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ABSTRACT 

 

The graph colouring problem can be solved using methods based on Satisfiability (SAT). An 

instance of the problem is defined by a Boolean expression written using Boolean variables and 

the logical connectives AND, OR and NOT. It has to be determined whether there is an 

assignment of TRUE and FALSE values to the variables that makes the entire expression true.A 

SAT problem is syntactically and semantically quite simple. Many Constraint Satisfaction 

Problems (CSPs)in AI and OR can be formulated in SAT. These make use of two kinds of 

searchalgorithms: Deterministic and Randomized.It has been found that deterministic methods 

when run on hard CSP instances are frequently very slow in execution.A deterministic method 

always outputs a solution in the end, but it can take an enormous amount of time to do so.This 

has led to the development of randomized search algorithms like GSAT, which are typically 

based on local (i.e., neighbourhood) search. Such methodshave been applied very successfully 

to find good solutions to hard decision problems. 
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1. INTRODUCTION 
 

Many problems in Artificial Intelligence (AI) and Operations Research (OR) can be formulated 

as Constraint Satisfaction Problems (CSPs). In a CSP, there is a set of variables and a set of 

constraints. The variables must be assigned values from specified domains in such a way that all 

the given constraints are satisfied. An assignment of values to the variables that satisfies all the 

constraints yields a feasible solution. The objective is to find one feasible solution, or in some 

cases, all feasible solutions. Sometimes, it is possible to associate a measure of quality with a 

feasible solution. In such cases the objective might be to find the feasible solution of highest 

quality. 

 

Decision problems such as the Graph Colouring Problem and the Satisfiability Problem (SAT) 

can also be viewed as CSPs. The Satisfiability Problem is particularly interesting because it can 

be used as a stepping stone for solving other decision problems. Problem instances from domains 

such as Graph Colouring can be encoded into SAT and then solved by the help of SAT 

algorithms. 
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The work reported in this report is organized in the remaining chapters as follows. In Chapter 2 

we firstexplain graph colouring, then show how a graphcolouringproblem can be formulated and 

solved in SAT using a deterministic approach. We also list the program code andthe output.In 

Chapter 3we describe how the graphcolouringproblem can be formulated in the GSAT 

framework, and show how it can be solved using GSAT with a tabulist. Chapter 4lists the GSAT 

Experimental Results. Chapter 5 summarizes the report 

 

2. GRAPH COLOURING 

 
Here only undirected graphs are considered. To colour a graph G means to assigns a colour to 

each vertex of G with the restriction that two adjacent vertices are not the same colour. 

 

2.1 Graph Colouring Using SAT 

 
This method is based on propositional logic. Let A = {a1, a2,..., an} be a set of n > 1 Boolean 

variables. If a is a variable in A then a and ~a are called literals over A. A truth assignment for A 

is a total function t: A →  {true, false}. Under any truth assignment, aistrue if and only if ~a is 

false, and a and ~~a have identical truth-values. A clause C over A is a set of literals over A. It 

represents the disjunction of the literals, and is valid (or satisfied) under a truth assignment if and 

only if at least one of its literals is true under the assignment. It is invalid (or unsatisfied) under 

the truth assignment if every literal in it is false under the assignment. A set C of clauses over A is 

satisfiable if there exist a truth assignment for A such that every clause in C is valid under the 

assignment. In the Satisfiability Problem (SAT) we are required to determine whether a given set C 

of clauses is satisfiable. In SAT the clauses represent the constraints to be satisfied when assigning 

truth-values to the Boolean variables. In SAT, the number of literals in a clause can vary. 

 

2.1.1 SAT formulation 
 

In the SAT formulation there are three types of clauses.  A Type 1 clause states that two adjacent 

nodes cannot have the same colour. A Type 2 clause states that each node must be assigned at 

least one of the available s colours. There is an Extended Formulation that has Type 3 clauses in 

addition to Type 1 and Type 2 clauses. A Type 3 clause states that a node can be assigned at most 

one of the colours. 
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2.1.2 Example 
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Figure 1:Example of an Undirected 

 

Figure 2: Result of the possib

Figure 3: Screenshot of calculating minimum colour needed to 

2.2 GraphColouring Problem Using 
 

Graph Coloring Problem can be formulated in the SAT framework

follows: 

 

Step   1.  INPUT:  a) Number of nodes.

b)Number of edges. 

c)Number of colours. 

