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ABSTRACT 
 

One major problem in Natural Language Processing is the automatic analysis and 

representation of human language. Human language is ambiguous and deeper understanding of 

semantics and creating human-to-machine interaction have required an effort in creating the 

schemes for act of communication and building common-sense knowledge bases for the 

‘meaning’ in texts. This paper introduces computational methods for semantic analysis and the 

quantifying the meaning of short scientific texts. Computational methods extracting semantic 

feature are used to analyse the relations between texts of messages and ‘representations of 

situations’ for a newly created large collection of scientific texts, Leicester Scientific Corpus. 

The representation of scientific-specific meaning is standardised by replacing the situation 

representations, rather than psychological properties, with the vectors of some attributes: a list 
of scientific subject categories that the text belongs to. First, this paper introduces ‘Meaning 

Space’ in which the informational representation of the meaning is extracted from the 

occurrence of the word in texts across the scientific categories, i.e., the meaning of a word is 

represented by a vector of Relative Information Gain about the subject categories. Then, the 

meaning space is statistically analysed for Leicester Scientific Dictionary-Core and we 

investigate ‘Principal Components of the Meaning’ to describe the adequate dimensions of the 

meaning. The research in this paper conducts the base for the geometric representation of the 

meaning of texts. 
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1. INTRODUCTION 
 

One major problem in Natural Language Processing is the automatic analysis and representation 

of human language. Computational methods attempt to repeat human behaviour in the processing 
natural languages in a world where humans have no limitations on the range of interpretation of 

words, and the construction of complex meaning (semantic binding). Unlike humans as a group, 

machines may fail to provide a rich enough set of contexts to represent and distinguish different 
concepts. 

 

The ‘meaning of meaning’ is a topic that has been extensively  discussed  by philosophers, 

linguistics, psychologists, neuroscientists, and computer scientists, in order to build “common-
sense” knowledge bases, but the consensus has yet to be reached [1-4]. Wittgenstein formulates 

this as follows: “Meaning is use” or, in more detail, “For a large class of cases though not for all 
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in which we employ the word ‘meaning’ it can be defined thus: the meaning of a word is its use 
in the language” [5, §43]. 

 

For the world of scientific texts (abstracts or brief reports), there is a well-defined dominant 

communicative function: a representative function. In an idealised scheme of the act of 
communication (see Figure 1), two representations of the situation on the “blackboards of 

consciousness” exist: the sender’s representation (Representation 1) of the situation (Situation 1) 

and the receiver’s representation (Representation 2) of the situation (Situation 2). A text related to 
the first situation is generated by the sender (Translation 1). This text is transmitted to the 

receiver and transformed by the receiver into a representation of the situation (Translation 2). The 

sender’s and the receiver’s representations never coincide.  
 

 
 

Figure 1. The idealised scheme of the act of communication. There is a representation of a situation on the 

sender’s “blackboard of the consciousness” (a representation 1 of  Situation 1). A text related to this 

situation is generated by the sender (Translation 1). This text is transmitted to the receiver and transformed 

by her into a representation of the situation (Representation 2 of Situation 2). 

 
In this study, we consider the chain: Representation 1 → Text → Representation 2, and 

translations between them. Translations depend on a broad range of factors related to 

communication, including the experience of the sender and receiver. It is noteworthy that there 

may be many receivers and senders. One-to-many or even many-to-many communication add 
more situations and representations.  

 

A very basic scheme is sufficient for our analysis of meaning. Meaning is hidden in the 
relationship between the representation of situations on the blackboard of the consciousness and 

the texts of the messages. The meaning of meaning can be understood if and only if the 

translation operations are created in the scheme of a communication act. Moreover, 
understanding can be represented as a reflexive game [6] with different levels (The sender 

prepares a message taking into account the experience of the receiver, his goals and tools, and 

guesses that the receiver takes into account the experience of the sender, her goals and tools, 

and... . Analogously, the receiver tries to understand the message taking into account..., etc.)  
 

The relation between the text and the representation of the situation is a many-to-many 

correspondence. Each text corresponds to many situations and each situation can have many 
representative texts. At this stage, we characterise a situation “behind the text” by a set of 

attributes.  

 
Despite the challenges in creating and describing plausible translation, with recent remarkable 

progress of machine translation, applying modern machine learning tools seems to be attractive 

idea for the analysis and simulation of translation operations. However, there is no generally 

accepted tools for working directly with representations of situations, and we cannot propose a 
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general solution to this problem. Such a solution, perhaps, is impossible in a finite closed form 
despite much effort over many decades. 

 

Our goal is more modest. We will provide computational analysis of the relations between texts 

of messages and representations of situations for a large collection of brief scientific texts. Such 
representations must be standardised, at least in part, and expressed in the form of diagrams, 

specially organized texts, or by other means. The simplest and universal approach is to replace 

the situation representations with vectors of attributes. Sentiment analysis provides many 
examples of such representations. We aim to provide another basic example that is specific to 

scientific texts: a list of scientific subject categories that the text belongs to. 

 
In any text classification, subject categories can be chosen by humans or a computer system with 

an understanding of the text, but conflicts of understanding are possible and maybe inevitable. 

Even famous preprint servers (such as arXiv), moderators sometimes change the category 

selected by the authors. This is because the content of the text may differ from its meaning [7], a 
confusion which often occurs (just as understanding the situation behind the text is often 

confused with recognising the content of the text).  

 
In our analysis of meaning, the starting point is the combination of the text with the list of the 

subject categories the text belongs to – definition of the attributes of the situation behind the text. 

