

  
 

(c) Raw inference latency (in ms) of ResNet50 (Tensorflow) 

v1 with DVFS effect 

 

(d) Kernel density estimation of ResNet50 

(Tensorflow) v1 with DVFS effect 

 

Figure 1. Inference without (a)(b) and with (c)(d) DVFS on Snapdragon 865 CPU with 1 thread 

 

 

  

(a) (b) (c) 

 

Figure 2. SoC’s boards from Samsung Galaxy Tab S7 (a), Samsung Galaxy S21 5G (b) and OnePlus 8 (c) 

(not to scale) 
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Figure 3a shows that the multi-threading mechanism didn't affect the GPU. Switching from 1 to 

10 threads didn’t affect the latency. 

 

Figure 3b shows the AI engine, which uses CPU, GPU and NPU. 

 

We saw that MobileNet v2 and Inception v3 latencies were improved when switching from the 

GPU with floating point format to the AI engine with quantized one. Quantized version of 

Inception v3 on the Exynos 2100 is improved when running from 1 to 4 threads. The NNAPI 

library uses the best hardware in order to improve the latency. In our case, the library used the 

NPU, and the GPU excepted for Inception v3 model on the Exynos 2100. 

 

  
 

(a) 

 

(b) 

 

Figure 3. Influence of multi-threading on GPU (a) and AI engine (b) 

 

Table 3 represents the arithmetic mean (µ) and the standard deviation (σ) of the inference latency 

in milliseconds with the accuracy loss compared to their reference model in Table 2. For each 

row we reported the best results of our experiment. 

 

TensorFlow model latencies are the best with TFLite OpenCL for floating point models. We 

greyed SqueezeNet v1.1, ResNet50 v1 and ResNet101 v1 Tensorflow models in our table due to 

conversion issue reported in Section 3.4. The new Exynos 2100 provides an improvement in 

comparison of the Snapdragon 865 especially for PyTorch models inferred with NCNN Vulkan. 

NCNN has a non-negligible accuracy drop on different models but on SqueezeNet v1.1 it is 18 % 

faster than the second best framework, MNN, with 13.91 ± 0.16 ms on Snapdragon 865 and 

13.36 ± 0.43 ms on Snapdragon 865+. 

 

Snapdragon 865+ outperforms the most recent generation due to its better CPU and GPU 

frequency. This increase in frequency should represent a problem due to the throttling mechanism 

however the device demonstrates an excellent capability to dissipate the heat making extra 

computational power efficient. 

 

The inconclusive results of the TFLite NNAPI on the 2100 should be related to the driver 

compatibility of the Samsung NPU which was probably unimplemented yet. 
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Table 3. Best mean (μ) with standard deviation (σ) of inference time in milliseconds for each model trained 

by TensorFlow (model-tf) and PyTorch (model-pt) of all hardware and framework on the three devices 

with their accuracy loss compared to Table 2 Top-1 and Top-5 

 

SoC Model Framework Hardware µ ± σ (ms) Top-1 (%) Top-5 (%) 

S
n

ap
d

ra
g
o

n
 8

6
5

 

sqn11-pt NCNN CPU2 11.40 ± 3.89 -13.07 -10.67 

sqn11-tf NCNN CPU3 20.04 ± 4.13 -24.67 -28.25 

mob2-pt MNN CPU7 15.96 ± 2.32 -3.17 -1.49 

mob2-tf NCNN CPU3 13.00 ± 2.86 -3.79 -3.30 

mobq2-tf TFLite NNAPI 4.44 ± 0.69 -1.79 -1.15 

inc3-pt MNN CPU8 158.54 ± 33.94 -1.40 -0.68 

inc3-tf TFLite OpenCL 70.07 ± 1.69 -0.44 -0.24 

inc3q-tf TFLite NNAPI 52.67 ± 4.46 -0.26 -0.20 

res50-pt NCNN Vulkan 86.23 ± 2.87 -7.70 -4.22 

res50-tf TFLite OpenCL 26.54 ± 13.06 -47.08 -42.04 

res101-pt NCNN Vulkan 133.17 ± 2.24 -5.78 -3.09 

res101-tf TFLite OpenCL 25.98 ± 13.03 -48.28 -42.74 

S
n

ap
d

ra
g
o

n
 8

6
5

 +
 

sqn11-pt NCNN CPU3 10.95 ± 2.24 -13.07 -10.67 

sqn11-tf TFLite OpenCL 8.14 ± 0.59 -20.88 -22.74 

mob2-pt NCNN CPU3 14.54 ± 1.24 -9.51 -5.78 

mob2-tf TFLite OpenCL 5.47 ± 0.70 -1.70 -1.63 

mobq2-tf TFLite NNAPI 4.07 ± 0.81 -1.79 -1.15 

inc3-pt MNN CPU5 182.09 ± 23.17 -1.40 -0.68 

inc3-tf TFLite OpenCL 46.85 ± 0.60 -0.44 -0.24 

inc3q-tf TFLite NNAPI 12.06 ± 0.81 -0.26 -0.20 

res50-pt NCNN Vulkan 66.29 ± 2.75 -7.70 -4.22 

res50-tf TFLite OpenCL 8.13 ± 0.58 -47.08 -42.04 

res101-pt NCNN Vulkan 101.22 ± 2.3 -5.78 -3.09 

res101-tf TFLite OpenCL 8.17 ± 0.59 -48.28 -42.74 

E
x

y
n

o
s 

2
1

0
0

 

