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ABSTRACT 

 

Further analysis and experimentation is carried out in this paper for a chaotic dynamic model, 

viz. the Nonlinear Dynamic State neuron (NDS). The analysis and experimentations are 

performed to further understand the underlying dynamics of the model and enhance it as well. 

Chaos provides many interesting properties that can be exploited to achieve computational 

tasks. Such properties are sensitivity to initial conditions, space filling, control and 

synchronization. Chaos might play an important role in information processing tasks in human 

brain as suggested by biologists. If artificial neural networks (ANNs) is equipped with chaos 

then it will enrich the dynamic behaviours of such networks. The NDS model has some 

limitations and can be overcome in different ways. In this paper different approaches are 

followed to push the boundaries of the NDS model in order to enhance it. One way is to study 

the effects of scaling the parameters of the chaotic equations of the NDS model and study the 

resulted dynamics. Another way is to study the method that is used in discretization of the 

original R¨ossler that the NDS model is based on. These approaches have revealed some facts 

about the NDS attractor and suggest why such a model can be stabilized to large number of 

unstable periodic orbits (UPOs) which might correspond to memories in phase space. 

 

 

1. INTRODUCTION 

 

Chaos might play an important role in information processing tasks in human brain as shown in 

[Babloyantz and Lourenc¸o(1996), Destexhe(1994), Freeman(1999), Freeman(2000), Freeman 

and Barrie(1994), Rapp(1993), Theiler(1995),Wu et al(2009)Wu, Shyu, Chen, and Guo]. Some 

properties that might be useful for information processing tasks are: sensitivity to initial 

conditions, space filling, control, synchronization and a rich dynamics that can be accessed using 

different control methods. In theory, if Artificial Neural Networks (ANN) are equipped with 

chaos they will enable a large number of rich dynamic behaviors. After applying control, these 

dynamics can be accessed using one of the control mechanisms such as feedback control [Ott et 

al(1990)Ott, Grebogi, and Yorke, Pasemann and Stollenwerk(1998), Pyragas(1992)]. Applying 

such control mechanisms to discrete chaotic neural models showed that the model would stabilize 

into one of many UPOs that are embedded in the chaotic attractor. 
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Different chaotic neural models have been devised in recent years to explore the possibilities of 

exploiting the rich dynamics that such models might provide for information processing tasks. 

One of these model is the NDS model [Crook et al(2005)Crook, Goh, and Hawarat].This model is 

based on R¨ossler system [R¨ossler(1976)]. 

 

R¨ossler is a simple chaotic system. It has been studied many times in terms of control 

investigation and biological studies [Ding et al(2010)Ding, Jiang, and Wang, Bershadskii and 

Ikegaya(2011)] to name a few. 

 

The origins of this model dates back to 2003 where the authors in [Crook et al(2003)Crook, olde 

Scheper, and Pathirana] have proposed a chaotic neuron that is based on R¨ossler system. The 

idea was to exploit the rich dynamics of the chaotic attractor to represent internal states and 

therefore  the chaotic attractor can  represent an  infinite  state  machine. Many experiments have 

been carried out to show that using periodic input signals would cause the chaotic attractor to 

stabilize to an UPO. The control mechanism used was a modified version of Pyragas 

[Pyragas(1992)] where the period  length is considered a system variable. Small networks of 2−3 

neurons have been studied and the network has stabilized to one UPO according to a periodic 

length that is implicitly appears in the input pattern. 

 

The model is very interesting due to the fact that it theoretically allows an access to a large 

number of UPOs, which correspond to memories in phase space, using only single NDS neuron. 

In contrast, the Hopfield neural network can give only 0.15n memory size (where n is the number 

of neurons in the network). 

 

The NDS model is studied in a series of works [Crook et al(2005)Crook, Goh, and Hawarat, Goh 

and Crook(2007), Alhawarat(2007), Crook and Goh(2008), Aoun(2010)]. The authors in[Goh and 

Crook(2007)] have used Lorenz attractor instead of R¨ossler. They have used transient 

computation machine to detect human motion from sequences of video frames. In another 

paper[Crook and Goh(2008)] the authors argued that chaos may equip mammalian brain with the 

equivalent of kernel trick for solving hard nonlinear problems. 