The key idea of this approach goes back to the lexical approach of Sir Francis Galton, who 
selected the personality-descriptive terms and stated the problem of their interrelations for real 

persons. Following his idea, in classical psycholinguistic studies, a similar approach was used in 

publications [8-10]. Osgood, with co-workers, in the theory of the Semantic Differential, 

hypothesised a 3-dimensional semantic space to quantify connotative meanings concerning 
psychological and behavioural parameters [11, 12]. They used an approach for the extraction of 

three ‘coordinates of meaning’ from the evaluation of the ‘affective meaning’ of words (objects) 

by people. The semantic space was built by, in his words, ‘three orthogonal bipolar dimensions’: 
Evaluation (E), Potency (P) and Activity (A). Of course,  the research started considering many 

different attributes and these three were extracted by factor analysis. These evaluations of a single 

object were related to some situations involving this single object, not just to an isolated abstract 

object. The people evaluated not the abstract ‘terms’ but psychologically meaningful situations 
behind these terms; these situations were the sources of ‘affective meaning’. 

 

For our world of scientific texts, we characterise the situation of use by a scientifically specific 
description – the research subject categories of the text. Quantifying the meaning in our research 

follows the road: Corpus of texts + categories → Meaning Space (MS) for words + Geometric 

representation of the meaning of texts. 
 

In our analysis of meanings, the starting point is to combine the text with the list of the subject 

categories the text belongs to. These categories can intersect: a text can belong to several 

categories as texts can be assigned to more than one category. The categories evaluate the 
situation (the research area) related to the text as a whole, not as a result of the combination of the 

meaning of words. This holistic approach defines the general meaning of a word in short 

scientific texts as the information that the use of this word in texts carries about the categories to 
which these texts belong. More explicitly, we quantify meaning by using the Relative 

Information Gain (RIG) (see Equation 7) for a word in a category. To do this we   require two 

attributes of text 𝑑 for a given word 𝑤𝑗 and a given category 𝑐𝑘, defined as: 

 

𝑐𝑘(𝑑): The text 𝑑 is in the category 𝑐𝑘: Attribute values are Yes (𝑐𝑘(𝑑) = 1) or No (𝑐𝑘(𝑑) = 0); 

𝑤𝑗(𝑑): The word is in the text: Attribute values are Yes (𝑤𝑗(𝑑) = 1) or No (𝑤𝑗(𝑑) = 0). 
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In this approach, the corpus of scientific texts is a probabilistic sample space (the space of equally 
probable elementary results, each of which is a random selection of text from the corpus). 

𝑅𝐼𝐺(𝑐𝑘 , 𝑤𝑗) measures the (normalized) information about the value of 𝑐𝑘(𝑑), which can be 

extracted from the value 𝑤𝑗(𝑑) (i.e. from observing or not observing the word 𝑤𝑗 in the text 𝑑) 

for a text 𝑑 from the corpus. By this, we identify the importance of the word for the 

corresponding category in terms of information gained when separating the corresponding 

category from its complement.  
 

To follow our road, a triad is needed: texts, dictionary and multidimensional evaluation of the 

situation of use presented by the categories. In this research, short scientific texts are abstracts of 
research articles or proceeding papers. For the first element of the triad, the whole world of 

abstracts is narrowed to a sample: 1,673,350 texts from the Leicester Scientific Corpus (LSC) 

[13]. The meaning of a word extracted from the corpus is represented by a 252-dimensional 

vector of RIGs, in which each of the texts in the LSC is assigned to at least one of these 252 Web 
of Science (WoS) categories [14]. Thus, we use these simple 252 binary attributes for 

multidimensional evaluation of the text usage situation, where the second element of the triad is 

the Leicester Scientific Dictionary-Core (LScDC) [15].  
 

Next, a vector space to represent a word’s meanings has been introduced: the Meaning Space. In 

the Meaning Space, coordinates correspond to the subject categories. Each word 𝑤𝑗 in the 

dictionary is represented by the vector 𝑅𝐼𝐺𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, of information gains for the word for each of the  

subject categories. These vectors are estimations of the meaning of words as to their importance 

in each of the research fields. hypotheses here are: if words have similar vectors, they tend to 

have similar meanings, and if texts have a similar distributions of word meanings – similar clouds 
of word vectors – then they tend to have similar meanings (often referred to as the Distributional 

Semantic Hypothesis). We demonstrate that RIG-based word ranking is much more useful than 

ranking based on raw word frequency in determining the science-specific meaning and 
importance of a word. The proposed model based on RIG is shown to have ability to stand out 

topic-specific words in subject categories.  

 

Having represented each word in the Meaning Space, these representations can be used in many 
text analysis problems including the creation of a thesaurus such as the Leicester Scientific 

Thesaurus (LScT) [16]. The LScT contains the most informative 5,000 words in science; in 

formativeness is measured as the average RIGs of a word across categories.  
 

This representation scheme is the basis of the computational analysis of the meaning of texts and 

will be used later for our holistic approach to the meaning of text: the text is considered as a 
collection of words, the meaning of the text is hidden in a situation of use, which is evaluated as a 

whole. 

 

In this study, the hypothesis that lexical meaning in science can be represented in a lower 
dimensional space rather than the 252-dimensional Meaning Space is tested. Principal 

Component Analysis (PCA) is performed to reduce the dimensionality of the Meaning Space, in 

which points are the 5,000 words of LScT and dimensions are categories. We analyse the 
dimension of the Meaning Space and visualise words and categories in the space of principle 

components (PCs). We interpret the first five PCs by their coordinates. For each component, 

categories are divided into three groups: categories that positively and negatively correlated with 
the corresponding component, and categories having near zero values in the component. Topics 

in these groups are analysed. We then analyse the extreme topic groups at opposite ends of the 

PCs in order to describe the PCs. Finally, different selection criteria (Kaiser, Broken Stick, an 
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empirical method based on multicollinearity control – PCA-CN) are used to reduce the 
dimensionality of the category space to 61, 16 and 13, respectively.  