sqn11-pt MNN CPU4 12.88 ± 0.44 -4.17 -3.08 

sqn11-tf TFLite OpenCL 18.02 ± 7.46 -20.88 -22.74 

mob2-pt MNN CPU5 14.55 ± 3.43 -3.17 -1.49 

mob2-tf TFLite OpenCL 11.37 ± 6.80 -1.70 -1.63 

mobq2-tf TFLite NNAPI 10.77 ± 5.56 -1.79 -1.15 

inc3-pt MNN CPU4 194.73 ± 43.03 -1.40 -0.68 

inc3-tf TFLite OpenCL 93.05 ± 31.31 -0.44 -0.24 

inc3q-tf TFLite NNAPI 40.92 ± 9.53 -0.26 -0.20 

res50-pt NCNN Vulkan 81.48 ± 9.72 -7.70 -4.22 

res50-tf TFLite OpenCL 17.00 ± 6.71 -47.08 -42.04 

res101-pt NCNN Vulkan 117.25 ± 29.78 -5.78 -3.09 

res101-tf TFLite OpenCL 17.07 ± 7.01 -48.28 -42.74 
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4.2. Accuracy 
 

An accuracy loss occurred when the model is converted. For Tensorflow models there was a drop 

of 1-2 % on Top-1 and 2-3 % on Top-5 on all frameworks with, from the lowest loss to highest: 

TFLite, MNN, NCNN. The same figures appeared for PyTorch ones except for NCNN which had 

a 7-13 % drop on Top-1 and a 5-11 % drop on Top-5 depending on models. 

 

In addition, SqueezeNet v1.1, ResNet50 v1, ResNet101 v1 from TensorFlow were not operating 

the pre-processing parameters provided on TensorFlow Hub leading to an accuracy cap on both 

Top-1 and Top-5 with respectively 28.12 % and 50.16 % for them. 

 

The accuracy loss from the quantized model is negligible regarding the latency gain. MobileNet 

v2 lost 1.89 % compared to its floating-point version but it reduced its latency by 5 % on the 

2100 SoC, 26 % on the 865+ and 66 % on the 865. This gain is even bigger with Inception v3 

model. 

 

4.3. Camera stream latency 
 

The camera stream from the device was integrated inside the Android application using Camera2 

API. Images are acquired by the device camera in the YUV420 format and converted into 

ARGB8888 to make it compatible with models input. The image's size is 640 pixels width and 

480 pixels height. These new outcomes integrate the image pre-processing latency executed by 

the framework and show CPU and GPU governors behaviour once the device is powered by its 

battery. These results are consistent with the ImageNet ones. There is a performance drop for all 

the frameworks as the device has to manage its energy. We observe that TFLite is more affected 

than MNN or NCNN. Once again, quantized models outperform the others on the three devices. 

It is particularly obvious for Inception v3 as it is approximately 3 times faster than its floating-

point version on Snapdragon 865, 2.5 times on Snapdragon 865+ and 1.5 times on the Exynos 

2100. This experiment confirms the performance of the Snapdragon 865+ related to a reduced 

DVFS effect. 

 

4.4. Power efficiency 
 

Before each test, devices were fully charged, screen brightness was set to medium, Bluetooth and 

Wi-Fi were turned ON to reproduce as much as possible real usage of the device. The test was 

stop once the device's battery reaches 97 % to avoid the nonlinear discharge of the lithium-ion 

battery. 

 

We recorded the elapsed time for the device to go from 100 to 97 % with the help of Battery 

Historian software from Google [24]. We measured the screen consumption by setting the device 

in plane mode and recording the time for the device to reach 97 % when the screen is ON with 

medium brightness. Then we measured the camera consumption by doing the same process as for 

the screen but with launching the camera application. Then we subtracted the screen consumption 

to the observed one to have the camera. 

 

The energy consumption for the Snapdragon 865, 865+ and Exynos 2100 screen are respectively 

214 mAh, 619 mAh and 198 mAh. For the cameras, 438 mAh, 413 mAh and 792 mAh. The 

Snapdragon 865+ screen is bigger than the two others and the Exynos 2100 has the most 

powerful camera module. 
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Once again, our results show small models and quantized models are the more energy efficient. 

The faster it runs the less energy it consumes. Also, device screen and camera have a bigger 

impact on energy than the dedicated inference hardware. 

