
David C. Wyld et al. (Eds): EMSA, SEA, AIFU, NLCAI, BDML, BIoT, NCOM, CLOUD, CCSEA, SIPRO - 2022

pp. 27-40, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.120603

DEEP LEARNING FRAMEWORKS EVALUATION

FOR IMAGE CLASSIFICATION ON RESOURCE

CONSTRAINED DEVICE

Mathieu Febvay and Ahmed Bounekkar

Université de Lyon, Lyon 2, ERIC UR 3083, F69676 Bron Cedex, France

ABSTRACT

Each new generation of smartphone gains capabilities that increase performance and power

efficiency allowing us to use them for increasingly complex calculations such as Deep Learning.

This paper implemented four Android deep learning inference frameworks (TFLite, MNN,

NCNN and PyTorch) to evaluate the most recent generation of System On a Chip (SoC)

Samsung Exynos 2100, Qualcomm Snapdragon 865+ and 865. Our work focused on image

classification task using five state-of-the-art models. The 50 000 images of the ImageNet 2012

validation subset were inferred. Latency and accuracy with various scenarios like CPU,

OpenCL, Vulkan with and without multi-threading were measured. Power efficiency and real-

world use-case were evaluated from these results as we run the same experiment on the device's

camera stream until they consumed 3% of their battery. Our results show that low-level

software optimizations, image pre-processing algorithms, conversion process and cooling

design have an impact on latency, accuracy and energy efficiency.

KEYWORDS

Deep Learning, On-device inference, Image classification, Mobile, Quantized Models.

1. INTRODUCTION

Nowadays, mobile devices are in every human hand, replacing slowly but surely our way of life.

Many mobile applications use artificial intelligence in diverse ways such as gaming, social

media, artistic filters or augmented reality using different tasks like face detection, real-time

image classification or object detection. Unfortunately, many artificial intelligence models run in

the cloud due to the computational resources needed to execute their complexity with millions of

parameters. Today, more than ever, data privacy represents a major concern for people. On-

device inference is an alternative, protecting data, fixing loss of internet connectivity, and

reducing computing costs. However, computing power on these devices is clearly insufficient to

run effectively and submitted to energy limitations.

Recent improvements made on hardware like Neural and Tensor Processing Unit (NPU/TPU),

Digital Signal Processor (DSP), and other accelerators [1] let Machine Learning and Deep

Learning on-device execution possible [2, 3]. Several mobile deep learning frameworks have

been developed by open-source community or industry leader with low-level software

optimization like General Matrix Multiplication (GeMM), GPU libraries (e.g. OpenCL™,

Vulkan® and OpenGL® ES) and most recently general hardware accelerators API like NNAPI

letting on-device inference become a new opportunity [4].

http://airccse.org/cscp.html
http://airccse.org/csit/V12N06.html
https://doi.org/10.5121/csit.2022.120603

28 Computer Science & Information Technology (CS & IT)

But these features are implemented differently in frameworks and combination of both model,

framework, hardware and device make performance assessment difficult.

Two smartphones and one tablet, based on the two most popular architecture, Qualcomm

Snapdragon and Samsung Exynos, were chosen. Android devices were selected because of its

easier framework deployment process compared to Apple iPhone. We used four different

frameworks with different low-level software optimization techniques such as integration of Arm

assembly language code portion, integration of GeMM libraries Eigen, OpenBLAS or custom,

NPU support and different software graphic libraries (OpenCL, OpenGL, Vulkan). Our models

are pre-trained on ImageNet dataset with both Tensorflow and PyTorch allowing us to easily

convert them to our two other frameworks.

Our approach is to evaluate frameworks and models designed and developed for mobile devices

with the objective of providing the community our inference latency, Top-1 and Top-5 accuracy

and power efficiency results of different models allowing scientists to take the proper decisions

and save time when choosing software libraries and hardware in order to run image classification,

object detection, instance segmentation on resource constrained devices based on Arm Cortex A

architecture. Our work differs from other as we developed an Android Java application for each

framework where inference took place.

2. RELATED WORK

Bahrampour et al. [5] evaluated Deep Learning frameworks performance but they focused their

work on desktop computer with a Titan X GPU.

Lu et al. [6] launched their benchmark on different mobile frameworks with a Nvidia TK1 and

TX1 which are not smartphones or tablet used by customers.