 

2. DATASET 
 

Our new approach is applied to construct the Meaning Space on the basis of Leicester Scientific 
Corpus (LSC) and Leicester Scientific Dictionary-Core (LScDC) [13, 14]. The LSC is a scientific 

corpus of 1,673,350 abstracts and the LScDC is a scientific dictionary of 103,998 words extracted 

from the LSC. Each text in the LSC belongs to at least one of the 252 subject categories of Web 
of Science (WoS). Words in the LScDC will be represented by 252-dimensional vector in the 

Meaning Space. 

 

Finally, a thesaurus of science is created by selecting the most informative words from the 
LScDC. The informativeness here was measured by the average RIGs in categories. We 

introduced the Leicester Scientific Thesaurus (LScT) where the most informative 5,000 words 

from the LScDC were included in [16]. These words are considered as the most meaningful 
words in science. Later we will use the LScT in the study of the representation of the meaning of 

texts. 

 

3. AN INFORMATIONAL SPACE OF MEANING 
 
In this section, we introduce our novel vector space model developed for quantifying the meaning 

of words. The architecture of the approach to estimating the word meaning for a large family of 

natural language scientific texts has discussed. The new approach to word meaning is applied to 
construct the Meaning Space based on the LSC and LScDC. 

 

We introduce the Meaning Space, in which the meaning of a word is represented by a vector of 
RIGs about the subject categories that the text belongs to. We hypothesize that words have 

scientifically specific meaning in categories and the meaning can be estimated by information 

gains from the word to the category. 252 subject categories of WoS are used in construction of 

vectors of information gains. This representation technique is evaluated by analysing the top-
ranked words in each category. For individual categories, RIG-based word ranking is compared 

with ranking based on raw word frequency in determining the science-specific meaning and 

importance of a word.  
 

We finally create a scientific thesaurus, LScT, in which the most informative words are selected 

from the LScDC by their average RIGs in categories. LScT contains the most informative 5,000 
words in the corpus LSC. These words are considered as the most meaningful words in science. 

 

3.1. Word Meaning as a Vector of RIGs Extracted for Categories 
 

We start with measuring how informative a word is for a category in terms of its ability to 

separate the corresponding category from its set theoretical complement. We hypothesize that 

topic-specific words in categories have larger information gain than other words, and such words 
are expected to have less gain in most other categories. Therefore, we approach this problem by 

defining, for each subject category 𝑐𝑘, a random Boolean variable: the text belongs to the 

category 𝑐𝑘 or  the text does not belong to the category 𝑐𝑘 (this class is denoted as �̅�𝑘). The 

frequencies of words in classes 𝑐𝑘 and �̅�𝑘 are shown in Table 1. Let 𝐷𝑗
 denote the set of texts 

containing the word 𝑤𝑗 and 𝐷𝑘 be the set of texts in the category 𝑐𝑘.  
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For every word 𝑤𝑗  from the dictionary (j = 1, ..., N) and every text 𝑑𝑖 from the corpus (i = 1, ..., 

M) the indicator 𝑤𝑗(𝑑𝑖) is defined as follows: If the word 𝑤𝑗 occurs in the text 𝑑𝑖 (once or more), 

then 𝑤𝑗(𝑑𝑖) = 1, otherwise, 𝑤𝑗(𝑑𝑖) = 0. The frequency of the word 𝑤𝑗 in the category 𝑐𝑘 is 

 

𝑤𝑗𝑘 = ∑ 𝑤𝑗(𝑑𝑖)𝑑𝑖∈𝐷𝑘
; 

 

 (1) 

𝑤𝑗𝑘is the number of texts containing the word 𝑤𝑗 in the category 𝑐𝑘. 

 
Table 1. Representation of the word by a pair of frequencies: the number of texts containing the word 𝒘𝒋 

that belong and does not belong to the category 𝒄𝒌 

 
                            Category 

Word              
𝑐𝑘 �̅�𝑘 

𝑤1 𝑤1𝑘 |𝐷1 | − 𝑤
1𝑘

 

𝑤2 𝑤2𝑘 |𝐷2 | − 𝑤2𝑘  

…
 

... 

…
 

𝑤𝑁 
𝑤𝑁𝑘 |𝐷𝑁  |

− 𝑤𝑁𝑘  

 
Since words are obviously not mutually exclusive (one text usually contains several different 

words), to evaluate the information gain of the category 𝑐𝑘 from the word 𝑤𝑗 it is necessary to 

introduce, for each word 𝑤𝑗, a random Boolean variable with two states: 𝑤𝑗𝑘 denotes the 

presence of the word in texts of the category 𝑐𝑘 and 𝑤𝑗𝑘̅̅ ̅̅ ̅ denotes the absence of the word 𝑤𝑗 in 

texts of the category 𝑐𝑘. The2 × 2 contingency table used to calculate the information gain of the 

category 𝑐𝑘 from the word 𝑤𝑗 is presented in Table 2. 

 
Table 2. Contingency table for the category 𝒄𝒌 and the word 𝒘𝒋 

 

                  Category 

Word 
𝑐𝑘 �̅�𝑘 Total 

𝑤𝑗 𝑤𝑗𝑘 |𝐷𝑗 | − 𝑤𝑗𝑘  |𝐷𝑗  | 

𝑤𝑗̅̅̅̅  
|𝐷𝑘|  
− 𝑤𝑗𝑘  

𝑀 − |𝐷𝑘| − (|𝐷𝑗|

− 𝑤𝑗𝑘) 

𝑀
− |𝐷𝑗| 

Total |𝐷𝑘| 𝑀 − |𝐷𝑘| M 

 

A general concept for computing information is the Shannon entropy [17]. Information Gain (IG) 
is a common feature selection criterion in machine learning used, in particular, for evaluation of 

word goodness [18, 19]. Information gain is a  measure of the information extracted about one 

random variable if the value of another random variable is known. It is closely related to the 
mutual information that measures the statistical dependence between two random variables. The 

larger the value of the gain, the stronger the relationship between the variables.  