 
Table 4.  Latency and energy consumed in μA for processing one image from device camera stream after 

consuming 3 % of battery device. Hardware consumption is for the energy consumed by the hardware 

involved in the inference (CPU, GPU, NPU, RAM) and Device consumption represents the total of energy 

consumed by the device (screen and camera included). 

 

SoC Model Framework Hardware µ ± σ (ms) 

Hardware 

consumption 

(µA/img) 

Device 

consumption 

(µA/img) 

S
n

ap
d

ra
g
o

n
 8

6
5

 

sqn11-pt NCNN CPU2 11.40 ± 3.89 2.73 6.55 

sqn11-tf NCNN CPU3 20.04 ± 4.13 5.69 9.76 

mob2-pt MNN CPU7 15.96 ± 2.32 0.64 4.53 

mob2-tf NCNN CPU3 13.00 ± 2.86 3.24 6.49 

mobq2-tf TFLite NNAPI 4.44 ± 0.69 0.92 3.69 

inc3-pt MNN CPU8 158.54 ± 33.94 27.40 59.78 

inc3-tf TFLite OpenCL 70.07 ± 1.69 17.06 34.22 

inc3q-tf TFLite NNAPI 52.67 ± 4.46 2.47 7.40 

res50-pt NCNN Vulkan 86.23 ± 2.87 13.11 31.55 

res50-tf TFLite OpenCL 26.54 ± 13.06 7.14 15.58 

res101-pt NCNN Vulkan 133.17 ± 2.24 20.06 48.12 

res101-tf TFLite OpenCL 25.98 ± 13.03 8.50 25.48 

S
n

ap
d

ra
g

o
n

 8
6

5
 +

 

sqn11-pt NCNN CPU3 10.95 ± 2.24 3.92 7.57 

sqn11-tf TFLite OpenCL 8.14 ± 0.59 2.97 8.06 

mob2-pt NCNN CPU3 14.54 ± 1.24 4.85 9.37 

mob2-tf TFLite OpenCL 5.47 ± 0.70 2.16 6.49 

mobq2-tf TFLite NNAPI 4.07 ± 0.81 0.94 5.09 

inc3-pt MNN CPU5 182.09 ± 23.17 51.73 107.44 

inc3-tf TFLite OpenCL 46.85 ± 0.60 11.44 30.98 

inc3q-tf TFLite NNAPI 12.06 ± 0.81 2.69 10.35 

res50-pt NCNN Vulkan 66.29 ± 2.75 18.88 39.22 

res50-tf TFLite OpenCL 8.13 ± 0.58 8.01 19.73 

res101-pt NCNN Vulkan 101.22 ± 2.3 34.17 70.97 

res101-tf TFLite OpenCL 8.17 ± 0.59 14.28 35.13 

E
x

y
n

o

s 
2

1
0

0
 

sqn11-pt MNN CPU4 12.88 ± 0.44 1.15 5.39 

sqn11-tf TFLite OpenCL 18.02 ± 7.46 1.89 13.18 
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mob2-pt MNN CPU5 14.55 ± 3.43 1.67 7.82 

mob2-tf TFLite OpenCL 11.37 ± 6.80 3.21 14.99 

mobq2-tf TFLite NNAPI 10.77 ± 5.56 2.96 13.70 

inc3-pt MNN CPU4 194.73 ± 43.03 10.57 73.67 

inc3-tf TFLite OpenCL 93.05 ± 31.31 21.73 60.38 

inc3q-tf TFLite NNAPI 40.92 ± 9.53 4.30 30.48 

res50-pt NCNN Vulkan 81.48 ± 9.72 14.17 39.63 

res50-tf TFLite OpenCL 17.00 ± 6.71 7.18 33.19 

res101-pt NCNN Vulkan 117.25 ± 29.78 15.63 54.00 

res101-tf TFLite OpenCL 17.07 ± 7.01 15.18 52.90 

 

5. CONCLUSION 
 

In this paper we presented an inference latency benchmark on mobile to help the community 

better deployed image classification/segmentation model on Android devices. Our results showed 

that quantized models on AI engine should be the de facto standard, especially for complex 

models like Inception v3. Quantized models are more energy efficient and performs better than 

floating point ones with a tiny loss of accuracy. If there is no other choice than floating points, 

developers should go for TFLite. It experiences an easy model conversion and integration process 

on Android. For PyTorch models, we saw NCNN is a notable candidate, but it needs to improve 

its conversion process to gain more accuracy. We are looking forward to GPU and NPU/DSP's 

support in the future PyTorch mobile framework. 

 

MNN and NCNN integration of these frameworks inside Android application is not a 

straightforward task. The conversion step is not user-friendly as engineer need to compile or find 

the appropriate converter and execute commands to transform the original model to a compatible 

and optimized one. Additionally, framework libraries must be compiled and integrated with the 

Android NDK which is an error prone process. 

 

To conclude, manufacturers should improve heat dissipation or cooling mechanism on small 

devices to avoid the DVFS effect resulting in an improved latency. 
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