

Rupak Bhattacharyya et al. (Eds) : ACER 2013,

pp. 135–147, 2013. © CS & IT-CSCP 2013 DOI : 10.5121/csit.2013.3213

SATISFIABILITY METHODS FOR COLOURING

GRAPHS

Munmun Dey

1
and Amitava Bagchi

2

1
Department of Computer Science and Engineering, Sanaka Educational Trust's

Group of Institutions, Durgapur, West Bengal, India
86munmun@gmail.com

2
Department of Computer Science and Engineering, Heritage Institute of

Technology, West Bengal, India
amitava.bagchi@heritage.edu.in

ABSTRACT

The graph colouring problem can be solved using methods based on Satisfiability (SAT). An

instance of the problem is defined by a Boolean expression written using Boolean variables and

the logical connectives AND, OR and NOT. It has to be determined whether there is an

assignment of TRUE and FALSE values to the variables that makes the entire expression true.A

SAT problem is syntactically and semantically quite simple. Many Constraint Satisfaction

Problems (CSPs)in AI and OR can be formulated in SAT. These make use of two kinds of

searchalgorithms: Deterministic and Randomized.It has been found that deterministic methods

when run on hard CSP instances are frequently very slow in execution.A deterministic method

always outputs a solution in the end, but it can take an enormous amount of time to do so.This

has led to the development of randomized search algorithms like GSAT, which are typically

based on local (i.e., neighbourhood) search. Such methodshave been applied very successfully

to find good solutions to hard decision problems.

KEYWORD

SAT, GSAT, Graph Colouring, Randomized Search Algorithms, CSPs

1. INTRODUCTION

Many problems in Artificial Intelligence (AI) and Operations Research (OR) can be formulated

as Constraint Satisfaction Problems (CSPs). In a CSP, there is a set of variables and a set of

constraints. The variables must be assigned values from specified domains in such a way that all

the given constraints are satisfied. An assignment of values to the variables that satisfies all the

constraints yields a feasible solution. The objective is to find one feasible solution, or in some

cases, all feasible solutions. Sometimes, it is possible to associate a measure of quality with a

feasible solution. In such cases the objective might be to find the feasible solution of highest

quality.

Decision problems such as the Graph Colouring Problem and the Satisfiability Problem (SAT)

can also be viewed as CSPs. The Satisfiability Problem is particularly interesting because it can

be used as a stepping stone for solving other decision problems. Problem instances from domains

such as Graph Colouring can be encoded into SAT and then solved by the help of SAT

algorithms.

136 Computer Science & Information Technology (CS & IT)

The work reported in this report is organized in the remaining chapters as follows. In Chapter 2

we firstexplain graph colouring, then show how a graphcolouringproblem can be formulated and

solved in SAT using a deterministic approach. We also list the program code andthe output.In

Chapter 3we describe how the graphcolouringproblem can be formulated in the GSAT

framework, and show how it can be solved using GSAT with a tabulist. Chapter 4lists the GSAT

Experimental Results. Chapter 5 summarizes the report

2. GRAPH COLOURING

Here only undirected graphs are considered. To colour a graph G means to assigns a colour to

each vertex of G with the restriction that two adjacent vertices are not the same colour.

2.1 Graph Colouring Using SAT

This method is based on propositional logic. Let A = {a1, a2,..., an} be a set of n > 1 Boolean

variables. If a is a variable in A then a and ~a are called literals over A. A truth assignment for A

is a total function t: A → {true, false}. Under any truth assignment, aistrue if and only if ~a is

false, and a and ~~a have identical truth-values. A clause C over A is a set of literals over A. It

represents the disjunction of the literals, and is valid (or satisfied) under a truth assignment if and

only if at least one of its literals is true under the assignment. It is invalid (or unsatisfied) under

the truth assignment if every literal in it is false under the assignment. A set C of clauses over A is

satisfiable if there exist a truth assignment for A such that every clause in C is valid under the

assignment. In the Satisfiability Problem (SAT) we are required to determine whether a given set C

of clauses is satisfiable. In SAT the clauses represent the constraints to be satisfied when assigning

truth-values to the Boolean variables. In SAT, the number of literals in a clause can vary.

2.1.1 SAT formulation

In the SAT formulation there are three types of clauses. A Type 1 clause states that two adjacent

nodes cannot have the same colour. A Type 2 clause states that each node must be assigned at

least one of the available s colours. There is an Extended Formulation that has Type 3 clauses in

addition to Type 1 and Type 2 clauses. A Type 3 clause states that a node can be assigned at most

one of the colours.