 
The goal of this research is to evaluate the informativeness of words for category identification, 

and use this informativeness for word ranking and text representations. Therefore, we will 

consider information gain of the category 𝑐𝑘 from the word 𝑤𝑗: 𝐼𝐺(𝑐𝑘, 𝑤𝑗). This information 

gain evaluates the number of bits extracted from the presence/absence of the word 𝑤𝑗 in the text 

for the prediction of  this text belonging to category 𝑐𝑘. One may expect that if a word is a very 
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topic-specific for a category, it appears in texts belonging to this category more frequently than in 
texts which do not belong to this category, and the majority of texts belonging to this category 

contain the word. 

 

For each category, 𝑐𝑘, a function is defined on texts that takes the value 1, if the text belongs to 

the category 𝑐𝑘, and 0 otherwise. For each word, 𝑤𝑗, a function is defined on texts that takes the 

value 1 if the word 𝑤𝑗 belongs to the text, and 0 otherwise. We use for these functions the same 

notations 𝑐𝑘 and 𝑤𝑗. Consider the corpus as a probabilistic sample space (the space of equally 

probable elementary outcomes). For the Boolean random variables, 𝑐𝑘 and 𝑤𝑗, the joint 

probability distribution is defined according to Table 2. The entropy and information gains can be 
defined as follows. 

 

The information gain about category 𝑐𝑘 from the word 𝑤𝑗, 𝐼𝐺(𝑐𝑘, 𝑤𝑗), is the amount of 

information on belonging of a text from the corpus to the category 𝑐𝑘 from observing the word 

𝑤𝑗 in the text. It can be calculated as [17]:  

 

𝐼𝐺(𝑐𝑘, 𝑤𝑗) = 𝐻(𝑐𝑘) − 𝐻(𝑐𝑘|𝑤𝑗), (2) 

 

where 𝐻(𝑐𝑘) is the Shannon entropy of 𝑐𝑘 and 𝐻(𝑐𝑘|𝑤𝑗) is the conditional entropy of 𝑐𝑘given 

the observing the word 𝑤𝑗. Entropies 𝐻(𝑐𝑘) and 𝐻(𝑐𝑘|𝑤𝑗) are computed as follows: 

 

𝐻(𝑐𝑘) = −𝑃(𝑐𝑘) log2 𝑃(𝑐𝑘) − 𝑃(𝑐�̅�) log2 𝑃(𝑐�̅�). (3) 

 

𝑃(𝑐𝑘) is the probability that the text belongs to the category 𝑐𝑘, 𝑃(𝑐�̅�)is the probability that the 

text does not belong to the category 𝑐𝑘. Furthermore, 

 

𝐻(𝑐𝑘  |𝑤𝑗) = 𝑃(𝑤𝑗  )(− 𝑃(𝑐𝑘|𝑤𝑗  ) log2 𝑃(𝑐𝑘|𝑤𝑗) −  𝑃(𝑐�̅�|𝑤𝑗  ) log2 𝑃(𝑐�̅�|𝑤𝑗)) 

+ 𝑃(𝑤𝑗̅̅ ̅ )(− 𝑃(𝑐𝑘|𝑤𝑗̅̅ ̅) log2 𝑃(𝑐𝑘|𝑤𝑗̅̅ ̅) −  𝑃(𝑐�̅�|𝑤𝑗̅̅ ̅ )  log2 𝑃(𝑐�̅�|𝑤𝑗̅̅ ̅ )), 
(4) 

 

where  

 

• 𝑃(𝑤𝑗) is the probability that the word 𝑤𝑗 appears in a text from the corpus;  

• 𝑃(𝑤𝑗̅̅ ̅)is the probability that the word 𝑤𝑗 does not appear in a text from the corpus;  

• 𝑃(𝑐𝑘|𝑤𝑗  ) is the probability that a text belongs to the category 𝑐𝑘 under the condition 

that it contains the word 𝑤𝑗;  

• 𝑃(𝑐�̅�|𝑤𝑗  ) is the probability that a text does not belong to the category 𝑐𝑘 under the 

condition that it contains the word 𝑤𝑗;  

• 𝑃(𝑐𝑘|𝑤𝑗̅̅ ̅ ) is the probability that a text belongs to the category 𝑐𝑘 under the condition 

that it does not contain the word 𝑤𝑗;  

• 𝑃(𝑐�̅�|𝑤𝑗̅̅ ̅ ) is the probability that a text does not belong to the category 𝑐𝑘 under the 

condition that it does not contain the word 𝑤𝑗.  

 
All the required probabilities, entropies and relative entropies are evaluated using the contingency 

Table 2:  
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𝐻(𝑐𝑘) =  − 
|𝐷𝑘|

𝑀
log2

|𝐷𝑘|

𝑀
 − 

𝑀 − |𝐷𝑘|

𝑀
log2

𝑀 − |𝐷𝑘|

𝑀
 , 

(5) 

and  

 

𝐻(𝑐𝑘|𝑤𝑗 )  =  
|𝐷𝑗|

𝑀
(−

𝑤𝑗𝑘

|𝐷𝑗|
log2

𝑤𝑗𝑘

|𝐷𝑗|
−

|𝐷𝑗| − 𝑤𝑗𝑘

|𝐷𝑗|
log2

|𝐷𝑗| − 𝑤𝑗𝑘

|𝐷𝑗|
)

+
M − |𝐷𝑗|

𝑀
(−

|𝐷𝑘| − 𝑤
𝑗𝑘

𝑀 − |𝐷𝑗|
log

2

|𝐷𝑘| − 𝑤
𝑗𝑘

𝑀 − |𝐷𝑗|

−
𝑀 − |𝐷𝑘| − (|𝐷𝑗| − 𝑤𝑗𝑘)

𝑀 − |𝐷𝑗|
log

2

𝑀 − |𝐷𝑘| − (|𝐷𝑗| − 𝑤𝑗𝑘)

𝑀 − |𝐷𝑗|
). 

