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ABSTRACT 

 
The generalized design principle of TS fuzzy observers for one class of continuous-time 

nonlinear MIMO systems is presented in this paper. The problem addressed can be indicated as 

a descriptor system approach to TS fuzzy observers design, implying the asymptotic 

convergence of the state observer error. A new structure of linear matrix inequalities is outlined 

to possess the observer asymptotic dynamic properties closest to the optimal. 
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1. INTRODUCTION 
 
As is well known, observer design is a hot research field owing to its particular importance in 

observer-based control, and fault diagnosis. The nonlinear system theory using Lipchitz 

conditions has emerged as a method capable of use in state estimation design for nonlinear 

systems [1], although Lipschitz condition is a restrictive condition which many classes of systems 

may not satisfy. However this principle used in state estimators design means that the observer 

satisfies a sufficient condition for the asymptotic stability of error system, but in fact there is not a 

straightforward method for selecting the observer gain to fill such conditions [2]. Because the 

Takagi-Sugeno (TS) fuzzy approach is a suitable representation of certain class of nonlinear 

dynamic systems [3], employing the fuzzy modelling approach to approximate sector-bounded 

nonlinear systems, other well-known nonlinear observers are based on Takagi-Sugeno (TS) fuzzy 

models [4], [5]. To design TS fuzzy observers, usually the technique utilizing the linear matrix 

inequalities is used [6]. 

 

Although the state observers for linear and nonlinear systems received considerable attention, the 

descriptor design principles have not been studied extensively. Adapting the descriptor observer 

design principle [7], the first result giving sufficient design conditions, but for linear time-delay 

systems, can be found in [8]. Reflecting the same problems concerning the observers for 

descriptor time-delay nonlinear systems represented by TS fuzzy models, an LMI method was 

presented in [9], but a hint of this methodology can be found only in [10]. 
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Adapting the results on the TS fuzzy observers for bilinear systems [11] as well as their potential 

extensions, the main issue of this paper is to use the descriptor principle in TS fuzzy observer 

design. Preferring LMI formulation, although partly conservative, the stability condition proofs 

use standard arguments on 2H  approach to obtain the design conditions requiring only solving of 

LMIs without additional constraints. To the best author's knowledge, the proposed LMI structure 

in design conditions formulation were not fully addressed yet in the previous works. 

 

The paper is organized as follows. In Sec. 2, the TS fuzzy model is briefly described and the TS 

fuzzy observer design problem for given class of nonlinear systems is formulated in Sec. 3. The 

new LMI structure, describing the TS fuzzy observer design conditions, is presented in Sec. 4 and 

analysed and algorithmically explained in Sec 5. Finally, Sec. 6 draws conclusions and some 

future directions. 

 

The notations throughout the paper are narrowly standard in such a way that Tx , TX denotes the 

transpose of the vector x  and matrix X , respectively, > 0TX = X  means that X is a symmetric 

positive definite matrix, the symbol nI  indicates the n -th order unit matrix, R denotes the set of 

real numbers nR , and n rR × , refer to the set of all n -dimensional real vectors and n r×  real 

matrices, respectively.  

 

2. TAKAGI-SUGENO FUZZY MODELS 

 
The systems under consideration are from the class of multi-input and multi-output nonlinear 

(MIMO) continuous-time dynamic systems, represented in TS form as  

  (1) 

 ( ) ( )y t Cq t=  (2) 

where ( ) nq t R∈ , ( ) ru t R∈ , ( ) my t R∈ , are vectors of the state, input, and output variables, 
n nA R ×∈ , , m nC R ×∈  are real finite values matrices, ,m r n<  and h ( ( ))i tθ  is averaging weight for 

the i -th rule, representing the normalized grade of fuzzy membership (membership function). By 

definition, the membership functions satisfy the convex sum properties 

 
1

0 h ( ( )) 1, h ( ( )) 1 1, ,
s

i i

i

t t for all i sθ θ
=

≤ ≤ = ∈ 〈 … 〉∑  (3) 

where s  is the number of linear models (fuzzy rules) and 

 [ ]1 2( ) ( ) ( ) ( )pt t t tθ θ θ θ= L  (4) 

is p  dimensional vector of the premise variables. It is assumed that the premise variable is a 

system state variable, or a measurable external variable, while none of the premise variables does 

not depend on any element of the input variables vector ( )u t . In the above sense, the fuzzy model 

of a system can be interpreted as a combination of s  linear models through the set of 

membership functions{ ( ( )), 1,2, , }ih t i sθ = … . More details can be found, e.g., in [6], [12]. 