 

In [Aoun(2010)] networks of NDS neurons have been investigated in the context of Spike Time 

Dependent Plasticity (STDP) which is a property of cortical neurons. The author has suggested 

that NDS neurons may own the realism of biological neural networks; this has been supported by 

experiments conducted by the author. 

 

The NDS model has been investigated thoroughly in[Alhawarat(2007)]. In his investigation, the 

author has studied the chaotic behavior of the model from both experimental and analytical 

perspectives. Explanation of the behavior of the model has become clear after the 

experimentations and the mathematical analysis and the study has shown interesting results. 

 

In this paper some of the limitations that exist in the NDS model will be investigated. This 

includes tuning the model parameters for the sake of enhancing the model capacity in terms of the 

number of successfully stabilized UPOs. Moreover, the discretization method that used to to 

convert the continuous R¨ossler system into the discrete NDS model will be discussed and 

compared to other well-known methods of discretization. 

 

The paper is organized as follows: in section 2 the original R¨ossler model is introduced, in 

section 3 the NDS model is described, in section 4 a mathematical analysis of the NDS model and 
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related discretization methods are discussed, section 5 is devoted to describe the experimentation 

setups that are carried out to tune the parameters of the NDS model, section 6 includes 

discussions and finally section 7 concludes the paper. 

 

2. R¨OSSLER  CHAOTIC ATTRACTOR 

 

The R¨ossler system [R¨ossler(1976)] is a simple dynamical system that exhibits chaos and has 

only one nonlinear term in its equations. R¨ossler built the system in 1976; it describes chemical 

fluctuation and is represented by the following differential equations: 

 

 
 

Where a and b are usually fixed and c is varied and is called the control parameter. The familiar 

parameter settings for the R¨ossler attractor are a = 0:2, b = 0:2, and c = 5:7, and the 

corresponding attractor is shown in figure 1. Note that the R¨ossler attractor most of the time lies 

in the x−y plane and comprises a disk that has a dense number of orbits. Note also that these 

orbits are stretching as a result of divergence and sensitivity to initial conditions. From time to 

time the R¨ossler attractor rises in the z direction and then folds back to the disk which forms a 

fin-like shape. The folding and stretching keep the R¨ossler attractor bounded in phase space. 

 

 
 

Fig. 1 The R¨ossler chaotic attractor with parameters a = 0:2, b = 0:2, and c = 5:7. 
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If a trajectory of a chaotic system evolved starting from an initial point within the attractor for a 

long period of time, then that trajectory will fill a bounded part of the phase space and the 

attractor of the system will have a fractional dimension. This bounded space is one of the 

properties of chaos, and is due to the attracting and the repelling of the trajectory by the fixed 

points that govern and organize the system behaviour. The type of these points determines the 

shape of the resulting attractor. This fractal dimension can be recognized in figure 1 where the 

attractor is not filling the whole space, instead it is filling part of the space. 

 

Unstable periodic orbits 

 

An UPO is one of the dynamic behaviours that a nonlinear system exhibit in phase space. An 

UPO is a repeating orbit and is unstable as a result of being attracted and repelled by fixed points 

of an attractor. Chaotic attractors usually have a dense number of UPOs which can be accessed 

using controlling methods. 

 

For example figure 2 shows two UPOs of period 1 and period 2 in the R¨ossler attractor when the 

c parameter is tuned to 2:5 and 3:5 respectively. Period 2 here means that the UPO repeat twice in 

the attractor. 

 

 
Fig. 2 Two UPOs, one of period 1 and the other of period 2 in the R¨ossler chaotic attractor 

occurred when parameters a;b are fixed to 0:2 and parameter c is set to 2:5 and 3:5. 

 

3. DESCRIBING THE NDS MODEL 

 

In[Crook et al(2005)Crook, Goh, and Hawarat], Crook et al. have proposed a chaotic spiking 

neuron model that is called the NDS neuron. The NDS neuron is a conceptual discretized model 

that is based on R¨ossler’s chaotic system [R¨ossler(1976)]. The NDS model is a modified 

version of R¨ossler’s equations as described by equations 1- 3 in section 2. 