 
 

 

(6) 

 

A high value of the informational gain 𝐼𝐺(𝑐𝑘, 𝑤𝑗) (2) does not mean, in general, that the large 

proportion of information about a text belonging to the category 𝑐𝑘 can be extracted from 

observing the word 𝑤𝑗 in this text. This proportion depends on the value of the entropy 𝐻(𝑐𝑘) 

(5). The Relative Information Gain (RIG) measures this proportion directly. It provides a 

normalised measure of the Information Gain with regard to the entropy of 𝑐𝑘. RIG is defined as 

 

𝑅𝐼𝐺(𝑐𝑘 , 𝑤𝑗) =
𝐼𝐺(𝑐𝑘, 𝑤𝑗)

𝐻(𝑐𝑘)
. 

(7) 

 

We expect higher 𝑅𝐼𝐺(𝑐𝑘, 𝑤𝑗) for the topic-specific words in  the category 𝑐𝑘. For simplicity, 

we denote 𝑅𝐼𝐺(𝑐𝑘 , 𝑤𝑗) =𝑅𝐼𝐺𝑗𝑘. Given the word 𝑤𝑗, 𝑅𝐼𝐺𝑗𝑘 is used to form the vector 𝑅𝐼𝐺𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 

where each component of the vector corresponds to a category. Therefore, each word is 

represented by a vector of RIGs. It is obvious that the dimension of vector for each word is the 

number of categories K (for the WoS subject categories K = 252). For the word 𝑤𝑗, this vector is  

 

𝑅𝐼𝐺𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = (𝑅𝐼𝐺𝑗1, 𝑅𝐼𝐺𝑗2 , … , 𝑅𝐼𝐺𝑗𝐾). (8) 

 

The set of vectors 𝑅𝐼𝐺𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗can be used to form the Word-Category RIG Matrix, in which each 

column corresponds to a category 𝑐𝑘 and each row corresponds to a word 𝑤𝑗. Each component 

𝑅𝐼𝐺𝑗𝑘 corresponds to a pair (𝑐𝑘 , 𝑤𝑗) and its value is the RIG from the word 𝑤𝑗 to the category 

𝑐𝑘. 

 

We define the Meaning Space as the vector space of such vectors 𝑅𝐼𝐺𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. The dimension of this 

space is the number of categories and each coordinate is the RIG from a word to this category. 

 

If we choose an arbitrary category, the words can be ordered by their RIGs from the most 
informative word to the least informative one. We expect that the topic-specific words will 

appear at the top of the list. 

 

For a given word 𝑤𝑗, the sum 𝑆𝑗 of RIGs is calculated from the Word-Category RIG Matrix as: 

 

𝑆𝑗 = ∑ 𝑅𝐼𝐺𝑗𝑘.

𝐾

𝑘=1

 

 

(9) 
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The sum 𝑆𝑗 is a measure of the average informativeness of a word (this word has the 

informativeness 
𝑆𝑗

𝐾
 on average). Now, the words in the dictionary can be ordered by their 𝑆𝑗. For 

each of these ordered lists of words, the most informative (meaningful) n words for scientific 
texts can be selected based on this criteria. 

 

3.2. Experimental results 
 

Having calculated RIGs for each word and created the Word-Category RIG Matrix, we evaluate 

the representation model by checking words in each category. That is, we consider the list of 
words with their RIGs in the corresponding category. Those words that have larger RIG are more 

informative in the category. Being ‘more informative’ here allows for the interpretation of being 

‘more specific’ to the category’s topic. 
 

To visualise the top words in each category in a convenient way, we looked at word clouds. The 

font size of each word in a word cloud is proportional to its RIG in the category. For each 
category, words are sorted by their RIGs and the top 100 words are shown in the word clouds. 

Intuitively, the more informative the word is, the bigger size the word appears in word cloud 

Word clouds for the top 100 most informative words and histograms of RIGs for the top 10 most 

informative words for each of 252 categories can be found in [20].  
 

In general, the RIG-based method proves to be more sensitive than the frequency-based method 

in identifying topic-specific words for a category. This means that representing words in Meaning 
Space has the advantage of transforming words to vectors efficiently with a benefit of 

considerably lower dimension than the standard word representation schemes.  

 

To illustrate this result, we choose categories ‘Biochemistry & Molecular Biology’ and 
‘Mathematics’ and compare two word clouds that are formed by using raw frequencies and RIGs 

in categories (see Figure 2 and Figure 3). It can be seen from the figures that the majority of the 

most frequent words in both categories are frequent words for the entire corpus. These words are 
not topic-specific for categories as they appear in almost all abstracts. The frequent but non-

informative words can be seen  as generalised service words of Science and deserve special 

analysis. This proves that raw frequency is not important for identifying scientifically specific 
meanings of words. Therefore, by representing words as vector of RIGs, we can avoid such 

frequency bias. The most informative words in categories for RIG representation are topic-related 

in the corresponding category. We interpret these results as evidence for the usefulness of the 

RIG-based representation. 
 

Words that are expected to be used together have very close values of RIGs. In “ Health Care 

Sciences & Services”, “health” and “care” are top words and RIGs for these words are so close 

(see Figure D.1 in [21]). Another example is “xrd” and “difract” in “Material Science, 

Ceramics”. “XRD” is actually abbreviation of “X-ray diffraction”; therefore, they appear 

together as “X-ray diffraction (XRD)” for most of cases in the category (see Figure D.2 in [21]). 
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Figure 2. Category ‘Biochemistry & Molecular Biology’: word cloud of the top 100 most informative 

words and the histogram of the top 10 most informative words. The informativeness is defined by (a) RIG 

(b) frequency 

 

 
 
 

Figure 3. Category  “Mathematics“: word cloud of the top 100 most informative words and the histogram 

of the top 10 most informative words. The informativeness is defined by (a) RIG (b) frequency. 