Sehgal and Kehtarnavaz [7] offered a benchmark of multiple deep learning models inferring on

mobile SoC but they tested TFLite and Core ML only.

MLPerf [8] and AI Benchmark [9, 10] provide an Android application to test various models on

the device using different scenarios. Limitations are the inference engine which is based on

TFLite only and the output result, approximated (MLPerf) or displayed as a weighted score (AI

Benchmark).

Bianco et al. [11] and Almeida et al. [12] proposed the most related works. They evaluated

multiple models on diverse architecture among which there are mobile SoCs. The main

difference is they didn't run their test from an Android application.

Benchmarks and previous work to evaluate the performance of deep learning models or

frameworks on different devices exist but we propose an alternative approach as we focused our

test on mobile devices, either smartphone or tablet, with frameworks and models optimized for

them.

3. ALGORITHMIC APPROACH

For our experiment, we chose two smartphones which had a SoC generation gap and one tablet

with a boosted SoC. Four frameworks were implemented on which we executed seven models,

five 32-bit floating point and two quantized (8-bit integer) used as image segmentation

backbones. To simulate the most representative use cases for real-time image segmentation tasks,

Computer Science & Information Technology (CS & IT) 29

we needed a dataset with enough images. Our choice was to use the ImageNet 2012 validation

dataset containing 50,000 images. We kept the results from this first benchmark to evaluate the

device power consumption and the image inference latency from the device's camera.

3.1. Devices

We selected the latest Samsung Galaxy Tab S7 containing a Qualcomm Snapdragon 865+ SoC,

the OnePlus 8 with a Qualcomm Snapdragon 865 and the newest Samsung Galaxy S21 with a

Samsung Exynos 2100. The two Snapdragon are on the same architecture to explore if the extra

260 MHz on one big core and the 87 MHz boost on the GPU provided by the 865+ produce a

significant impact on the latency. Recent release of the Exynos 2100 represents a generation gap

with the Snapdragon 865. It's based on the new Arm Cortex X1 which, giving to Arm, is 30%

faster and have twice the ML performance over the Cortex A77 [13]. The three devices have

Android 11 operating system. Table 1 shows their specifications in-depth. Our experiment was

launched on all hardware available on each device which was CPU, GPU and NPU/DSP with

different hyper-threading scenarios. When we run on GPU, we inferred with OpenCL, OpenGL

or Vulkan graphic libraries. Manufacturers consider CPU, GPU and NPU/DSP, as a whole,

named the AI engine which can only run quantized models with specific software frameworks.

Table 1. Device SoC’s specifications with quantity of RAM, type of cluster with number of cores in it,

Arm reference and core frequencies

SoC RAM (Gb) Cluster Number Ref Freq (GHz)

8
6

5

8

LITLLE 4 A55 1.80

big 3 A77 2.42

big 1 A77 2.84

8
6

5
+

6

LITLLE 4 A55 1.80

big 3 A77 2.42

big 1 A77 3.10

2
1

0
0

8
LITLLE 4 A55 2.20

big 3 A78 2.80

big 1 X1 2.90

3.2. Frameworks

We tested four open-source frameworks, TensorFlow Lite 2.4.0, MNN 1.1.0, NCNN 20201218

and PyTorch mobile 1.7.

They all had Arm NEON optimizations and OpenMP library integrated in their source code.

TFLite [14] is, at the time of this paper, the only framework to have a general hardware

accelerator library, NNAPI, which allow inference on the AI engine. MNN and NCNN use a

custom GeMM implementation whereas PyTorch does not have a GPU and NPU inference

option yet.

We selected these frameworks due to their mobile context. All of them are compatible with

Android and iOS devices.

3.3. Models and Dataset

The inference was launched on ImageNet 2012 [15] pre-trained models commonly used as image

segmentation backbone.

30 Computer Science & Information Technology (CS & IT)

The main difficulty was to find different models available on both PyTorch and Tensorflow but

we manage to download five 32-bits floating point models: SqueezeNet v1.1 (sqn11) [16],

MobileNet v2 (mob2) [17], Inception v3 (inc3) [18], ResNet50 v1 (res50), ResNet101 v1

(res101) [19] and two TFLite quantized models: MobileNet v2 (mob2q) and Inception v3 (inc3q)

to run on the AI engine.