Computer Science & Information Technology (CS & IT)

2.1.2 Example

[

Figure 1:Example of an Undirected

Figure 2: Result of the possib

Figure 3: Screenshot of calculating minimum colour needed to

2.2 GraphColouring Problem Using

Graph Coloring Problem can be formulated in the SAT framework

follows:

Step 1. INPUT: a) Number of nodes.

b)Number of edges.

c)Number of colours.

Step 2: Identification of variables

Step 3: Construction of the clauses

Step 4: Assignment of truth value

Step 5:Checking that each clauses

Step 6: Steps 4 and 5 are repeated

Computer Science & Information Technology (CS & IT)

Table 1: Adjacency matrix

Figure 1:Example of an Undirected Graph

Result of the possible colouring of the above graph.

t of calculating minimum colour needed to colour the above graph

roblem Using SAT framework

Problem can be formulated in the SAT framework. The solution steps are as

INPUT: a) Number of nodes.

Identification of variables

clauses

Assignment of truth values to literals

clauses is valid.

ed until all the clauses are true.

0 1 1 0 1 1 0

1 0 0 1 0 1 1

1 0 0 1 1 1 0

0 1 1 0 0 1 1

1 0 1 0 0 0 1

1 1 1 1 0 0 0

0 1 0 1 1 0 0

 137

colour the above graph.

The solution steps are as

138 Computer Science & Information Technology (CS & IT)

2.2.1 Example

This example will show how a graph coloring problem can be solved using SAT.

Figure 4: Example of an undirected graph with colour

Figure 4 shows a simple graph consisting of 4 nodes and 4 edges. Suppose we have to determine

whether it can be colored with 3 colors named 1, 2 and 3.a1 is true when a is coloured with colour

1 and is false otherwise .We have seen that constraints here are represented by clauses. The

constraint that two adjacent clauses cannot be colored with the same color can be expressed by

the following three

Type 1 clauses: ~a1 \/ ~c1 ~a2 \/ ~c2 ~a3 \/ ~c3

As there are 4 edges in total, and there are three Type 1 clauses corresponding to each edge, the

total number of such clauses will be 12.

The constraint that a node must not be left uncolored can be expressed in case of node 1 by the

following

Type 2 clause: a1 \/ a2 \/ a3

For four nodes in the graph the total number of Type 2 clauses will be 4.

Type 3 clauses force a node such as node to be colored by a single color. The clauses are as

follows:

Type 3 clauses:~a1 \/ ~a2 ~a1 \/ ~a3 ~a3\/ ~a2

The number of Type 3 clauses for the graph of Figure 1 will be 12, as there are four nodes and three

colours. Thus the total number of clauses in the graph will be 28 in this case.

2.2.2 Example

We illustrate below how SAT solves a typical satisfiability problem.

Computer Science & Information Technology (CS & IT) 139

Problem:Coloringthe graph G1 shown below with 3 colours.

Table 2: Adjacency matrix

Figure 5:Example of an undirected graph G1

n =4 (n=Number of nodes)

e=4 (e= Number of edges)

c=3 (c= Number of colours)

Variables
a1, ~a1, a2, ~a2, a3, ~a3, b1, ~b1,b2, ~b2, b3, ~b3,c1, ~c1, c2, ~c2, c3, ~c3, d1,~d1,d2, ~d2, d3,

~d3.

Clauses:

Table 3: Clauses

Sl No. Clauses Sl No. Clauses Sl No. Clauses Sl No. Clauses

1 ~a1v~c1 8 ~d2v~c2 15 c1vc2vc3 22 ~b2v~b3

2 ~a2v~c2 9 ~d1v~c1 16 d1vd2vd3 23 ~c1v~c2

3 ~a3v~c3 10 ~a1v~b1 17 ~a1v~a2 24 ~c1v~c3

4 ~a1v~d1 11 ~a2v~b2 18 ~a1v~a3 25 ~c2v~c3

5 ~a2v~d2 12 ~a3v~b3 19 ~a3v~a2 26 ~d1v~d2

6 ~a3v~d3 13 a1va2va3 20 ~b1v~b2 27 ~d1v~d3

7 ~d3v~c3 14 b1vb2vb3 21 ~b1v~b3 28 ~d2v~d3

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

140 Computer Science & Information Technology (CS & IT)

Figure 6:Screenshot of result for the above example

Problem:Colouring Graph G2 With 3 colours.