 

3.3. Thesaurus for Science: Leicester Scientific Thesaurus (LScT) 
 
We have constructed the Word-Category RIG Matrix, where each entry corresponds to a pair 

(word, category) and its value shows the RIG for a text to belong to a category by observing this 

word in this text [21]. Row vectors of the matrix indicate the words’ meaning in the scientific 
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texts. A thesaurus of science was created by selecting the most informative words from the 
LScDC. The informativeness here was measured by the sum of RIGs in categories for this word. 

 

We have introduced the Leicester Scientific Thesaurus (LScT): a list of 5,000 words which are 

created by arranging words of LScDC in their informativeness in the scientific corpus. The top 

5,000 most informative words in the LScDC, where words are arranged by their 𝑆𝑗 are considered 

as the most meaningful 5,000 words in scientific texts. The full list of words in the LScT with 

their 𝑆𝑗 can be found in [16]. 

 

4. PRINCIPAL COMPONENTS OF MEANING 
 

In this section, we hypothesize and test that lexical meaning in science can be represented in a 
lower dimensional space than 252. This space is constructed using PCA (singular value 

decomposition) on the matrix of word-category relative information gains. We argue that 13 

dimensions is adequate to describe the meaning of scientific texts, and propose possibilities for  
the qualitative meaning of the principal components [22]. 

 

We apply PCA to reduce the dimensionality of the Meaning Space, in which points are 5,000 

words of LScT and dimensions are categories. This section analyses the dimension of the 
Meaning Space and provides visualisation of words and categories in the space of PCs. In order 

to avoid redundant attributes in the data and identify the actual dimension of the space, we 

explore the Meaning Space by PCA. 
 

We apply PCA and interpret the first five PCs by their coordinates (loadings). For each 

component, categories are divided into three groups defined as the main coordinates of the 

dimension and being unrelated attributes to the PC: categories that positively and negatively 
correlated with the corresponding component, and categories having near zero values in the 

component. We analyse the topics in these groups and visualise both categories and words on the 

PC axes. We also analyse the extreme topic groups at opposite ends of the PCs in order to 
describe the PCs based on extremely influential categories at both ends (10 categories at both 

ends). 

 
Finally, by using three different selection criteria (Kaiser, Broken Stick, an empirical method 

based on multicollinearity control – PCA-CN), we reduce the dimensionality of the category 

space to 61, 16 and 13 respectively. Therefore, we argue that (lexical) meaning in science can be 
represented in a 13 dimension Meaning Space. We show that this reduced word set plausibly 

represents all texts in the corpus, so that the principal component analysis has some objective 

meaning with respect to the corpus. We argue that 13 dimensions is adequate to describe the 
meaning of scientific texts, and hypothesise about the qualitative meaning of the principal 

components. 

 

4.1. Dimension of the Meaning Space 
 

Given 252 subject categories, it is unreasonable to expect that every one of these categories is 
uncorrelated with all others (or distinct from them). For instance we might expect that the 

categories Literature and Literary Theory & Criticism will represent words in a very similar way 

in the Meaning Space (MS). Indeed, subcategories are likely to occur in the data and they are 

expected to have close values of RIGs for words. Such attributes will measure related 
information, and so the original 252 dimensional data contain measurements for redundant 

categories. Although the MS underlying the representation of word meaning has 252 dimensions, 

we expect that we will be able to represent words with significantly fewer dimensions in the MS. 
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An efficient way to represent words would be to map vectors onto a space that is constructed 
based on a combination of original features. Mathematically speaking, we look at a linear 

transformation from the original set of categories to a new space composed by new components. 

These new components are called Components of the Meaning. Two precise questions to be 

asked are: how many components of meaning are there and how are these components 
constructed? Thus, analysis of components (new attributes) based on the original attributes is 

crucial in understanding the MS. For instance, it is very important to understand which categories 

contribute the most and which the least to the new dimensions. Also, it is instructive to see if the 
new dimensions have some real semantic meaning, for instance, in distinguishing between 

natural and social sciences or experimental and theoretical research. 

 
Words can be similarly represented in two or more categories. If two categories are correlated in 

the MS, it is possible to represent words in a reduced dimension by using a suitable linear 

combination of these original attributes. More specifically, if two categories are completely 

correlated, we would use the sum of two categories as one new attribute. The new attribute can be 
considered as a representative of the two original attributes. PCA provides a solution to this 

problem. Linear combination of weights (coefficients) is provided by PCA to create the new 

attribute, which we term a principal component (PC), with the aim of preserving as much 
variability as possible (the maximum variation in the data) [23,24]. The level of the effectiveness 

of PCA in explaining the data varies differently with the different sets of PCs. Therefore, in the 

sequel we investigate the effectiveness of PCA as a technique for determining the actual 
dimension of the data. Our goal is also to empirically investigate the effectiveness of the RIG-

based word representation technique using PCs instead of the original attributes. 

 

In PCA one of the crucial questions to answer is how many PCs should be selected. The Kaiser 
Rule is one of the methods developed to select the number of components [25, 26]. Eigenvalues 

of the covariance matrix are used to determine the appropriate number by taking components 

with eigenvalues greater than average of eigenvalues; only components explaining greater data 
variance than the original attributes should be kept [27]. 

 

 

(a) (b)  

 
Figure 4. (a) Fraction of variance explained as a function of PCs retained for categories; (b) Cumulative 

fraction of variance explained as a function of PCs retained for categories (61 PCs). The mean eigenvalue 

is 1. 