 

By varying the system parameters such as period length , connection time delays and initial 

conditions, large number of distinct orbits with varying periodicity may be stabilised. 
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The NDS model simulates a novel chaotic spiking neuron and is represented by: 

 

 
 

 
Fig. 3 The chaotic behaviour of a NDS neuron without input (a) the time series of u(t) and 

and (b) the phase space of x(t) versus u(t) 

 

where x(t), y(t) and u(t) describe the internal state of the neuron, is the neuron’s binary 

output, F(t) represent the feedback signals, In(t) is the external input binary spike train, and the 

constants  and  parameters of the model are: a = v = 0:002, b = c = 0:03, d = 0:8, k = −0:057,  θ = −0:01,  = −0:7 and  is the period length of the feedback signals. 

 

The NDS model is a discrete version of the R¨ossler system. The main reason to have a discrete 

version of the R¨ossler system is because spikes should occur in discrete time. The discretization 

has been carried out by scaling the system variables x(t), y(t) and u(t) using different scaling 

constants: b, c, d. The values of these constants have been tuned experimentally until the 

dynamics of the R¨ossler system are preserved. If the values of these constants are large, then a 
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system trajectory will miss many dynamic evolutions while moving from one discrete iteration to 

the next. Therefore, the time steps of the discrete system need to be very small so that a system 

trajectory will involve most of the dynamic evolutions of the R¨ossler system. This will become 

clear in section 4. 

 

The dynamics of a single NDS neuron without input is shown in Figure 3. However, when the 

NDS neuron is equipped with a time delayed feedback connection then the firing pattern of the 

neuron can become periodic. This is shown in figure 4 where period-4 orbit is stabilised due to 

the feedback control mechanism F 

 

 
Fig. 4 The stabilizing of period-4 orbit of a NDS neuron with feedback connection. 

4. DISCRETIZATION METHOD 

There are two kinds of discretization methods when converting a continuous system into a 

discrete one: standard and nonstandard methods. One of the nonstandard methods is Eulers 

Forward differentiation method that is usually used in developing simple simulation systems. To 

convert a continuous system into the corresponding discrete one using this method, then a time 

step TS is used to approximate the next value of a continuous system variable that it will evolve 

to. For example, equation1 when converted into a discrete equation using Eulers Forward 

differentiation it will become: 

 

 
if this equation is compared with equation 4, it is obvious that the TS is chosen to be parameter b 

= 0.03. 

 

In order for the discretized function to behave similarly to the continuous one then TS should be 

chosen to be small. For simulation purposes it is preferable to choose TS according to the 

following formula : 



Computer Science & Information Technology (CS & IT)                                 115 

 

 

Where  is the largest absolute eigenvalues for the R¨ossler system. According to the 

mathematical analysis that is carried out in [Alhawarat(2007)], = 5:68698. When 

substituting this value in equation 14 it becomes: 

 

   TS ≤ 0:0176                      (14) 

 

If this compared with b it is obvious that the time step that has been chosen doesn’t follow the 

simulation preferable setup. 

 

Moreover, if we look at equation 5 not only the TS is chosen to be c = 0:03 but also a scaling 

factor is used to reduce the y down by the factor a = 0:002. 

 

For the third variable in R¨ossler system, viz. z variable, there were many changes because the 

authors of the model according to [Crook et al(2005)Crook, Goh, and Hawarat] wanted to invent 

a spiking model that is based on a threshold variable. That variable was u which corresponds to z 

in the original R¨ossler system. In addition, the time step TS value that is used in the 

discretization process was different from those appear in equations 4-5. While the TS = b = c = 

0:03 used in the aforementioned equations, TS is chosen to be TS =d =0:8 in discretization of the 

variable u. Moreover, the authors have scaled the constant c from 5:7 down to 0:057 and changed 

its sign to negative. A final change was made to the sign of x variable from positive to negative. 

 

All these changes made the new system to behave differently in phase space. To summarize, the 

new attractor of the system has different fixed points types. According to the mathematical 

analysis carried out by [Alhawarat(2007)], the original R¨ossler system fixed points, which are 

two spiral saddle points, have become two spiral repellors due to the varying scaling factors used 

and the change of the sign for both k and x. 