Figure7: Example of an undirected graph G2

Table 4: Adjacency matrix

0 1 0 0 1 1 0 0 0

1 0 1 0 0 1 0 0 0

0 1 0 1 0 1 1 0 0

0 0 1 0 0 0 1 0 0

1 0 0 0 0 1 0 1 0

1 1 1 0 1 0 1 1 1

0 0 1 1 0 1 0 0 1

0 0 0 0 1 1 0 0 1

0 0 0 0 0 1 1 1 0

Computer Science & Information Technology (CS & IT) 141

n=9 (n=Number of nodes)

e=16 (e= Number of edges)

c=3(c= Number of colours)

Number of Variables:
a1, ~a1, a2, ~a2, a3, ~a3, b1, ~b1 ,b2, ~b2, b3, ~b3 ,c1, ~c1, c2, ~c2, c3, ~c3, d1,~d1 , d2, ~d2, d3,

~d3 , e1, ~e1, e2, ~e2, e3, ~e3 , f1, ~f1, f2, ~f2, f3, ~f3, g1, ~g1, g2, ~g2, g3, ~g3, h1,

~h1, h2, ~h2, h3, ~h3, k1, ~k1, k2, ~k2, k3, ~k3

Number of Clauses:

Table 5: Number of Clauses

Sl No. Clauses Sl No. Clauses Sl No. Clauses Sl No. Clauses

1 ~a1v~b2 20 ~c2v~g2 39 ~f3v~h3 58 ~a1v~a2

2 ~a2v~b2 21 ~c3v~g3 40 ~f1v~k1 59 ~a1v~a3

3 ~a3v~b3 22 ~d1v~g1 41 ~f2v~k2 60 ~a3v~a2

4 ~b1v~c1 23 ~d2v~g2 42 ~f3v~k3 61 ~b1v~b2

5 ~b2v~c2 24 ~d3v~g3 43 ~g1v~k1 62 ~b1v~b3

6 ~b3v~c3 25 ~a1v~e1 44 ~g2v~k2 63 ~b3v~b2

7 ~c1v~d1 26 ~a2v~e2 45 ~g3v~k3 64 ~c1v~c2

8 ~c2v~d2 27 ~a3v~e3 46 ~h1v~k1 65 ~c1v~c3

9 ~c3v~d3 28 ~e1v~f1 47 ~h2v~k2 66 ~c2v~c3

10 ~a1v~f1 29 ~e2v~f2 48 ~h3v~k3 67 ~d1v~d2

11 ~a2v~f2 30 ~e3v~f3 49 a1va2va3 68 ~d1v~d3

12 ~a3v~f3 31 ~f1v~g1 50 b1vb2vb3 69 ~d3v~d2

13 ~b1v~f1 32 ~f2v~g2 51 c1vc2vc3 70 ~e1v~e2

14 ~b2v~f2 33 ~f3v~g3 52 d1vd2vd3 71 ~e1v~e3

15 ~b3v~f3 34 ~e1v~h1 53 e1ve2ve3 72 ~e2v~e3

16 ~c1v~f1 35 ~e2v~h2 54 f1vf2vf3 73 ~f1v~f2

17 ~c2v~f2 36 ~e3v~h3 55 g1vg2vg3 74 ~f1v~f3

18 ~c3v~f3 37 ~f1v~h1 56 h1vh2vh3 75 ~f2v~f3

19 ~c1v~g1 38 ~f2v~h2 57 k1vk2vk3

142 Computer Science & Information Technology (CS & IT)

Figure 8:Screenshot of result for the above example

3. RANDOMIZED SEARCH

Deterministic search methods frequently run slowly on hard CSP instances. This has led to the

formulation and development of randomized search algorithms

based on local search methods and are therefore often called

find near-optimal solutions. A local search method generally initiates the search process in some

randomly chosen point (or set of points) in the

Such a point is often called a candidate

complete set of assignments of values to the search variables. The set of points reachable from a

point by making all possible moves is called the

has to evaluate the neighborhood

made. The evaluation is often accomplished with the aid of an objective function. This function is

generally problem dependent and rates the likelihood

For example, the objective function for the algorithm GSAT for any problem instance formulated as

a Satisfiability Problem is typically taken as the total number of unsatisfied clauses. Auxiliary data

structures such as tab lists can help to improve the performance of the algorithm. The initial solution

Computer Science & Information Technology (CS & IT)

Figure 8:Screenshot of result for the above example

EARCH ALGORITHMS

Deterministic search methods frequently run slowly on hard CSP instances. This has led to the

of randomized search algorithms. Most randomized algorithms are

based on local search methods and are therefore often called Local Search Algorithms

optimal solutions. A local search method generally initiates the search process in some

randomly chosen point (or set of points) in the search space (sometimes called the solution space

candidatesolution. A feasible (or complete) solution consists of a

complete set of assignments of values to the search variables. The set of points reachable from a

point by making all possible moves is called the neighborhood of the point. A local searc

neighborhood points and determine to which neighbor the next move should be

made. The evaluation is often accomplished with the aid of an objective function. This function is

generally problem dependent and rates the likelihood that the point leads closer to a feasible solution.