 

PCs were assessed sequentially from the largest eigenvalue to the smallest. All PCs having 
eigenvalue less than average were considered to be trivial (non-significant) by the Kaiser rule. 

Hence 61 PCs are included as non-trivial, that is, 61 axes summarize the meaningful variation in 

the entire dataset. These non-trivial PCs are retained as informative at the first stage. The 

cumulative percentage of variance explained is displayed in  
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Figure 4. The cumulative percentage is approximately 73%, indicating the variance accounted for 

by the first 61 components. They explain nearly 73% of the variability in the original 252 

attributes, so we can reduce the complexity of the data four times approximately, with only a 

27% loss of information. 
 

To interpret each component, the coefficients (influence) of the linear combination of the original 

attributes for the first five principal components are examined. The coordinates of the attribute 
divided by the square root of the eigenvalue gives the unit eigenvector, whose components give 

the cosine of the angle of rotation of the category to the PC. Furthermore, positive values indicate 

a positive correlation between an attribute and a PC and negative values indicate a negative 

correlation. Both the magnitude and direction of coefficients for the original attributes are taken 
into account. The larger the absolute value of the coefficient, the more important the 

corresponding attribute is in calculating the PC. Positive and negative scores in PCs push the 

overall score of a word in the meaning space to the right or left on the PC axis. 
 

Following data reduction via PCA we then restricted the analysis of the informative categories to 

the non-trivial PCs; these are used to list informative attributes (categories). The importance of an 
attribute is determined as the maximum of the absolute values in coordinates of informative PCs 

for this attribute. The threshold 1 √252⁄  (threshold of importance) is used in the selection of 

informative attributes.  

 

To examine the original attributes in the PCs, we introduce a threshold for categories having near 

zero values. The threshold used was 1 2√252⁄ , which is half of the threshold of importance in 

selection of informative attributes. All values between −1 2√252⁄  and 1 2√252⁄  are 

considered to be negligible so are in the zero interval. Hence, the initial attributes are considered 

as belonging to three groups: (1) positive, (2) negative, and (3) zero. We interpret the categories 
belonging to positive and negative groups as the main coordinates of the dimension as these 

categories contribute significantly to that direction. Categories belonging to the ‘zero’ group are 

seemed to be unrelated attributes to the PC. However, this information could be also useful. 
Hence, all categories in the three groups are meaningful and should be interpreted. 

 

Categories in the three groups for each PC can be seen in Figures 3.3-3.7 in [22]. For the 
demonstration of the idea, we have displayed the second principal component in Figure 5. The 

zero interval is shown by a line in the figure. The number of categories in each group is presented 

in Table 3. The full list of categories in positive, negative and zero groups for each of five PCs 

can be found in Appendix C in [22]. 
 

We can see that there are no negative values for the first principal component. The first 

component primarily measures the magnitude of the contribution of categories to the PC. It is a 
weighted average of all initial attributes. The most prominent categories are ‘Engineering, 

Multidisciplinary’ and ‘Engineering, Electrical & Electronic’, that is, they strongly influence the 

component. This component explains 12.58 % of all the variation in the data. This means that 
more than 85% of the variation still retained in the other PCs. 

 
Table 3. Number of categories in the groups of positive, zero  

and negative for the first five principal components 
 

 PC1 PC2 PC3 PC4 PC5 

Positive 221  63  60  67  55 

Zero 31  131  131  129 142 

Negative 0   58  61  56  55 



94                                        Computer Science & Information Technology (CS & IT) 

 
 

Figure 5. The second principal component of the LScT. The plot shows the contributions of original 

attributes (categories) on the second principal component. 
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The second component has positive associations with categories related to social sciences and 
humanities, and negative associations with categories related to engineering and natural sciences 

(see Figure 5). The plot shows that they are completely oppositely correlated. Hence, this 

component primarily measures the separation of two main branches of science. The most 

prominent category in the component is ‘Cultural Studies’. The largest negative contribution to 
the component score is from the category ‘Engineering, Multidisciplinary’, which is 

approximately 2.5 times smaller than the contribution of ‘Cultural Studies’. In the zero interval, 

extremely low values are present for attributes such as ‘Psychology, Developmental’, 
‘Ergonomics’ and ‘Medicine, Legal’. 

 

The largest positive values on the third component can be interpreted as contrasting the biological 
science, computer science and engineering related areas with medicine, social care and some 

other disciplines. We may expect words that are used in biological science, computer science and 

engineering will go toward the positive side of the axis on the third principal coordinate. The 

largest negative values suggest a strong effect of psychology, medicine-health and physics related 
areas.  

 

The other two principal components can be interpreted in the same manner. In the fourth 
component, the most prominent categories with positive values are some of social science 

branches such as economics, managements, psychology, ethics, education and multidisciplinary 

social science. Large negative values are for categories related to literature and medicine-health 
science. The fifth component has large positive associations with ecological, environmental 

sciences and geosciences. 

 

We then analyse the topic groups at opposite ends of the PCs (positive and negative ends) in 
order to describe the PCs based on extremely influential categories at both ends. As such 

categories have high contributions in the PC, they are the parts of the trends in PCs and so 

explain the general trends of the PCs. This implies that we consider positive and negative groups 
introduced before, select the top n categories with the highest component coefficients in each 

group and describe the grouping of categories in a way that categories at extreme ends can be 

distinguished from each other somehow and meaningfully described by a classification of 

research fields in science. 

 
We implemented a heuristic technique. This approach starts with a search for a set of 10 
categories with maximum coefficients at the two ends of the PC. The most informative 150 

words are extracted in each of 10 categories, and the common words are listed. Words are 

analysed by human inspection to understand the meaning behind the opposite ends of the PC. The 

procedure is repeated for the PC2, PC3, PC4 and PC5. For the first PC1, the sign of coefficients 
are positive for all categories. High numbers for categories in this PC indicate that that category 

is well-described by words in the LScT. 