Step   2:  Identification of variables

Step   3: Construction of the clauses

Step   4: Assignment of truth value

Step   5:Checking that each clauses

Step   6: Steps 4 and 5 are repeated
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Table 1: Adjacency matrix 

 

Figure 1:Example of an Undirected Graph 

 

Result of the possible colouring of the above graph. 

 

 

t of calculating minimum colour needed to colour the above graph

 

roblem Using SAT framework 

Problem can be formulated in the SAT framework. The solution steps are as 

INPUT:  a) Number of nodes. 

Identification of variables 

clauses 

Assignment of truth values to literals 

clauses is valid. 

ed until all the clauses are true. 

0 1 1 0 1 1 0 

1 0 0 1 0 1 1 

1 0 0 1 1 1 0 

0 1 1 0 0 1 1 

1 0 1 0 0 0 1 

1 1 1 1 0 0 0 

0 1 0 1 1 0 0 
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colour the above graph. 

The solution steps are as 
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2.2.1 Example 

 
This example will show how a graph coloring problem can be solved using SAT. 

 

 
 

Figure 4: Example of an undirected graph with colour 

 

Figure 4 shows a simple graph consisting of 4 nodes and 4 edges. Suppose we have to determine 

whether it can be colored with 3 colors named 1, 2 and 3.a1 is true when a is coloured with colour 

1 and is false otherwise .We have seen that constraints here are represented by clauses. The 

constraint that two adjacent clauses cannot be colored with the same color can be expressed by 

the following three 

 

Type 1 clauses: ~a1 \/ ~c1  ~a2 \/ ~c2  ~a3 \/ ~c3 

 

As there are 4 edges in total, and there are three Type 1 clauses corresponding to each edge, the 

total number of such clauses will be 12. 

 

The constraint that a node must not be left uncolored can be expressed in case of node 1 by the 

following 

 

Type 2 clause:  a1 \/ a2 \/ a3 

 

For four nodes in the graph the total number of Type 2 clauses will be 4. 

Type 3 clauses force a node such as node to be colored by a single color. The clauses are as 

follows:   

 

Type 3 clauses:~a1 \/ ~a2  ~a1 \/ ~a3  ~a3\/ ~a2 

 

The number of Type 3 clauses for the graph of Figure 1 will be 12, as there are four nodes and three 

colours. Thus the total number of clauses in the graph will be 28 in this case. 

 

2.2.2 Example  

 

We illustrate below how SAT solves a typical satisfiability problem. 
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Problem:Coloringthe graph G1 shown below with 3 colours. 

 
Table 2: Adjacency matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:Example of an undirected graph G1 

 

n =4 (n=Number of nodes) 

e=4 (e= Number of edges) 

c=3 (c= Number of colours) 

Variables 
a1, ~a1, a2, ~a2, a3, ~a3, b1, ~b1,b2, ~b2, b3, ~b3,c1, ~c1, c2, ~c2, c3, ~c3, d1,~d1,d2, ~d2, d3, 

~d3. 

Clauses: 
 

Table 3: Clauses 

 

Sl No. Clauses Sl No. Clauses Sl No. Clauses Sl No. Clauses 

1 ~a1v~c1 8 ~d2v~c2 15 c1vc2vc3 22 ~b2v~b3 

2 ~a2v~c2 9 ~d1v~c1 16 d1vd2vd3 23 ~c1v~c2 

3 ~a3v~c3 10 ~a1v~b1 17 ~a1v~a2 24 ~c1v~c3 

4 ~a1v~d1 11 ~a2v~b2 18 ~a1v~a3 25 ~c2v~c3 

5 ~a2v~d2 12 ~a3v~b3 19 ~a3v~a2 26 ~d1v~d2 

6 ~a3v~d3 13 a1va2va3 20 ~b1v~b2 27 ~d1v~d3 

7 ~d3v~c3 14 b1vb2vb3 21 ~b1v~b3 28 ~d2v~d3 

 

 

 

0 1 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 
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Figure 6:Screenshot of result for the above example 

 

Problem:Colouring Graph G2 With 3 colours. 
 