 

It is supposed that the couples ( , )iA C  are observable for all 1,2, ,i s= … , as well as the matrix C  

occurs in all local models and the number of input variables r  is equal to the number of output 

variables m (the dynamic system is a square system). 
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3. TAKAGI-SUGENO FUZZY OBSERVER DESIGN 

 
The conventional fuzzy observer can be constructed as follows 

  (5) 

 ( ) ( )e ey t Cq t=  (6) 

where ( ) n
eq t R∈  is estimation of the system state vector (the fuzzy observer state vector) 

and , 1,2, ,n m
iJ R i s×∈ = …  is the set of the observer gain matrices. 

 

Lemma 1 

 
The fuzzy observer  (5), (6) is stable if there exist a positive definite symmetric matrix 

n nP R ×∈  and matrices n m
iY R ×∈  such that for all 1,2, ,i s= …  

 

 0TP P= >  (7) 

 0T T T
i i i iPA A P Y C C Y+ − − <  (8) 

When the above conditions hold, i.e. if iY  and the non-singular matrix P  are solutions of 

(7), (8), the set of the observer gain matrices iJ  is given by the following equations  

 

 1
i iJ P Y−=  (9) 

Proof: (compare, e.g., [11]) Introducing the error between the system state vector and the 

observer state vector as follows 

 

 ( ) ( ) ( )ee t q t q t= −  (10) 

 

and performing the time derivative of the error ( )e t , then exploiting (1) and (10) it is  

  (11) 

 

which can be written using (2), (11) as follows 

 

  (12) 

where 

 ei i iA A J C= −  (13) 

Defining the Lyapunov function of the form 

 

 ( ( )) ( ) ( ) 0Tv e t e t Pe t= >  (14) 

where 0TP P= > , then evaluating the time derivative of (14) it yields 
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  (15) 

Substituting (12), (13) into (15) gives  

  (16) 

 ( ) ( ) 0T
i i i iP A J C A J C P for all i− + − <  (17) 

respectively.  

Therefore, setting 
 

 i iPJ Y=  (18) 

(17) implies (8). This concludes the proof.   

            

Considering the affine properties of the TS fuzzy models, to reduce the conservatism in 

solution the enhanced design criterion can be derived by using two slack matrices. 

 

Theorem 1 

 

The fuzzy observer (5), (6) is stable if for given positive scalar Rδ ∈  there exist a 

symmetric positive definite matrix n nP R ×∈  and matrices 3
n nS R ×∈ , n m

iY R ×∈  such that for 

all 1,2, ,i s= …  

 

 0TP P= >  (19) 

 

 
3 3

3 3 3 3

0
( ) 0

T T T T
i i i i

T T
i iC

A S S A Y C C Y

P S S A Y S Sδ δ δ

+ − − ∗ 
< − + − − + < 

  (20) 

When the above conditions hold, the set of the observer gain matrices iJ  is given by the 

equations 

 1
3( )T

i iJ S Y−=  (21) 

Here and hereafter ∗  denotes the symmetric item in a symmetric matrix. 

 

:Proof Since the property of (3) and (12) asserts that 

  (22) 

using arbitrary square slack matrices 3 4, n nS S R ×∈  it yields 

  (23) 

Adding (23) and transposition of (23) to (15) gives 
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  (24) 

Then, introducing the notation 

  (25) 

after straightforward computation it can be obtained 

  (26) 

where 

 
3 3 3 4

3 4 4 4

( ) ( ) ( )
0

( )

T T T T
i i i i i i

i
T T

i i

A J C S S A J C P S A J C S
Q

P S S A J C S S

°
− + − − + − 

= < − + − − − 
 (27) 

 4 3 3, T
i iS S Y S Jδ= =  (28) 

where 0δ > , Rδ ∈ , then (28) implies (20). This concludes the proof.  