For example, the objective function for the algorithm GSAT for any problem instance formulated as

a Satisfiability Problem is typically taken as the total number of unsatisfied clauses. Auxiliary data

can help to improve the performance of the algorithm. The initial solution

Deterministic search methods frequently run slowly on hard CSP instances. This has led to the

. Most randomized algorithms are

Search Algorithms. These can

optimal solutions. A local search method generally initiates the search process in some

solution space).

(or complete) solution consists of a

complete set of assignments of values to the search variables. The set of points reachable from a

of the point. A local search method

the next move should be

made. The evaluation is often accomplished with the aid of an objective function. This function is

that the point leads closer to a feasible solution.

For example, the objective function for the algorithm GSAT for any problem instance formulated as

a Satisfiability Problem is typically taken as the total number of unsatisfied clauses. Auxiliary data

can help to improve the performance of the algorithm. The initial solution

Computer Science & Information Technology (CS & IT) 143

can be chosen either randomly or by the use of a heuristic. The search then proceeds to a

neighboringpoint and from that point to another neighboring point, and so on in an iterative way.

Although moves are made in a systematic manner, local search algorithms are typically incomplete.

Local search algorithms often make use of stochastic mechanisms.

3.1 Local Search Algorithms

In this section, however, we are concerned only with general local search methods such as GSAT

and Tabu Search.

3.2.1GSAT

The greedy local search procedure GSAT assigns truth values to variables in an effort to satisfy all

the clauses in a given set. At start, the procedure randomly assigns truth-values to variables. This

amounts to picking a solution randomly from the solution space. Typically this truth assignment

fails to satisfy all the clauses. If the truth-value of a variable is flipped (i.e., complemented), the total

number of satisfied clauses will change. Suppose a variable v is flipped. Then the unsatisfied

clauses where v occurs get satisfied. The number of such clauses is represented by make(v). At the

same time, before flipping v, there were some clauses satisfied only by the variable v. As v is

flipped these clauses get unsatisfied. The number of such clauses is given by break(v). The

difference make(v) - break(v) is the net increase in the number of satisfied clauses and is referred to

as gain(v). Flipping a variable means moving to a neighboring point in the solution space. We have

mentioned above that an objective function can help to guide us where to move next in the

neighborhood. In GSAT the value of the function is the number of unsatisfied clauses. GSAT looks

for the variable with the property that its truth-value when flipped causes the largest net decrease in

the number of unsatisfied clauses. It flips the truth-value of this variable, and again looks for such a

variable. Ties are resolved arbitrarily. This is repeated until a satisfying assignment is found. If no

satisfying assignment is found within a specified number of flips (maxflips), the procedure is

restarted with a new initial truth assignment. This cycle is repeated a specified number of times

(maxtries). The algorithm always tries to select the most promising neighbour at each step. It is

therefore called a greedy local search algorithm.

3.3Graph Colouring Problem Using GSAT framework

The solution steps are therefore as follows:

Step1:INPUTa) Size of array

b) Percentage of edges

c)Initial number of colours

d) The number of runs

e)Size of tabu list

Step 2: Creation of list of literals.

Step 3:Construct the clauses

Step 4:Assignrandom truth assignment value to literals

Step 5:Check whether that each clauses is valid.

Step 6:If this truth assignment does not satisfy all the clauses

Step 7:Determine the effect of flipping the truth-value of each variable

Step 8:Count the satisfied clauses after the bit is changed

Step 9:Determine the variables flipping which cause the maximumdecrease in the number of

Unsatisfied clauses;

144 Computer Science & Information Technology (CS & IT)

Select a variable from these set resolving ties arbitrarily;

Flip the selected variable.

Step 10: Repeat Step 4 and Step 5until all the clauses are true.

3.4Procedure GSAT

Anillustrationis done below how GSAT solves a typical satisfiability problem. Consider the

following set of six clauses:

C1: a3 U a4

C2: a5 U ~a4

C3: a1 U a2 U ~a3

C4: ~a1 U ~a3 U ~a5

C5: ~a2 U ~a3

C6: a3 U ~a4

There are five variables a1, a2, a3, a4 and a5. Suppose the initial random truth assignment is as

follows:

a1 = true,a2 = false,a3 = true, a4 = false, a5 = true.

This truth assignment does not satisfy all the clauses; in particular, clause C4 remains unsatisfied.

