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ABSTRACT 
 

This article investigates the error distribution of the Miller-Rabin test for the class of 

tripleprime numbers. At first the current results on the class of semiprimes are presented. 
Further, a theoretical estimation of the average frequency for triple prime numbers on an 

interval is derived, and a comparative analysis with a practical result is demonstrated. Graphs 
and intermediate conclusions accompany all comparisons. A conclusion is also made about a 

possible direction for improving this estimation. 
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1. INTRODUCTION 
 
Prime numbers are a key element in the design of cryptographic protocols. Therefore, it is very 

necessary to find a sufficiently large prime number quickly and efficiently. The easiest way is to 

iterate the numbers in a given interval and check for primality. Thus, the question arises of 

checking an arbitrary number for primality. 
 

There are several approaches to checking whether a number is prime: 

 
1. Search of divisors[1] – a deterministic algorithm that gives an answer in a limited time. The 

main disadvantage is a long running time, exponential dependence on the length of the 

number. 
 

2. Fermat's test[2] – a probabilistic test based on Fermat's little theorem. The main disadvantage 

is the Carmichael numbers passing the test with an falsely primality verdict, and their infinite 

number.[3] 
 

3. The Miller-Rabin test[4][5] – the most widely used probabilistic test. Is an improvement on 

the Fermat test. 
 

There are many other primality tests, but they have not been considered in this paper. 

 
The Miller-Rabin test is a probabilistic test, which means that this test may falsely conclude that a 

number is prime. Therefore, the problem arises of estimating the probability of such an error in 

order to evaluate the efficiency of the algorithm. 
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For example, the article [6] provides an algorithm for additional verification of numbers that have 
passed the Miller-Rabin test with base 2. To correctly estimate its running time, it is necessary to 

know the distribution of strong pseudoprimes over this base. 

 

Also, article [7] provides an algorithm for finding prime numbers by pattern. To estimate its 
running time, knowledge about the distribution of strong pseudoprimes was also needed. 

 

In this paper, we present theoretical calculations for the average error of the Miller-Rabin test on 

the interval [1, ]X . As part of the work, current estimation for numbers enclosed in parentheses 

and set on the right margin. For example, we present theoretical upper bound for semiprimes 

 
n pq  (1) 

 
and calculate theoretical upper bound for tripleprimes 

 
n pqr  (2) 

 

After the derivation of the upper bound, we perform practical calculations, according to which 
make conclusions about the closeness of the upper estimation to practical results and the need to 

improve the estimation. 

 
This paper contains the following Sections: Section 2 present problem statement, all necessary 

definitions and current results of research. Sections 3 present obtaining of theoretical estimation 

for upper bound of average error on interval. Section 4 demonstrate visual comparison theoretical 
function and practical values on several parameters and made intermediate conclusions. Section 5 

present final conclusion about the results. 

 

2. METHODS 
 

2.1. Miller-Rabin Test 
 

There are many algorithms for checking the primality of a number. As part of this work, the 
Miller-Rabin probabilistic test will be analyzed. This test was developed in 1976 by G. Miller in 

the article [4]. Its modification was presented in 1980 by M. Rabin in the article [5]. This 

algorithm is based on Euler's theorem [8]: 
 

1 1(mod ),na n where n is a primenumber     (3) 

 

To describe the algorithm, we introduce the following definitions: 

 

Definition 1. Let n  be an arbitrary natural number, then we define the functions ( )bin n  and 

( )odd n  as follows: 

 

2 ,

( )

( )

sn u whereu is odd

bin n s

odd n u







 (4) 
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Definition 2. Let n  is an arbitrary natural number, a  is a natural number belonging to the 

interval  1, 1n . Call a  is witness of primality if one of the following conditions is met: 

 
( 1)

( 1) 2

1(mod )

(0 ( 1)) ( ) 1(mod )
i

odd n

odd n

a n

i bin n a n







     
 (5) 

 

Thus, the final algorithm for checking for the primality of a number is as follows [5]: 

 
Perform k iterations of the test: 

 

   Choose a random number a. 

 
   Find d = gcd(a,n). if d ≠ 1, then n is composite. 

    

Check whether conditions from (5) are satisfied: 
 

      If none of the conditions is met, then n is a composite. 

       

Otherwise - probably prime. 
 

The verdict "probably prime" means that there is a composite number that will pass the test as a 

prime number. Such numbers are called strong pseudoprime. The study of the distribution of 
strong pseudoprimes is important for evaluating the efficiency of the algorithm. 