   

The importance of Theorem 1 is that the Lyapunov matrix P  is separated from the system 

matrices iA , C , i.e. there are no terms containing product of P  and any of them. This enables to 

derive design conditions with respect to natural affine properties of TS models. 

 

It is evident, that Theorem 1 can be simple reformulated considering a symmetric matrix 3 3
TS S= . 

 

4. DESCRIPTOR PRINCIPLE BASED DESIGN METHOD 

 
The results given by Theorem 1 can be generalized using descriptor principle and are formulated 

as the following theorem. 

 

Theorem 2 

 

The fuzzy observer (22), (23) is stable if for given positive scalar Rδ ∈   there exist a symmetric 

positive definite matrix 1
n nP R ×∈  and matrices 2 3, n nP P R ×∈ , n m

iY R ×∈  such that for all 

1,2, ,i s= …  

 1 1 2 20, 0T TP P P P= > + >  (29) 

 
3 3

1 3 3 2 2 3 3

0
( )

T T T T
i i i i

T T T
i i

A P P A Y C C Y

P P P A Y C P P P Pδ δ δ

+ − − ∗ 
< − + − + − + 

 (30) 

When the above conditions hold, the set of the observer gain matrices iJ  is given by the set of the 

equations 

 1
3( )T

i iJ P Y−=  (31) 

:Proof Using the equality (22), then with the identities 



284 Computer Science & Information Technology (CS & IT) 

 

 

  (32) 

an equivalent form of (22)can be written as 

  (33) 

or more generally 

  (34) 

where ( )e t°  is given in (25) and 

 
0 0

,
0 0

n nT
ei

ei n

I I
E E A

A I

° ° °
   

= = =   −   
 (35) 

Defining the Lyapunov function of the form 

 

 ( ( )) ( ) ( ) 0T Tv e t e t E P e t° ° ° ° °= >  (36) 

where 

 0T TE P P E° ° ° °= ≥  (37) 

then the derivative of (36) becomes 

  (38) 

Inserting (34) in (38) it yields 

  (39) 

 0 forallT T
ei eiP A A P i° ° ° °+ <  (40) 

respectively. Defining 

 
1 2

3 4

P P
P

P P

°
 

=  
 

 (41) 

then (35), (37) implies 

 1 1 0TP P= >  (42) 

and using (35) within (13) in (40) it yields 

 

 
1 2 1 3

3 4 2 4

0 ( ) 0
0

T T T
i i n

T T
n n i i n

A J C P P P P I

I I P P P P A J C I

−       
+ <       − − −       

 (43) 

 

After some algebraic manipulations (43) takes the following form 

 

 
3 3 4 1 3

1 3 4 2 2 4 4

( ) ( ) ( )
0

( )

T T T T T
i i i i i i

T T T
i i

A J C P P A J C A J C P P P

P P P A J C P P P P

− + − − + − 
< − + − + − − 

 (44) 
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Setting 

 4 3 3, T
i iP P Y P Jδ= =  (45) 

 

where 0δ > , Rδ ∈ , then (44) implies (30). This concludes the proof.    

Remark 1 

 

It is naturally to point out that Theorem 2 is an extension and generalization of Theorem 1, since 

setting 

 2 1 3 30, ,P P P P S= = =  (46) 

(29), (30) implies (19), (20), respectively. The extension of (30) reflects the Krasovskii theorem 

property [13] allowing either to consider (24) in the following form 

 

  (47) 

or, equivalently, to define the Lyapunov function in the proof of Theorem 2 as follows 

 

  (48) 

and, as initially, to apply (24) in the proof and, finally, to compare the obtained result with (29), 

(30) setting 

 

 1 3 3 2 2, ,P P S P S P= = =  (49) 

 

Corollary 1 

Considering 

 2 4 1 30, 0,P P P P= = =  (50) 

then (44) reduces to 

 
1 1( ) ( ) 0

0
0 0

T T
i i i iA J C P P A J C− + − 

≤ 
 

 (51) 

which implies 

 1 1( ) ( ) 0T T
i i i iA J C P P A J C− + − <  (52) 

It is obvious that with 

 1 1 1,T T
i i iP P P Y P J PJ= = = =  (53) 

(52) implies (8). 