Table 2 shows the Top-1 and Top-5 accuracy provided by Tensorflow and PyTorch Hub [20, 21,

22, 23].

Table 2. PyTorch and TensorFlow Top-1 and Top-5 model accuracies provided by the sources. Best

accuracy for each model is in bold text

Framework Model Top-1 (%) Top-5 (%)

P
y

T
o

rc
h

SqueezeNet v1.1 58.19 80.62

MobileNet v2 71.88 90.29

Inception v3 77.45 93.56

ResNet50 v1 76.15 92.87

ResNet101 v1 77.37 93.56

T
en

so
rf

lo
w

SqueezeNet v1.1 49.00 72.90

MobileNet v2 71.90 91.00

MobileNet v2 (quant) 70.80 89.9

Inception v3 78.00 93.90

Inception v3 (quant) 77.5 93.70

ResNet50 v1 75.20 92.20

ResNet101 v1 76.40 92.90

3.4. Model conversion process

The frameworks implemented for our experiment can't use the downloaded models, they need to

be converted. TFLite and PyTorch mobile models were the easiest to switch because of the tools

provided by their parent training framework but MNN and NCNN don't support all of the

PyTorch and TensorFlow operations.

To be compatible, PyTorch models had to be converted in ONNX format. We run different

converters to make them compatible with MNN and NCNN.

For Tensorflow models, the MNN and NCNN tools were unable to convert ResNet v1 and

Inception v3 architecture.

Computer Science & Information Technology (CS & IT) 31

3.5. Image pre-processing

During the training phase of our models, each image was transformed to fit in the input tensor.

We had to reproduce the pre-processing steps to reproduce the best accuracy.

TensorFlow crops or pads the image to the littlest size followed by a scale down then it

normalizes each image color channel, Red, Blue, Green, with mean and standard deviation equal

to 127.5 for floating point models and mean to 0.0 and standard deviation to 1.0 for quantized

models.

It is quite the opposite for PyTorch as it resizes the image before cropping or padding it. Its

normalization parameters are respectively for red, blue and green channels and for mean: 0.485,

0.456, 0.406 and standard deviation: 0.229, 0.224, 0.225.

3.6. Algorithm

For each framework, we developed a Java Android application which looped on all the converted

models and inferred each of the ImageNet 50,000 images for any hardware available (CPU,

OpenCL, OpenGL, Vulkan or NNAPI) from one to ten threads.

At each inference the time elapsed by the device to output the probabilities was gathered. We

compared the result to the image key contained in the ground truth file provided with the dataset

to know if the highest probability and the five best were in it. Latency and accuracy are saved in a

CSV file in the internal memory. When the test was launched, the device was plugged to the

power source in plane mode and screen luminosity was at its minimum level. The energy

consumption was not measure in this algorithm.

From the results collected in the previous algorithm, the same experiment parameters were

executed from a camera stream acquired on the device. The energy efficiency of all the

components as well as the image pre-processing time were evaluated. In addition, the screen and

the camera power consumption were collected separately to isolate the hardware used during the

inference.

Algorithm 1. Experiment algorithm

Input image = 1,…,50000

Output latency = inference latency of the image

isInTop1 = ground truth compared to the best probability

isInTop5 = ground truth compared to the five best probabilities

Parameters hardware = CPU,…,NNAPI

thread = 1,…,10

model = sqn11,…,inc3q

for hardware = CPU to NNAPI do

 for thread = 1 to 10 do

 for model = sqn11 to inc3q do

 for image = 1 to 50000 do

 preProcessedImage  preProcessImage(image);

 startTime  getSystemTime();

32 Computer Science & Information Technology (CS & IT)

 probs infer(preProcessedImage);

 stopTime  getSystemTime();

 latency  (stopTime – startTime);

 descendantOrderSort(probs)

 isInTop1  false;

 isInTop5  false;

 if ground truth == probs[0] then

 isInTop1  true;

 isInTop5  true;

 end

 else if ground truth in probs[1:4] then

 isInTop5  true;

 end

 appendToCSV(latency, isInTop1, isInTop5);

 end

 end

 end

end

4. EXPERIMENTAL RESULTS

For our experiment, we chose two smartphones which had a SoC generation gap and one tablet

with a boosted SoC. Four frameworks were implemented on which we executed seven models,

five 32-bit floating point and two quantized (8-bit integer) used as image segmentation

backbones.