 

One of the approaches to estimating the distribution of strictly pseudoprimes is sequence n  – 

smallest strong pseudoprime to n  first prime numbers as bases. Nowadays known values are for 

1 13n  [9][10]. There is also conjecture for values 14 19n  [11]. However, in present 

work we use another approach. 

 

2.2. Number of witnesses to the primality of the number 
 

An important characteristic for estimating the error of the Miller-Rabin test is the number of 
witnesses to the primality of an arbitrary number. This value allows us to estimate the probability 

of choosing a witness of primality for a composite number, and, consequently, a falsely 

conclusion. 

 
In the article [12], a necessary and sufficient condition was presented that allows finding the 

exact number of primality witnesses for an arbitrary number: 

 

,

( ) | ( ( ), ( ( )) 1)

( ) | ( ( ), ( ( )) 1)

( ( )) ( ( ))

u

v

u v

n uv whereu and v arecoprime

ord a GCD u u u v

ord a GCD v v v u

bin ord a bin ord a

 

 



 

 



 (6) 

 

We define by ( )W n  the number of witnesses to the primality of n . The first formula for ( )W n  

was also presented in [12], but only for semiprime numbers n  from (1). 
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( )
2 4 2

( ) ( ) , ( 1, 1)
3

bin d

W n odd d whered GCD p q


     (7) 

 

In [13], a finite formula was presented for an arbitrary number by its decomposition into prime 

factors: 
 

1 1

1 1

1

01

* *...*

( 1, 1)

min( ( ))

( ) ( ( ))*(1 2 )

k

i

rr r

k

i i r

i

i

k s
kj

i

ji

n p p p

n
d GCD p

p

s bin d

W n odd d






  



 

 (8) 

 

2.3. Average frequency distribution 
 

After introducing utility definitions and formulas, we define the function for calculations. Since 

in the Miller-Rabin test one of the checks is the calculation of the GCD of a number and base, 

then only numbers coprime with n  can be witnesses of primality. Hence: 

 

( ) ( )W n n  (9) 

 

Thus, as the frequency of witnesses, we will define: 
 

( )
( )

( )

W n
Fr n

n
  (10) 

 

The maximum value 1 is reached if and only if n  is prime. This follows from Rabin's theorem 

presented in [5]: 
 

( )
( ) ,

4

n
W n where nis a composite number


  (11) 

 

The value of the ( )Fr n  function can also be interpreted as the probability of successfully passing 

one iteration of the Miller-Rabin test. In this case, the probability that the composite number n  is 

probably prime after k  iterations is 
1

4k
. Subsequently, this estimation was improved in [12] 

to
1

16k
. 

 

Since the function ( )Fr n  has no limit and reaches a maximum of 
1

4
 on an infinite number of 

composite numbers, we will estimate the distribution for ( ( ))Avg Fr n  – the average frequency 

of witnesses on the interval  1, X . 

 

Article [14] presents estimation: 
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1
( ( ))Avg Fr n

X
  (12) 

 

Article [5] presents estimation: 
 

1) for the case n  from (1) and 

 

2

( 1) 1

( ( )) ln(ln( )) ln( )
2

q p k

p
Avg Fr n X X

X

  


 (13) 

 

2) for the case n  from (1) and 

 

2 1, 2 mod( 1) 0

2
( ( )) ln(ln( )) ln( )

q k where k p

Avg Fr n X X
X

   


 (14) 

 

3) for the general case from (1) 
 

2
( ( ( ))) ln(ln( )) ln( )

p
E Avg Fr n X X

X
  (15) 

 

2.4. Information content 
 

Since the average probabilities in practice are extremely small, we use the information content 

from [15] for the “probably prime” event to compare the theoretical and practical estimations: 

 

1
log( ),I where p event probability

p
   (16) 

 

3. RESULTS AND DISCUSSION 
 

3.1. Estimating the number of witnesses 
 

At first, we define 1d , 2d , 3d  and s  for n  from (2) where p , q , r  are distinct prime numbers: 

 

1

2

3

1 2 3

( 1, 1)

( 1, 1)

( 1, 1)

min( ( ), ( ), ( ))

d GCD p qr

d GCD q pr

d GCD r pq

s bin d bin d bin d

  

  

  



 (17) 

 

After that, we get the formula for the number of witnesses of the primality of number n  from (2) 

where p , q , r  are distinct prime numbers. Next, we calculate the inner sum in (8) through a 

geometric progression and get: 
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1 2 3