 
The second PC seems to correspond a separation between discourse studies and experimental 

studies when we consider both the categories and words. For example, it is seen that three of the 

most informative common words are “argu”, “polit” and “discours” for the groups of categories 
in the positive side and three of the most informative common words are “clinic”, “treatment” 

and “therapi” for the groups of categories in the negative side in the PC. This is the Nature of 

Science dimension.  

 
The third PC reflects two opposite types of research in terms of the requirement of microscopic 

and macroscopic instruments. At the positive end, scientific research mostly required detailed 

tools to work with the objects. Such tools can be instruments such as the microscope as well as 
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programming tools used in coding. On the negative end, we are talking about human and 
population scale objects, but still related to humans. So this is the Human Scale dimension.  

 

The fourth component appears to describe two classes of science: science of understanding the 

human condition through experiments and science of understanding the human condition through 
critical discourse studies. For instance, literary studies in the negative side are prominent and 

many texts from the literature are literary criticism of works. This is the Human Condition 

dimension. 
 

Finally, the fifth component can be interpreted as contrasting natural science and  intelligence. 

Categories related to natural science research are grouped in the positive extreme side and 
categories of understanding intelligence are located in the negative extreme side in this PC. 

’Intelligence’ can be both human intelligence and machine intelligence. For example, the 

categories ’Computer Science, Artificial Intelligence’ and ’Psychology’ are two of the top 10 

categories. This is the Inner World/Outer World dimension. 

 

4.2. Deciding the Dimension of the Meaning Space 
 

The number of principal components determined by the Kaiser rule was 61. However, the Kaiser 

rule can underestimate or overestimate the number of PCs to be retained [28]. So, we also tested 
the Broken-Stick rule to determine the number of PCs [29-32]. Figure 6 demonstrates the optimal 

number of components determined by the Broken Stick and the Kaiser rules. The Broken Stick 

rule suggests that the reduction to only 16 PCs is reasonable. 

 

 
 

Figure 6. The number of principal components determined based on the Kaiser rule and the Broken Stick 

rule 

 

Finally, we compared these two criteria of PC selection with the criterion: the ratio of the 

maximal and minimal retained eigenvalues (𝜆𝑚𝑎𝑥/𝜆𝑚𝑖𝑛) should not exceed the number of 
components selected (the condition number) [33-35]. This is described as multicollinearity 

control. To avoid the effects of multicollinearity, the conditional number of the covariance matrix 

after deleting the minor components should not be too large. That is, k is the number of 

components to be retained if k is the largest number for which 𝜆1/𝜆𝑘 < 𝐶, where C is the 

conditional number. This method is called PCA-CN [35]. In our work, modest collinearity is 
defined using collinearity with C = 10 as in [34]. Therefore, the number of PCs to be retained is 

13 by PCA-CN. 
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5. CONCLUSION AND DISCUSSION 
 
In this work, we have initially studied the first stage of ‘quantifying of meaning’ for scientific 

texts: constructing the space of meaning. We have introduced the Meaning Space for scientific 

texts based on computational analysis of situations of the use of words. The situation of use of a 

word is described by the absence/presence of the word in the text in scientific subject categories. 
The meaning of the text is hidden in the situations of usage and should be extracted by evaluating 

the situation related to the text as a whole. 

 
The situation of use is described by these 252 binary attributes of the text. These attributes have 

the form: a text is present (or not present) in a category. The meaning of a word is determined by 

categorising texts that contain the word and texts that do not. It is represented by the 252-

dimensional vector of RIG about the categories that the text belongs to, which can be obtained 
from observing the word in the text. 

 

We introduced an informational space of meaning for short scientific texts. The proposed word 
representation technique was developed and implemented on the basis of LSC with LScT. For 

concreteness, we followed the road: Corpus of texts + categories  Meaning Space for words. 

This involved the representation of words in the constructed Meaning Space and a detailed 
analysis of the Meaning Space. The proposed representation technique is evaluated by analysing 

the top-ranked words in each category. For individual categories, RIG-based word ranking is 

compared with ranking based on raw word frequency in determining the science-specific 

meaning and importance of a word. 
 

We conclude that the use of informational semantics provides sizeable improvements to represent 

meaning in scientific texts over classical representation approaches based on raw frequencies, but 
how to make best use of it in different NLP tasks remains an open question that deserves further 

investigation. 

 
This research has also introduced and analysed a scientific thesaurus LScT: a thesaurus of 5,000 

words from the LSC. In the creation of the thesaurus, we have focused on the most informative 

words in science, which are the main scientific content words. 

 
Our approach to meaning has been directed to meet some of the main challenges in extracting 

meaning from texts. First, it solves the problem of extracting the scientific-specific meanings 

because the proposed models of informational semantics characterise the situation of use by the 
subject categories of the text. Second, words have good representation for individual categories 

as well as the entire corpus because the relative importance of a word across all scientific 

categories is taken into account. Third, the creation of a space to represent words and texts is 

automated and reproducible so that it does not require a huge amount of human. 
 

We also explore the Meaning Space by using Principal Component Analysis (PCA). We interpret 

the first five PCs by using their coordinates. We also suggest qualitative meanings for the first 
five of these dimensions. We welcome fierce debate over the meaning of these dimensions, but 

giving a qualitative meaning to these is a crucial step to understanding the meaning of meaning.  

By exploring three different selection criteria (Kaiser, Broken Stick, PCA-CN) we reduced the 
dimensionality of the category space to 61, 16 and 13 respectively. If it turns out that we cannot 

explain some components of meaning at some time in the future with only 13 dimensions, we can 

increase the dimension. It remains a challenge to describe all 13 such dimensions in a way that 

makes some philosophical sense, but we hope that we have opened up this debate in this paper. 
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