Figure7: Example of an undirected graph G2 

 

 

 

 

 

 

 

 

Table 4: Adjacency matrix 

0 1 0 0 1 1 0 0 0 

1 0 1 0 0 1 0 0 0 

0 1 0 1 0 1 1 0 0 

0 0 1 0 0 0 1 0 0 

1 0 0 0 0 1 0 1 0 

1 1 1 0 1 0 1 1 1 

0 0 1 1 0 1 0 0 1 

0 0 0 0 1 1 0 0 1 

0 0 0 0 0 1 1 1 0 
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n=9  (n=Number of nodes)  

e=16 (e= Number of edges)  

c=3(c= Number of colours) 

 

Number of Variables: 
a1, ~a1, a2, ~a2, a3, ~a3, b1, ~b1 ,b2, ~b2, b3, ~b3 ,c1, ~c1, c2, ~c2, c3, ~c3, d1,~d1 , d2,  ~d2,  d3,   

~d3 , e1,  ~e1,  e2,  ~e2,  e3,  ~e3 ,  f1,  ~f1,  f2,  ~f2, f3, ~f3,  g1,  ~g1,  g2,  ~g2,  g3,  ~g3,  h1, 

~h1,  h2, ~h2,  h3, ~h3, k1, ~k1, k2, ~k2, k3, ~k3 

 

Number of Clauses: 

 
Table 5: Number of Clauses 

 

Sl No. Clauses Sl No. Clauses Sl No. Clauses Sl No. Clauses 

1 ~a1v~b2 20 ~c2v~g2 39 ~f3v~h3 58 ~a1v~a2 

2 ~a2v~b2 21 ~c3v~g3 40 ~f1v~k1 59 ~a1v~a3 

3 ~a3v~b3 22 ~d1v~g1 41 ~f2v~k2 60 ~a3v~a2 

4 ~b1v~c1 23 ~d2v~g2 42 ~f3v~k3 61 ~b1v~b2 

5 ~b2v~c2 24 ~d3v~g3 43 ~g1v~k1 62 ~b1v~b3 

6 ~b3v~c3 25 ~a1v~e1 44 ~g2v~k2 63 ~b3v~b2 

7 ~c1v~d1 26 ~a2v~e2 45 ~g3v~k3 64 ~c1v~c2 

8 ~c2v~d2 27 ~a3v~e3 46 ~h1v~k1 65 ~c1v~c3 

9 ~c3v~d3 28 ~e1v~f1 47 ~h2v~k2 66 ~c2v~c3 

10 ~a1v~f1 29 ~e2v~f2 48 ~h3v~k3 67 ~d1v~d2 

11 ~a2v~f2 30 ~e3v~f3 49 a1va2va3 68 ~d1v~d3 

12 ~a3v~f3 31 ~f1v~g1 50 b1vb2vb3 69 ~d3v~d2 

13 ~b1v~f1 32 ~f2v~g2 51 c1vc2vc3 70 ~e1v~e2 

14 ~b2v~f2 33 ~f3v~g3 52 d1vd2vd3 71 ~e1v~e3 

15 ~b3v~f3 34 ~e1v~h1 53 e1ve2ve3 72 ~e2v~e3 

16 ~c1v~f1 35 ~e2v~h2 54 f1vf2vf3 73 ~f1v~f2 

17 ~c2v~f2 36 ~e3v~h3 55 g1vg2vg3 74 ~f1v~f3 

18 ~c3v~f3 37 ~f1v~h1 56 h1vh2vh3 75 ~f2v~f3 

19 ~c1v~g1 38 ~f2v~h2 57 k1vk2vk3   
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Figure 8:Screenshot of result for the above example

3. RANDOMIZED SEARCH 

 
Deterministic search methods frequently run slowly on hard CSP instances. This has led to the 

formulation and development of randomized search algorithms

based on local search methods and are therefore often called 

find near-optimal solutions. A local search method generally initiates the search process in some 

randomly chosen point (or set of points) in the 

Such a point is often called a candidate

complete set of assignments of values to the search variables. The set of points reachable from a 

point by making all possible moves is called the 

has to evaluate the neighborhood

made. The evaluation is often accomplished with the aid of an objective function. This function is 

generally problem dependent and rates the likelihood

For example, the objective function for the algorithm GSAT for any problem instance formulated as 

a Satisfiability Problem is typically taken as the total number of unsatisfied clauses. Auxiliary data 

structures such as tab lists can help to improve the performance of the algorithm. The initial solution 
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Figure 8:Screenshot of result for the above example 