8 6
( ) ( )* ( )* ( )*

7

s

W n odd d odd d odd d


  (18) 

 

From the definition of s  and the properties of the GCD it follows: 

 

1

1 1
1 ( )

1
( )

2 2 2
bin d s s

d d p
odd d


    (19) 

2

2 2
2 ( )

1
( )

2 2 2
bin d s s

d d q
odd d


    

(20) 

3

3 3
3 ( )

1
( )

2 2 2
bin d s s

d d pq
odd d


    

(21) 

 

But we can improve multiplication of the inequalities from (19), (20) and (21) by this theorem: 

For any 
1d , 

2d , 
3d  and s , defined as in (17) this inequality is satisfied: 

 

1 2 3 3 1

( 1)( 1)( 1)
( )* ( )* ( )

2 s

p q pq
odd d odd d odd d



  
  (22) 

 

Since the numbers 1p  , 1q   and 1pq   are always even, then 1s  . Substituting this 

property and inequality from (22) into (18) we obtain: 

 

1

6
( 1)( 1)( 1)(1 )

( 1)( 1)( 1)8( )
14 8

p q pq
p q pq

W n

   
  

   
(23) 

 

Thus, we obtain an estimation for the number of witnesses of the primality. 
 

3.2. Estimating the frequency of witnesses 
 
Substituting the inequality from (23) into (10) we get: 

 

( ) ( 1)( 1)( 1) 1
( )

( ) 8( 1)( 1)( 1) 8( 1)

W n p q pq pq
Fr n

pqr p q r r

   
  

   
 (24) 

 

Thus, we obtain an estimation for the frequency of witnesses to the primality of an arbitrary 

tripleprime number n  from (2). 

 

3.3. Estimating the average frequency of witnesses 
 

To calculate the average frequency of witnesses, we fix prime numbers p  and q  and introduce 

the parameter y . We define by ( )pqS y  the sum of the frequencies of witnesses for all numbers 

n  from (2), where r  is a prime number on the interval  max( , ) 1,p q y , and by ( )p y  the 

number of prime numbers on the interval [ 1, ]p y . 

 

Then we found the average frequency of witnesses on the segment  1, pqy  by the formula: 
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max( , )

( )
( ( ))

( )

pq

p q

S y
Avg Fr n

y
  (25) 

 

At first, we estimate ( )pqS y : 

 

1 1 1 1
( ) ln(ln( ))

8( 1) 8 8
pq

r y r y

pq pq pq
S y y

r r 

  



   (26) 

 

After that, we estimate ( )p y : 

 

( )
ln( ) ln( ) ln( )

p

y p y
y

y p y
   (27) 

 

We denote the upper bound by X , then: 
 

X
y

pq
  

(28) 

 
Substituting inequalities from (26), (28) and estimation from (27) into (25) we obtain an upper 

bound for ( ( ))Avg Fr n . Then: 

2( ) ln( ) ln(ln( ))
( ( ))

8

pq X X
Avg Fr n

X
  

(29) 

 

Thus, we obtained an estimation for the average frequency of witnesses to the primality of an 

arbitrary tripleprime number n from (2) on the interval  1, X : 

 

ln( ) ln(ln( ))
( ( )) pq

X X
Avg Fr n C

X
  

(30) 

 

3.4. Convergence to upper bound  
 

Since the inequalities in (19), (20) and (21) can be strengthened for an infinite number of 
numbers, the final upper bound is inaccurate and needs to be improved. However, we will try to 

consider the subproblem of finding '( ( ))Avg Fr n  – the average frequency of witnesses on the 

interval  1, X  of tripleprimes number from (2), which satisfy the following conditions: 

 

1 2 ', 'p p where p primenumber    (31) 

1 2 ', 'q q whereq prime number    (32) 

( 1) 2bin pq    (33) 

1(mod ')

1(mod ')

1(mod 1)

rq p

rp q

r pq





 

 (34) 
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There are infinitely many such triples p , q  and r , since the equation (32) has exactly one 

solution 
0r  on the segment [1, '* '*( 1)]p q pq  . For example, if 7p  , 11q   then 

0 533r  . 

Then all solutions of (32) will be 0 '* '*( 1)r r p q pq k   , where k  – any integer. Thus, we 

can calculate '( ( ))Avg Fr n  over an arbitrarily large segment. In this case upper bound from (29) 

can be improved to close enough result: 

 

0ln( )(ln(ln( )) ln(ln( )))( 1)
'( ( ))

8

X X ypq pq
Avg Fr n

X


  (35) 

 

, where 0y  - minimum value r  for fixed p and q. For example, if 7p  , 11q   then 

0 8513y  . 