4.1. ImageNet dataset latency

We ran Algorithm 1 on two smartphones and one tablet to get the closest real-world use case

results. Our algorithm was looping on 50,000 images which could come closest to a video feed

from the device camera to simulate an image segmentation backbone in real-time. An acceptable

latency for this task is under 30 ms letting display around 30 frames per second while providing

room for image pre-processing and decoding functions. One of the intrinsic limitations of our

devices was the thermal protection mechanism also known as Dynamic Voltage Frequency

Scaling (DVFS) or CPU throttling. The system downscales the CPU frequency to dissipate the

heat. Figure 1 shows two different DVFS behaviours when we ran NCNN on the Snapdragon 865

with one CPU thread. DVFS effect of Inception v3 pre-trained with PyTorch (1a) is not obvious,

resulting in a stable inference with a narrow range around 4 ms (1b). On the contrary, ResNet 50

v1 pre-trained with the TensorFlow framework (1c) shows two inference levels, 165 ms and 280

ms (1d). From the 30,000th image, the SoC is so hot it stands longer at 280 ms. DVFS is less

Computer Science & Information Technology (CS & IT) 33

present on the Snapdragon 865+ because it is an 11-inch tablet which contains more space to

dissipate the heat, unlike the two other devices as shown on Figure 2.

(a) Raw inference latency (in ms) of Inception v3 (PyTorch)

without DVFS effect

(b) Kernel density estimation of Inception

v3 (PyTorch) without DVFS effect

(c) Raw inference latency (in ms) of ResNet50 (Tensorflow)

v1 with DVFS effect

(d) Kernel density estimation of ResNet50

(Tensorflow) v1 with DVFS effect

Figure 1. Inference without (a)(b) and with (c)(d) DVFS on Snapdragon 865 CPU with 1 thread

(a) (b) (c)

Figure 2. SoC’s boards from Samsung Galaxy Tab S7 (a), Samsung Galaxy S21 5G (b) and OnePlus 8 (c)

(not to scale)

34 Computer Science & Information Technology (CS & IT)

Figure 3a shows that the multi-threading mechanism didn't affect the GPU. Switching from 1 to

10 threads didn’t affect the latency.

Figure 3b shows the AI engine, which uses CPU, GPU and NPU.

We saw that MobileNet v2 and Inception v3 latencies were improved when switching from the

GPU with floating point format to the AI engine with quantized one. Quantized version of

Inception v3 on the Exynos 2100 is improved when running from 1 to 4 threads. The NNAPI

library uses the best hardware in order to improve the latency. In our case, the library used the

NPU, and the GPU excepted for Inception v3 model on the Exynos 2100.

(a)

(b)

Figure 3. Influence of multi-threading on GPU (a) and AI engine (b)

Table 3 represents the arithmetic mean (µ) and the standard deviation (σ) of the inference latency

in milliseconds with the accuracy loss compared to their reference model in Table 2. For each

row we reported the best results of our experiment.

TensorFlow model latencies are the best with TFLite OpenCL for floating point models. We

greyed SqueezeNet v1.1, ResNet50 v1 and ResNet101 v1 Tensorflow models in our table due to

conversion issue reported in Section 3.4. The new Exynos 2100 provides an improvement in

comparison of the Snapdragon 865 especially for PyTorch models inferred with NCNN Vulkan.

NCNN has a non-negligible accuracy drop on different models but on SqueezeNet v1.1 it is 18 %

faster than the second best framework, MNN, with 13.91 ± 0.16 ms on Snapdragon 865 and

13.36 ± 0.43 ms on Snapdragon 865+.

Snapdragon 865+ outperforms the most recent generation due to its better CPU and GPU

frequency. This increase in frequency should represent a problem due to the throttling mechanism

however the device demonstrates an excellent capability to dissipate the heat making extra

computational power efficient.

The inconclusive results of the TFLite NNAPI on the 2100 should be related to the driver

compatibility of the Samsung NPU which was probably unimplemented yet.