 

EARCH ALGORITHMS 

Deterministic search methods frequently run slowly on hard CSP instances. This has led to the 

of randomized search algorithms. Most randomized algorithms are 

based on local search methods and are therefore often called Local Search Algorithms

optimal solutions. A local search method generally initiates the search process in some 

randomly chosen point (or set of points) in the search space (sometimes called the solution space

candidatesolution. A feasible (or complete) solution consists of a 

complete set of assignments of values to the search variables. The set of points reachable from a 

point by making all possible moves is called the neighborhood of the point. A local searc

neighborhood points and determine to which neighbor the next move should be 

made. The evaluation is often accomplished with the aid of an objective function. This function is 

generally problem dependent and rates the likelihood that the point leads closer to a feasible solution. 

For example, the objective function for the algorithm GSAT for any problem instance formulated as 

a Satisfiability Problem is typically taken as the total number of unsatisfied clauses. Auxiliary data 

can help to improve the performance of the algorithm. The initial solution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deterministic search methods frequently run slowly on hard CSP instances. This has led to the 

. Most randomized algorithms are 

Search Algorithms. These can 

optimal solutions. A local search method generally initiates the search process in some 

solution space). 

(or complete) solution consists of a 

complete set of assignments of values to the search variables. The set of points reachable from a 

of the point. A local search method 

the next move should be 

made. The evaluation is often accomplished with the aid of an objective function. This function is 

that the point leads closer to a feasible solution. 

For example, the objective function for the algorithm GSAT for any problem instance formulated as 

a Satisfiability Problem is typically taken as the total number of unsatisfied clauses. Auxiliary data 

can help to improve the performance of the algorithm. The initial solution 
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can be chosen either randomly or by the use of a heuristic. The search then proceeds to a 

neighboringpoint and from that point to another neighboring point, and so on in an iterative way. 

Although moves are made in a systematic manner, local search algorithms are typically incomplete. 

Local search algorithms often make use of stochastic mechanisms. 

 

3.1 Local Search Algorithms 
 

In this section, however, we are concerned only with general local search methods such as GSAT 

and Tabu Search. 

 

3.2.1GSAT 
 

The greedy local search procedure GSAT assigns truth values to variables in an effort to satisfy all 

the clauses in a given set. At start, the procedure randomly assigns truth-values to variables. This 

amounts to picking a solution randomly from the solution space. Typically this truth assignment 

fails to satisfy all the clauses. If the truth-value of a variable is flipped (i.e., complemented), the total 

number of satisfied clauses will change. Suppose a variable v is flipped. Then the unsatisfied 

clauses where v occurs get satisfied. The number of such clauses is represented by make(v). At the 

same time, before flipping v, there were some clauses satisfied only by the variable v. As v is 

flipped these clauses get unsatisfied. The number of such clauses is given by break(v). The 

difference make(v) - break(v) is the net increase in the number of satisfied clauses and is referred to 

as gain(v). Flipping a variable means moving to a neighboring point in the solution space. We have 

mentioned above that an objective function can help to guide us where to move next in the 

neighborhood. In GSAT the value of the function is the number of unsatisfied clauses.  GSAT looks 

for the variable with the property that its truth-value when flipped causes the largest net decrease in 

the number of unsatisfied clauses. It flips the truth-value of this variable, and again looks for such a 

variable. Ties are resolved arbitrarily. This is repeated until a satisfying assignment is found. If no 

satisfying assignment is found within a specified number of flips (maxflips), the procedure is 

restarted with a new initial truth assignment. This cycle is repeated a specified number of times 

(maxtries). The algorithm always tries to select the most promising neighbour at each step. It is 

therefore called a greedy local search algorithm. 

 

3.3Graph Colouring Problem Using GSAT framework 
 
The solution steps are therefore as follows: 

 

Step1:INPUTa) Size of array 

 

b) Percentage of edges 

c)Initial number of colours 

d) The number of runs 

e)Size of tabu list 

 

Step   2:   Creation of list of literals. 