 

These results assure that the NDS model, although has a promising results as a spiking chaotic 

neuron model, it doesn’t have a strong connection to the properties of the original R¨ossler 

attractor. This is made obvious in [Alhawarat(2007)] when they concluded that the existence of 

the UPOs of the NDS attractor is due to the acting forces of the two spiral repellors and the reset 

mechanism. Because without the reset mechanism, the two spiral repellors will enforce any 

trajectory that starts near by to evolve away from both of them and approaches infinity. 

 

If the Eulers Forward differentiation discretization method is used to convert the continuous 

R¨ossler system into a discrete model, where the time step is chosen to be TS = 0:0055, then 

equations 1- 3 will become: 
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Where TS = 0:0055, a = 0:2, b = 0:2, and c = 5:7. 

 

 
Fig. 5 The Discrete version of R¨ossler attractor based on equations 15- 17 

 

To verify if such settings will preserve the shape and properties of the original R¨ossler system, 

then an experiment is carried out to depict the discretized system’s attractor as shown in figure 5. 

If these equations are converted into the equations of the NDS model then different steps need to 

be followed: 

 

1. Specify the value of TS, here TS is chosen to be 0:0055 

2. Change the parameter b in equation 17 to v. 

3. Change the parameter c in equation 17 to k. 

4. Change the constant TS in equation 15 to b and give it the value of TS. 

5. Change the constant TS in equation 16 to c and give it the value of TS. 

6. Change the constant TS in equation 17 to d and give it the value of TS. 

7. Change the value of a and v and give it the value of 0:2. 

8. Change the value of k to 5:7 

9. Change the variable z to u. 

10. Change the sign of the term (x(t)−k) in equation 17 to become (−x(t)+k) 

 

After applying the previous changes the equations 15- 17 become: 

 

  x(t +1) = x(t)+b(−y(t)−u(t))    (18) 

 

  y(t +1) = y(t)+c(x(t)+ay(t))   (19) 

 

  u(t +1) = u(t)+d(v+u(t)(−x(t)+k))  (20) 

 

Where a = 0:2, b = c = d = 0:0055, and k = 5:7. 
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Now this new model need to be verified, i.e. an experiment need to be carried out to depict the 

attractor such equations will produce. Figure 6 depicts the results of evolution of equations 18- 

20. 

 

 
Fig. 6 The attractor of the model that is based on equations 18- 20 

Note that the original R¨ossler attractor has disappeared and this is due to the change of sign that 

is made to the term (x(t)−k) in equation 20. 

5. TUNING THE PARAMETERS OF THE NDS MODEL 

In this research, many experiments have been carried out to tune the parameters of the NDS 

model. These experiments are carried out by varying one parameter and fix all other parameters 

to their default values that are used in the NDS model definition as stated in section 3. The 

following parameters have been considered in these experiments: a,v,b,c,d and k because the 

other parameters:  have already been studied thoroughly in [Alhawarat(2007)]. One 

NDS neuron has been used in the experiments setup and random initial conditions are chosen for 

the values of the variables: x, y and u. After 1000 iterations the feedback control is applied and 

the experiment runs for another 9000 iterations. 

 

To decide whether a specific setting is valid; the values of the variables of the model are recorded 

and then depicted in phase space. If an attractor exist, then this setting is considered in the valid 

ranges for the values of the system parameters. 

 

Table 1 Parameter value’s ranges 

 
 

To summarize the results; the valid ranges for the model parameters are shown in table 1. 
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Table 2 Parameter settings with different selected values from the ranges appear in table1 

 

 
 

To judge weather such ranges could enhance the capacity of the attractor in terms of the number 

of UPOs that it might encompass, then another experiment setup is used. Here the average 

number of successfully stabilized UPOs is computed over 1000 run for different parameter 

settings according to table 2 and the results are depicted in figure 6. 

 

Note that the original parameters values of the NDS model is used in setup 7. This is done to 

compare the capacity of the attractor with different parameter settings compared to the original 

parameter settings. 

 

The results that are shown in figure 6 suggest that there exist better parameter settings such as 

Settings 14 and Settings 05, but these will not make a significant enhancement in the capacity of 

the attractor in terms of successfully stabilized UPOs when compared to the NDS original settings 

(Setting 07). 