Computer Science & Information Technology (CS & IT) 35

Table 3. Best mean (μ) with standard deviation (σ) of inference time in milliseconds for each model trained

by TensorFlow (model-tf) and PyTorch (model-pt) of all hardware and framework on the three devices

with their accuracy loss compared to Table 2 Top-1 and Top-5

SoC Model Framework Hardware µ ± σ (ms) Top-1 (%) Top-5 (%)

S
n

ap
d

ra
g
o

n
 8

6
5

sqn11-pt NCNN CPU2 11.40 ± 3.89 -13.07 -10.67

sqn11-tf NCNN CPU3 20.04 ± 4.13 -24.67 -28.25

mob2-pt MNN CPU7 15.96 ± 2.32 -3.17 -1.49

mob2-tf NCNN CPU3 13.00 ± 2.86 -3.79 -3.30

mobq2-tf TFLite NNAPI 4.44 ± 0.69 -1.79 -1.15

inc3-pt MNN CPU8 158.54 ± 33.94 -1.40 -0.68

inc3-tf TFLite OpenCL 70.07 ± 1.69 -0.44 -0.24

inc3q-tf TFLite NNAPI 52.67 ± 4.46 -0.26 -0.20

res50-pt NCNN Vulkan 86.23 ± 2.87 -7.70 -4.22

res50-tf TFLite OpenCL 26.54 ± 13.06 -47.08 -42.04

res101-pt NCNN Vulkan 133.17 ± 2.24 -5.78 -3.09

res101-tf TFLite OpenCL 25.98 ± 13.03 -48.28 -42.74

S
n

ap
d

ra
g
o

n
 8

6
5

 +

sqn11-pt NCNN CPU3 10.95 ± 2.24 -13.07 -10.67

sqn11-tf TFLite OpenCL 8.14 ± 0.59 -20.88 -22.74

mob2-pt NCNN CPU3 14.54 ± 1.24 -9.51 -5.78

mob2-tf TFLite OpenCL 5.47 ± 0.70 -1.70 -1.63

mobq2-tf TFLite NNAPI 4.07 ± 0.81 -1.79 -1.15

inc3-pt MNN CPU5 182.09 ± 23.17 -1.40 -0.68

inc3-tf TFLite OpenCL 46.85 ± 0.60 -0.44 -0.24

inc3q-tf TFLite NNAPI 12.06 ± 0.81 -0.26 -0.20

res50-pt NCNN Vulkan 66.29 ± 2.75 -7.70 -4.22

res50-tf TFLite OpenCL 8.13 ± 0.58 -47.08 -42.04

res101-pt NCNN Vulkan 101.22 ± 2.3 -5.78 -3.09

res101-tf TFLite OpenCL 8.17 ± 0.59 -48.28 -42.74

E
x

y
n

o
s

2
1

0
0

sqn11-pt MNN CPU4 12.88 ± 0.44 -4.17 -3.08

sqn11-tf TFLite OpenCL 18.02 ± 7.46 -20.88 -22.74

mob2-pt MNN CPU5 14.55 ± 3.43 -3.17 -1.49

mob2-tf TFLite OpenCL 11.37 ± 6.80 -1.70 -1.63

mobq2-tf TFLite NNAPI 10.77 ± 5.56 -1.79 -1.15

inc3-pt MNN CPU4 194.73 ± 43.03 -1.40 -0.68

inc3-tf TFLite OpenCL 93.05 ± 31.31 -0.44 -0.24

inc3q-tf TFLite NNAPI 40.92 ± 9.53 -0.26 -0.20

res50-pt NCNN Vulkan 81.48 ± 9.72 -7.70 -4.22

res50-tf TFLite OpenCL 17.00 ± 6.71 -47.08 -42.04

res101-pt NCNN Vulkan 117.25 ± 29.78 -5.78 -3.09

res101-tf TFLite OpenCL 17.07 ± 7.01 -48.28 -42.74

36 Computer Science & Information Technology (CS & IT)

4.2. Accuracy

An accuracy loss occurred when the model is converted. For Tensorflow models there was a drop

of 1-2 % on Top-1 and 2-3 % on Top-5 on all frameworks with, from the lowest loss to highest:

TFLite, MNN, NCNN. The same figures appeared for PyTorch ones except for NCNN which had

a 7-13 % drop on Top-1 and a 5-11 % drop on Top-5 depending on models.

In addition, SqueezeNet v1.1, ResNet50 v1, ResNet101 v1 from TensorFlow were not operating

the pre-processing parameters provided on TensorFlow Hub leading to an accuracy cap on both

Top-1 and Top-5 with respectively 28.12 % and 50.16 % for them.