These modifications give the possibility to achieve the degree of conservatism that is most 

appropriate for a TS system. 
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5. ILLUSTRATIVE EXAMPLE 
 
The considered system is represented by the TS fuzzy model (1), (2)  with s = 3 and the system 

model parameters 

 1 2

1.0522 1.8666 0.5102 1.0565 1.8661 0.5116

0.4380 5.4335 0.9205 , 0.4380 5.4359 0.9214

0.5522 0.1334 0.4898 0.5565 0.1339 0.4884

A A

− − − −   
   = − − = − −   
   − − − −   

 

 3

1.0602 1.8657 0.5133 3 1 1 0

0.4381 5.4353 0.9216 , 1 1 , 1 1

0.5602 0.1343 0.4867 3 0 0 1

TA B C

− −     
     

= − − = − =     
     − −     

 

where matrices iB  are the same for all i  and the premise variable and the membership functions 

for approximation of 1( ( ))f q t   in the prescribed sector are given as 

 

 

1 1 1

2 2 1

3 3 1

( ) ( ) if ( ) is about 5,

( ) ( ) , { ( ) if ( ) is about 0,

( ) ( ) if ( ) is about 5,

i

t t q t

t t t q t

t t q t

θ θ

θ θ θ θ

θ θ

  
 = =  
  −  

 1 2 2 2 1 1 3 3 3

1 1 1
( ( )) 1 | ( ) 5 |, ( ( )) 1 | ( ) |, ( ( )) 1 | ( ) 5 |

5 5 5
h t t h t t h t tθ θ θ θ θ θ= − − = − = − +  

Solving the variables P , iY , 1,2,3i =  satisfying (7), (8) via the LMI technique using toolbox 

SeDuMi [14] gave the following results 

 

 

0.6353 0.1200 0.0377

0.1200 0.2368 0.0521

0.0377 0.0521 0.6776

P

− − 
 = − 
 − 

 

 1 2 3

0.0969 0.1124 0.0992 0.1120 0.1002 0.1118

0.3185 0.1973 , 0.3173 0.1979 , 0.3170 0.1977

0.0101 0.1690 0.0089 0.1698 0.0082 0.1709

Y Y Y

− − − − − −     
     = − − = − − = − −     
          

 

and, besides, the fuzzy observer gain matrices were obtained as follows 

 

 1 2 3

0.4474 0.3634 0.4502 0.3632 0.4517 0.3627

1.5966 1.0859 , 1.5925 1.0888 , 1.5914 1.0881

0.1126 0.3127 0.1104 0.3140 0.1092 0.3157

J J J

− − − − − −     
     = − − = − − = − −     
          

 

guaranteeing the stable eigenvalues spectra of the local observer system matrices in such a way 

that 

 

 1 2( ) { 0.7560, 1.7011 1.1316i}, ( ) { 0.7575, 1.7029 1.1269i}e eA Aρ ρ= − − ± = − − ±  

 3( ) { 0.7599, 1.7034 1.1265i}eAρ = − − ±  

Applying the same toolbox to solve LMIs (19), (20) conditioned by 1δ = , the obtained set of 

matrix variables was as follows 



Computer Science & Information Technology (CS & IT)                                 287 

 

 

 3

0.6415 0.1152 0.0157 0.3577 0.0386 0.0348

0.1152 0.7158 0.0994 , 0.1063 0.1468 0.0100

0.0157 0.0994 0.7004 0.0595 0.0316 0.3587

P S

− − −   
   = − − = −   
   −   

 