We must now determine the effect of flipping the truth-value of each variable. Suppose that when a

variable is flipped, make clauses that are currently unsatisfied get satisfied, and breakclauses that

are currently satisfied become unsatisfied. The overall decrease in the number of unsatisfied clauses

is then given by the expression gain = make – break. We have to find the variable with the largest

gain. Here

gain(x1) = 1 – 1 =0,

gain(x2) = 0 – 1 = -1,

gain(x3) = 1 – 1 = 0,

gain(x4) = 0 – 0 = 0,

gain(x5) = 1 – 0 = 1.

We change the truth value of x5 to false since this results in the largest gain, and find as a result that

all the clauses are satisfied.

3.5 Tabu Search Strategy

GSAT can significantly improved by tabu search strategy to ensure that the same variable is not

flipped again and again.Tabulist is initially empty and is implemented as a FIFO queue.The variable

that has just been flipped is inserted into the list.The variable to be flipped next is selected randomly

from among those variables not in the tabulist.Thus some variables are prevented from being

flipped for a limited period of time,determine by the length of the tabulist. Tabu list in GSAT not

only helped to reduce the running time,it helped us to solve some problems that could not be solved

at all without using tabulist.

This chapter describes how randomized algorithms perform local searches. In spite of being

incomplete in nature, a local search method is often preferred over a deterministic search method

when a near-optimal solution has to be found in real time.GSAT algorithms based on local search

have been described in this chapter. These include Tabu Search. The Satisfiability Problem (SAT)

is explained. The most interesting property of the Satisfiability such as Graph Colouring can be

encoded into SAT has been illustrated. Once encoded into SAT, the problem can be solved by the

Computer Science & Information Technology (CS & IT)

use of SAT algorithms and Graph Colouring can b

illustrated with experimental result.

4. EXPERIMENTAL RESULTS

Figure 9:Screenshot of result of the Graph Colouring Problem using GSAT with low time complexity

Computer Science & Information Technology (CS & IT)

and Graph Colouring can be encoded into GSAT and Tabu search has been

experimental result.

ESULTS

Screenshot of result of the Graph Colouring Problem using GSAT with low time complexity

 145

and Tabu search has been

Screenshot of result of the Graph Colouring Problem using GSAT with low time complexity

146 Computer Science & Information Technology (CS & IT)

Table 6: Colouring Random Graph with Tabulist

5. CONCLUSION

In this paper both theoretical and experimental studies are done successfully to calculate the

performance of SAT for a Graph coloring problem. The role played by SAT as an intermediate

domain for solving problems. SAT is not sufficient to calculate the minimum number of color

needed to color a graph.SAT technique only extracted that input number of color can sufficient to

color the graph or not. Hera also shows how this problem can be encoded in SAT. Finally, GSAT

method is introduced to use for solving graph coloring problems. GSAT method is enabled to

calculate the number of color need to color a graph. This paper also established a new algorithm

using GSAT which can satisfy the problem with low time complexity.

REFERENCES

[1] Acharyya S, TheSatisfiability Problem: A Constraint Satisfaction Approach, Ph D Thesis, Computer

Science & Engineering, University of Calcutta, 2001

[2] Acharyya S, SAT Algorithms for Colouring Some Special Classes of Graphs: Some Theoretical and

Experimental Results, Journal on Satisfiability, Boolean Modeling and Computation(JSAT),vol 4, no

1, pp 33-55, 2007

[3] Acharyya S &Bagchi A, Local search methods for coloring graphs: Role of tabu list, Artificial

Intelligence: Emerging Trends & Applications (Proc KBCS-2004), International Conf on Knowledge-

Based Computer Systems, Hyderabad, India, Dec 2004, pp 462-472

Computer Science & Information Technology (CS & IT) 147

[4] Selman B,Levesque H J & Mitchell D J, A New Method for Solving Hard SatisfiabilityProblems,

Proc AAAI 92, American Association for Artificial Intelligence, 1992, pp 440 446, 1992

AUTHORS

MunmunDey is an Assistant Professorat Sanaka Educational Trust's Group of

Institutions, Durgapur, West Bengal, India since 2012. She received his M.E degree from

Heritage Institute of Technology in year 2012 and B-Tech degree from Meghnad Saha

Institute of Technology in 2009. Her research interests include the field of Optimization

techniques.

Prof. (Dr.) Amitava Bagchi is a Professor at Heritage Institute of Technology, West Bengal, India. He

received his DSc. degree from MIT, USA. Prof Bagchi has 43 years teaching and Industry experiences. His

research interests include the field of Optimization techniques. He has about 55 referred national and

international publications to her credit.