The accuracy loss from the quantized model is negligible regarding the latency gain. MobileNet

v2 lost 1.89 % compared to its floating-point version but it reduced its latency by 5 % on the

2100 SoC, 26 % on the 865+ and 66 % on the 865. This gain is even bigger with Inception v3

model.

4.3. Camera stream latency

The camera stream from the device was integrated inside the Android application using Camera2

API. Images are acquired by the device camera in the YUV420 format and converted into

ARGB8888 to make it compatible with models input. The image's size is 640 pixels width and

480 pixels height. These new outcomes integrate the image pre-processing latency executed by

the framework and show CPU and GPU governors behaviour once the device is powered by its

battery. These results are consistent with the ImageNet ones. There is a performance drop for all

the frameworks as the device has to manage its energy. We observe that TFLite is more affected

than MNN or NCNN. Once again, quantized models outperform the others on the three devices.

It is particularly obvious for Inception v3 as it is approximately 3 times faster than its floating-

point version on Snapdragon 865, 2.5 times on Snapdragon 865+ and 1.5 times on the Exynos

2100. This experiment confirms the performance of the Snapdragon 865+ related to a reduced

DVFS effect.

4.4. Power efficiency

Before each test, devices were fully charged, screen brightness was set to medium, Bluetooth and

Wi-Fi were turned ON to reproduce as much as possible real usage of the device. The test was

stop once the device's battery reaches 97 % to avoid the nonlinear discharge of the lithium-ion

battery.

We recorded the elapsed time for the device to go from 100 to 97 % with the help of Battery

Historian software from Google [24]. We measured the screen consumption by setting the device

in plane mode and recording the time for the device to reach 97 % when the screen is ON with

medium brightness. Then we measured the camera consumption by doing the same process as for

the screen but with launching the camera application. Then we subtracted the screen consumption

to the observed one to have the camera.

The energy consumption for the Snapdragon 865, 865+ and Exynos 2100 screen are respectively

214 mAh, 619 mAh and 198 mAh. For the cameras, 438 mAh, 413 mAh and 792 mAh. The

Snapdragon 865+ screen is bigger than the two others and the Exynos 2100 has the most

powerful camera module.

Computer Science & Information Technology (CS & IT) 37

Once again, our results show small models and quantized models are the more energy efficient.

The faster it runs the less energy it consumes. Also, device screen and camera have a bigger

impact on energy than the dedicated inference hardware.

Table 4. Latency and energy consumed in μA for processing one image from device camera stream after

consuming 3 % of battery device. Hardware consumption is for the energy consumed by the hardware

involved in the inference (CPU, GPU, NPU, RAM) and Device consumption represents the total of energy

consumed by the device (screen and camera included).

SoC Model Framework Hardware µ ± σ (ms)

Hardware

consumption

(µA/img)

Device

consumption

(µA/img)