 1 2 3

0.0188 0.0224 0.0191 0.0248 0.0227 0.0237

0.1142 0.0324 , 0.1155 0.0323 , 0.1138 0.0327

0.1452 0.1856 0.1465 0.1828 0.1458 0.183

 

3

 Y Y Y

− − −     
     

= − − = − − = − −     
     − − −     

 

so that the local observers gain matrices were given as 

 

 1 2 3

0.2067 0.1318 0.2097 0.1226 0.2171 0.1270

0.7449 0.3663 , 0.7543 0.3616 , 0.7449 0.3652

0.4039 0.5149 0.4076 0.5079 0.4067 0.5088

J J J

− − − − − −     
     

= − − = − − = − −     
     − − −     

 

This set of gains embedded the eigenvalues spectra of the local observer system matrices as 

follows 

 

 1 2( ) { 4.1633, 1.0047 0.0879i}, ( ) { 4.1600, 1.0016 0.0804i}e eA Aρ ρ= − − ± = − − ±  

 3( ) { 4.1703, 0.9967 0.0917i}eAρ = − − ±  

Finally, solving LMIs (29), (30) conditioned by 1δ = , a feasible solution produced the following 

LMI variables 

 

 1 3

1.0236 0.2562 0.0263 0.7114 0.1530 0.1444

0.2562 1.0633 0.1593 , 0.1842 0.2562 0.0228

0.0263 0.1593 1.1439 0.1177 0.1345 0.7273

P P

− −   
   

= − − = − −   
   − −   

 

 1 2 3

0.1798 0.0085 0.1816 0.0096 0.1833 0.0106

0.1937 0.0745 , 0.1938 0.0745 , 0.1937 0.0744

0.3158 0.1619 0.3186 0.1637 0.3210 0.1655

Y Y Y

− − −     
     = − − = − − = − −     
     − − −     

 

where, for simplicity, 2P  is not listed. This result provides TS fuzzy state observer with the 

following local gain matrices 

 

 1 2 3

0.5430 0.0672 0.5462 0.0653 0.5491 0.0635

0.8942 0.4476 , 0.8950 0.4475 , 0.8951 0.4470

0.3544 0.2220 0.3576 0.2241 0.3604 0.2262

J J J

− − − − − −     
     

= − − = − − = − −     
     − − −     

 

and with the eigenvalues spectra of the local observer system matrices 

 

 1 2( ) { 4.0034, 0.6547 0.1088i}, ( ) { 4.0056, 0.6553 0.1090i}e eA Aρ ρ= − − ± = − − ±  

 3( ) { 4.0060, 0.6557 0.1095i}eAρ = − − ±  

Applying the designed to the TS fuzzy system model with the initial condition 

 

 [ ](0) 0, ( ) 0, (0) 0.3 0.6 0.9T T T
eq u t q= = =  
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the simulation results are stated in Fig. 1 to Fig. 3 to illustrate the estimated output behaviour of 

the system sequentially as the observers parameters were computed using Lemma 1, Theorem 1 

and Theorem 2. It is evident that the best compromise in the settling time and overshooting gives 

the result of Theorem 2.   

 

Figure 1: TS fuzzy observer output variables response (based on Lemma 1 results) 

 

 
 

Figure 2: TS fuzzy observer output variables response (based on Theorem 1 results) 

 

 
Figure 3:  TS fuzzy observer output variables response (based on Lemma 2 results) 
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6. CONCLUDING REMARKS 

 
New approach for output dynamic feedback control design is presented in this paper. By the 

proposed procedure the control problem is parameterized in such LMIs set with one additional 

LME which admit more freedom in guaranteeing the output feedback control performance for a 

bi-proper dynamic controller and by LMIs set only for a strictly proper dynamic output controller. 

Sufficient conditions of the controller existence manipulating the stability of the closed-loop 

systems imply the control structure, which stabilize the system in the sense of Lyapunov and the 

controller design tasks is a solvable numerical problem. An additional benefit of the method is 

that controller uses minimum feedback information with respect to desired system output and the 

approach is enough flexible to allow the inclusion of additional design condition bounds. 
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