 

4. SUMMARY 
 

4.1. Comparison of theoretical and practical evaluation 
 

After finding the theoretical estimates, we compare the result with practice for several points: 

 

1. The value of the coefficient pqC  through the formula (30). 

2. The ratio of both sides of the inequality in (29). 
3. Comparison of both sides of the inequality in (29). 

4. Convergence to upper bound from inequality in (35). 

5. General conclusions. 
 

4.2. Value of the coefficient Cpq 

 
Figure 1 shows that the dependence of the coefficient is non-linear and not even monotonous. 

However, it can be noted that the type of dependence itself does not depend on the boundary of 

the segment, but only on pq . Also, it does not reach the theoretical value, so we can conclude 

that it is possible to improve the value of the coefficient pqC . 

 

 
 

Figure 1. Estimation of the coefficient value (dependence on pq). 
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Figure 2 shows that the value of the coefficient increases monotonically, but does not exceed the 
theoretical value. So, we can make an assumption about approaching the theoretical value. 

However, due to the fact that there is no obvious slowdown in growth, it is difficult to conclude 

that there is better upper bound. 

 

 
 

Figure 2. Estimation of the coefficient value (dependence on the boundary X). 

 

Figure 3 shows that the value of the coefficient increases monotonically, but the growth rate 

gradually slows down. From this, we can make an assumption about the existence of an upper 

bound. 
 

 
 

Figure 3. Estimation of the coefficient value (dependence on the logarithm of boundary X). 

 

4.3. Function ratio 

 

As we can see from the Figure 4 and Figure 5, the ratio between the functions very slowly 
approaches value 1, but does not reach. Also, it seems the limit of the sequence is not 1. It means 

that the resulting estimation is upper bound but not accurate and needs improvement. 
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Figure 4. Function ratio (dependence on the boundary X, theoretical/practical). 

 

 
 

Figure 5. Function ratio (dependence on the boundary X, practical/theoretical). 

 

4.4. Function comparison 

 

We can see from the Fig. 6, which present function comparison for 77pq  , that the theoretical 

estimate is an upper bound for ( )Fr n . We can notice that distance between the practical values 

and theoretical ones doesn't change much, so it can be assumed that the dependency type for the 

upper bound was found correctly. However, the theoretical function quite far from the practical 

one, which indicates an inaccurate finding of the coefficient pqC . 

 

 
 
 

Figure 6. Comparison of theoretical and practical evaluation (dependence on the boundary X, pq=77). 



Computer Science & Information Technology (CS & IT)                                    11 

4.5. Convergence to upper bound 

 
We can see from the Fig. 7, that ratio very quickly reach value 1. It means that the resulting 
function is very accurate approximation of practical value. Also, we can see that after 

lg( ) 7X  ratio become less than 1. It means the resulting function is upper bound for practical 

value. 
 

 
 

Figure 7. Function ratio (dependence on the logarithm of boundary X, practical/theoretical). 

 

4.4. General conclusions 

 

As we can see from comparison of theoretical and practical values, upper bound from (29) 

doesn’t approximate ( ( ))Avg Fr n  and needs improvement. However, dependency type for the 

upper bound as in (30) was found correctly. It means that the main improvement must be 

decrease of value pqC . 

But for subclass of tripleprime numbers with properties (31), (32), (33) and (34) we found very 

accurate approximation of '( ( ))Avg Fr n . One use of this estimation can be to improve the 

estimation for the whole class of tripleprime numbers. 

 

5. CONCLUSIONS 
 

In this article, we review current results for an upper bound for the average probability of error of 
the Miller-Rabin test. Also, we calculate new estimation for class tripleprimes numbers and made 

a comparison with practical results. 

 

Conclusions were drawn about the correctness of the type of distribution of the theoretical 

estimation. However, it was found that the value of the coefficient pqC  is too high. All 

conclusions were accompanied by graphs for visual demonstration. 

 

Also, we found very accurate approximation of the average probability of error of the Miller-

Rabin test for some subclass of tripleprime numbers. 
 

All our conclusions accompanied with graphs for more clarity. 

 



12         Computer Science & Information Technology (CS & IT) 

Therefore, a further direction for investigation may be to attempt to decrease the value of the pqC  

coefficient in order to obtain a more accurate upper bound. 
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