S
n

ap
d

ra
g
o

n
 8

6
5

sqn11-pt NCNN CPU2 11.40 ± 3.89 2.73 6.55

sqn11-tf NCNN CPU3 20.04 ± 4.13 5.69 9.76

mob2-pt MNN CPU7 15.96 ± 2.32 0.64 4.53

mob2-tf NCNN CPU3 13.00 ± 2.86 3.24 6.49

mobq2-tf TFLite NNAPI 4.44 ± 0.69 0.92 3.69

inc3-pt MNN CPU8 158.54 ± 33.94 27.40 59.78

inc3-tf TFLite OpenCL 70.07 ± 1.69 17.06 34.22

inc3q-tf TFLite NNAPI 52.67 ± 4.46 2.47 7.40

res50-pt NCNN Vulkan 86.23 ± 2.87 13.11 31.55

res50-tf TFLite OpenCL 26.54 ± 13.06 7.14 15.58

res101-pt NCNN Vulkan 133.17 ± 2.24 20.06 48.12

res101-tf TFLite OpenCL 25.98 ± 13.03 8.50 25.48

S
n

ap
d

ra
g

o
n

 8
6

5
 +

sqn11-pt NCNN CPU3 10.95 ± 2.24 3.92 7.57

sqn11-tf TFLite OpenCL 8.14 ± 0.59 2.97 8.06

mob2-pt NCNN CPU3 14.54 ± 1.24 4.85 9.37

mob2-tf TFLite OpenCL 5.47 ± 0.70 2.16 6.49

mobq2-tf TFLite NNAPI 4.07 ± 0.81 0.94 5.09

inc3-pt MNN CPU5 182.09 ± 23.17 51.73 107.44

inc3-tf TFLite OpenCL 46.85 ± 0.60 11.44 30.98

inc3q-tf TFLite NNAPI 12.06 ± 0.81 2.69 10.35

res50-pt NCNN Vulkan 66.29 ± 2.75 18.88 39.22

res50-tf TFLite OpenCL 8.13 ± 0.58 8.01 19.73

res101-pt NCNN Vulkan 101.22 ± 2.3 34.17 70.97

res101-tf TFLite OpenCL 8.17 ± 0.59 14.28 35.13

E
x

y
n

o

s
2

1
0

0

sqn11-pt MNN CPU4 12.88 ± 0.44 1.15 5.39

sqn11-tf TFLite OpenCL 18.02 ± 7.46 1.89 13.18

38 Computer Science & Information Technology (CS & IT)

mob2-pt MNN CPU5 14.55 ± 3.43 1.67 7.82

mob2-tf TFLite OpenCL 11.37 ± 6.80 3.21 14.99

mobq2-tf TFLite NNAPI 10.77 ± 5.56 2.96 13.70

inc3-pt MNN CPU4 194.73 ± 43.03 10.57 73.67

inc3-tf TFLite OpenCL 93.05 ± 31.31 21.73 60.38

inc3q-tf TFLite NNAPI 40.92 ± 9.53 4.30 30.48

res50-pt NCNN Vulkan 81.48 ± 9.72 14.17 39.63

res50-tf TFLite OpenCL 17.00 ± 6.71 7.18 33.19

res101-pt NCNN Vulkan 117.25 ± 29.78 15.63 54.00

res101-tf TFLite OpenCL 17.07 ± 7.01 15.18 52.90

5. CONCLUSION

In this paper we presented an inference latency benchmark on mobile to help the community

better deployed image classification/segmentation model on Android devices. Our results showed

that quantized models on AI engine should be the de facto standard, especially for complex

models like Inception v3. Quantized models are more energy efficient and performs better than

floating point ones with a tiny loss of accuracy. If there is no other choice than floating points,

developers should go for TFLite. It experiences an easy model conversion and integration process

on Android. For PyTorch models, we saw NCNN is a notable candidate, but it needs to improve

its conversion process to gain more accuracy. We are looking forward to GPU and NPU/DSP's

support in the future PyTorch mobile framework.

MNN and NCNN integration of these frameworks inside Android application is not a

straightforward task. The conversion step is not user-friendly as engineer need to compile or find

the appropriate converter and execute commands to transform the original model to a compatible

and optimized one. Additionally, framework libraries must be compiled and integrated with the

Android NDK which is an error prone process.

To conclude, manufacturers should improve heat dissipation or cooling mechanism on small

devices to avoid the DVFS effect resulting in an improved latency.

REFERENCES

[1] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, and Jeremy

Kepner. Survey and benchmarking of machine learning accelerators.2019 IEEE High Performance

Extreme Computing Conference (HPEC), pages 1–9, 2019.

[2] Sahar Voghoei, Navid Hashemi Tonekaboni, Jason G Wallace, and Hamid Reza Arabnia. Deep

learning at the edge. 2018 International Conference on Computational Science and Computational

Intelligence (CSCI), pages 895–901, 2018.

[3] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan, Kim M.

Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, Tommer Leyvand, Hao Lu, Yang Lu, Lin Qiao,

Brandon Reagen, Joe Spisak, Fei Sun, Andrew Tulloch,Peter Vajda, Xiaodong Wang, Yanghan

Wang, Bram Wasti, Yiming Wu, Ran Xian,Sungjoo Yoo, and Peizhao Zhang. Machine learning at

facebook: Understanding inference at the edge.2019 IEEE International Symposium on High

Performance Computer Architecture (HPCA), pages 331–344, 2019.

Computer Science & Information Technology (CS & IT) 39

[4] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and Xuanzhe Liu. A first

look at deep learning apps on smartphones. In WWW ’19, 2019.

[5] Soheil Bahrampour, Naveen Ramakrishnan, Lukas Schott, and Mohak Shah. Comparative study of

deep learning software frameworks arXiv: Learning, 2016.