Step   3:Construct the clauses 

Step   4:Assignrandom truth assignment value to literals 

Step   5:Check whether that each clauses is valid. 

Step    6:If this truth assignment does not satisfy all the clauses 

Step    7:Determine the effect of flipping the truth-value of each variable 

Step    8:Count the satisfied clauses after the bit is changed 

Step  9:Determine the variables flipping which cause the maximumdecrease in the number of 

Unsatisfied clauses; 
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Select a variable from these set resolving ties arbitrarily;  

Flip the selected variable. 

Step   10:  Repeat Step 4 and Step 5until all the clauses are true. 

 

3.4Procedure GSAT 

 
Anillustrationis done below how GSAT solves a typical satisfiability problem. Consider the 

following set of six clauses: 

 

C1:   a3  U  a4 

C2:   a5  U  ~a4 

C3:   a1  U  a2  U  ~a3 

C4:   ~a1  U  ~a3  U  ~a5 

C5:   ~a2  U  ~a3 

C6:   a3  U  ~a4 

 

There are five variables a1, a2, a3, a4 and a5. Suppose the initial random truth assignment is as 

follows: 

a1 = true,a2 = false,a3 = true, a4 = false, a5 = true. 

 
This truth assignment does not satisfy all the clauses; in particular, clause C4 remains unsatisfied. 

We must now determine the effect of flipping the truth-value of each variable. Suppose that when a 

variable is flipped, make clauses that are currently unsatisfied get satisfied, and breakclauses that 

are currently satisfied become unsatisfied. The overall decrease in the number of unsatisfied clauses 

is then given by the expression gain = make – break. We have to find the variable with the largest 

gain. Here 

 

gain(x1) = 1 – 1 =0, 

gain(x2) = 0 – 1 = -1, 

gain(x3) = 1 – 1 = 0, 

gain(x4) = 0 – 0 = 0, 

gain(x5) = 1 – 0 = 1. 

 

We change the truth value of x5 to false since this results in the largest gain, and find as a result that 

all the clauses are satisfied. 

 

3.5 Tabu Search Strategy 
 

GSAT can significantly improved by tabu search strategy to ensure that the same variable is not 

flipped again and again.Tabulist is initially empty and is implemented as a FIFO queue.The variable 

that has just been flipped is inserted into the list.The variable to be flipped next is selected randomly 

from among those variables not in the tabulist.Thus some variables are prevented from being 

flipped for a limited period of time,determine by the length of the tabulist. Tabu list in GSAT not 

only helped to reduce the running time,it helped us to solve some problems that could not be solved 

at all without using tabulist.  

 

This chapter describes how randomized algorithms perform local searches. In spite of being 

incomplete in nature, a local search method is often preferred over a deterministic search method 

when a near-optimal solution has to be found in real time.GSAT algorithms based on local search 

have been described in this chapter. These include Tabu Search. The Satisfiability Problem (SAT) 

is explained. The most interesting property of the Satisfiability such as Graph Colouring can be 

encoded into SAT has been illustrated. Once encoded into SAT, the problem can be solved by the 
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use of SAT algorithms and Graph Colouring can b

illustrated with experimental result.

 

4. EXPERIMENTAL RESULTS

 

 
Figure 9:Screenshot of result of the Graph Colouring Problem using GSAT with low time complexity
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and Graph Colouring can be encoded into GSAT and Tabu search has been 

experimental result. 

ESULTS 

Screenshot of result of the Graph Colouring Problem using GSAT with low time complexity
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and Tabu search has been 

 

Screenshot of result of the Graph Colouring Problem using GSAT with low time complexity 
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Table 6: Colouring Random Graph with Tabulist 

 

5. CONCLUSION 

 
In this paper both theoretical and experimental studies are done successfully to calculate the 

performance of SAT for a Graph coloring problem. The role played by SAT as an intermediate 

domain for solving problems. SAT is not sufficient to calculate the minimum number of color 

needed to color a graph.SAT technique only extracted that input number of color can sufficient to 

color the graph or not. Hera also shows how this problem can be encoded in SAT. Finally, GSAT 

method is introduced to use for solving graph coloring problems. GSAT method is enabled to 

calculate the number of color need to color a graph. This paper also established a new algorithm 

using GSAT which can satisfy the problem with low time complexity. 
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