 

Based on the results that have been attained in section 4, if a parameter setting need to be chosen 

to represent the R¨ossler system then first a TS need to be set according to equation 14, then a 

mapping between the original R¨ossler equations and the NDS equations need to be performed. If 

TS is chosen to be 0:015, then after carrying out the mapping between the equations of both 

systems; the parameter settings become as listed in table 3 

 

Table 3 Parameter settings for the original R¨ossler as discussed in section 2 

 
 

This setting is considered in another experiment setup, and the result is that there is no single 

UPO that can be stabilized. One possible reason is that the fixed points of the system is reserved 

in this case and not changed as the case in the NDS model settings. The change in sign in the term 
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(x−c) and the different nested scaling factors that are applied to the original R¨ossler equation 

have led to change in the types and properties of the fixed points as shown in [Alhawarat(2007)]. 

 

This can be proved easily because when multiplying an equation with a constant and then trying 

to find its roots, then it should be set to zero. Therefore, the constant will have no effect on the 

resulted roots as dividing both sides by constant will eliminate the constant from the left hand 

side and will not affect zero in the right hand side. 

 

6. DISCUSSION 

 

The results of both experimentations and mathematical analysis of the discretization method 

suggest that the NDS model has weak connections to the original R¨ossler system. This is due to 

many factors. Firstly, the discretization process that is used in devising the NDS equations does 

not follow any known discretization method where different discretization time steps and scaling 

factors are used. Secondly, Changing the sign of the term (x(t)−k) that appears in equation 20 

made the system attractor to disappear and approach infinity instead. These changes affected both 

the shape and properties of the original R¨ossler attractor. 

 

It is important here to stress that even before adding the feedback signal, the input signals and the 

reset mechanism to the system equations, the attractor has become completely different from the 

original R¨ossler attractor. This assure that the NDS model has weak connections to the R¨ossler 

model and has different fixed points, eigenvalues and eigenvectors as demonstrated in 

[Alhawarat(2007)]. 

 

The results also suggest that both the reset mechanism and the feedback signal are the major 

ingredients for the NDS model to work and to be stabilised to one of its available UPOs. 

 

The results of experimental setups made to tune the NDS parameters suggest that there exist 

better parameter settings but will not enhance the capacity of the attractor in terms of successfully 

stabilized UPOs significantly when compared to the NDS original settings. 

 

Also, the settings of the R¨ossler model when used in the NDS model resulted in no stabilized 

UPOs because the discretization method that is used to build the NDS model has led to changes 

in the shape and properties of the R¨ossler attractor. 

 

It is important to mention that the main factors that affect the shape and properties of the original 

R¨ossler attractor are both scaling the parameters of the model with different values and the 

change in sign that is made to the term (x(t)−k) that appears in equation 20. 

 

7. CONCLUSION 

 

One chaotic model, viz., the NDS model has been studied in this paper. NDS is one of different 

chaotic models that are devised in recent years to explore the possibilities of exploiting the rich 

dynamics that such models might provide for carrying out information processing tasks. 

 

The NDS model might be stabilized to a large number of UPOs. These UPOs can be stabilised 

using a feedback control mechanism. The NDS model is a modified version of R¨ossler chaotic 
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system. The rich dynamics of the R¨ossler system is supposed to be inherited by the NDS model. 

This is suggested by the large number of UPOs that can be stabilised as shown in figure 3. 

 

However, when the discretization methods are discussed in this paper, it is shown that the method 

that is used to discretize the original R¨ossler equations in devising the NDS equations is not a 

known discretization method. This along with the change in sign in the term u(t)x(t)−ku(t)) has 

affected the shape and properties of the NDS attractor when compared with its origin: the 

R¨ossler attractor. 

 

Different experimental setups have been prepared and performed to tune the NDS model 

parameters. The results of these experimentations have revealed the valid ranges of the 

parameters of the model. Also, other experimentations have shown different capacities for the 

NDS attractor in terms of the number of stabilized UPOs with different parameter settings. 

 

The results attained in this paper suggest that there are weak relationships between the NDS and 

the R¨ossler models. However, the NDS attractor encompasses large number of UPOs as shown 

in figure 7. These and the wide range of dynamic behaviours may be exploited to carry out 

information processing tasks. 
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