[6] Zongqing Lu, Swati Rallapalli, Kevin S. Chan, and Thomas F. La Porta. Modeling the resource

requirements of convolutional neural networks on mobile devices. Proceedings of the 25th ACM

international conference on Multimedia, 2017.

[7] Abhishek Sehgal and Nasser Kehtarnavaz. Guidelines and benchmarks for deployment of deep

learning models on smartphones as real-time apps. Machine Learning and Knowledge Extraction,

1:450–465, 2019.

[8] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther

Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William

Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick,

J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj

Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius

Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira,

Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu, Lingjie Xu,

Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, and Yuchen Zhou.

Mlperf inference benchmark, 2019.

[9] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley, and Luc Van Gool.

Ai benchmark: Running deep neural networks on android smartphones. In ECCV Workshops, 2018.

[10] Andrey Ignatov, Radu Timofte, Andrei Kulik, Seung soo Yang, Ke Wang, Felix Baum, Max Wu,

Lirong Xu, and Luc Van Gool. Ai benchmark: All about deep learning on smartphones in 2019.2019

IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pages 3617–3635,

2019.

[11] Simone Bianco, Remi Cadene, Luigi Celona, and Paolo Napoletano. Benchmark analysis of

representative deep neural network architectures. IEEE Access, 6:64270–64277, 2018.

[12] Mario Almeida, Stefanos Laskaridis, Ilias Leontiadis, Stylianos I. Venieris, and Nicholas D. Lane.

Embench: Quantifying performance variations of deep neural networks across modern commodity

devices. In The 3rd International Workshop on Deep Learning for Mobile Systems and Applications,

EMDL’19, page 1–6, New York, NY, USA, 2019. Association for Computing Machinery. ISBN

9781450367714.doi: 10.1145/3325413.3329793. https://doi.org/10.1145/3325413.3329793.

[13] Arm Ltd. Introducing the arm cortex-x custom program, 2021.

https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-cortex-

x-custom-program.

[14] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kud-lur, Josh Levenberg, Rajat

Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete

Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.Tensorflow: A system for large-scale

machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 16), pages 265–283, 2016. https://www.usenix.org/system/files/conference/osdi16/osdi16-

abadi.pdf.

[15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,

Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.Berg, and Li Fei-Fei. ImageNet

Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV),

115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[16] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.Dally, and Kurt

Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model size.

ArXiv, abs/1602.07360, 2016.

[17] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.

Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and

segmentation. ArXiv, abs/1801.04381, 2018.

[18] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking

the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016.

https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-cortex-x-custom-program
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-cortex-x-custom-program
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

40 Computer Science & Information Technology (CS & IT)

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2016.

[20] Google. Tensorflow hub, 2020. https://tfhub.dev/.

[21] Google. TFLite hosted models, 2020.

https://github.com/tensorflow/models/tree/master/research/slim.

[22] PyTorch. Pytorch model hub, 2020. https://pytorch.org/hub/.

[23] TensorFlow. TFLite hosted models, 2020. https://www.tensorflow.org/lite/guide/hosted_models.

[24] Google. Battery historian GitHub, 2021. https://github.com/google/battery-historian.

AUTHORS

Mathieu Febvay is currently a PhD candidate at ERIC laboratory at University of Lyon in France (UR 3083).

His research focuses on Lightweight Deep Learning where he investigates performance and feasibility of neural

networks model running on resource constrained devices. He also works as a Software Engineer on mobile

devices. He holds a Master in Computer Science (MIAGE) from University of Lyon (2017) and is graduated in

Software Development from University of Montpellier (2008). He has interest in the field of health and mobile

medical devices.

Ahmed Bounekkar is an Associate Professor at the University of Lyon 1, attached to the ERIC laboratory.

Since 2009, he has been in charge of the Master MIAGE in management informatics. His research focuses on

modelling in complex systems for the design of decision support methodologies. They particularly concern the

development of algorithms for data structuring, machine learning and multi-objective optimisation problems.

The proposed models mainly concern problems in the field of health.

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://tfhub.dev/
https://github.com/tensorflow/models/tree/master/research/slim
https://www.tensorflow.org/lite/guide/hosted_models
https://github.com/google/battery-historian
http://airccse.org/

	Abstract
	Keywords
	Deep Learning, On-device inference, Image classification, Mobile, Quantized Models.

