

David C. Wyld et al. (Eds) : COSIT, DMIN, SIGL, CYBI, NMCT, AIAPP - 2014

pp. 227–231, 2014. © CS & IT-CSCP 2014 DOI : 10.5121/csit.2014.4922

A BELIEF REVISION SYSTEM FOR LOGIC

PROGRAMS

Taher Ali
1
, Ziad Najem

2
, and Mohd Sapiyan

1

1
Department of Computer Science, Gulf University for Science and

Technology, Kuwait
ali.t@gust.edu.kw, sapiyan.m@gust.edu.kw

2
Department of Computer Science, Kuwait University, Kuwait

najem@cs.ku.edu.kw

ABSTRACT

Search is one of the most important needs of problem solvers. Usually the problem solvers

suffer from retracing conclusions. If a problem solver cached its inference, then it would not

need to retrace conclusions that it had already derived earlier in the search. By caching the

inferences, the problem solver avoid throwing away useful results and avoid wasting effort

rediscovering the same things over and over. In this paper we present a belief revision system

for logic programs that can work under the non-monotonic logic.

KEYWORDS

Applications of justification-based truth maintenance systems, Belief revision systems, Truth

maintenance systems, Justification-based truth maintenance systems, Incremental evaluation of

tabled Prolog, Incremental tabulation for Prolog queries, Tabulation for logic programs,

Memoing for logic programs.

1. INTRODUCTION

Truth Maintenance Systems [1], or Tms, are used within Problem Solving Systems [2], in

conjunction with Inference Engines (IE) such as rule-based inference systems like Prolog (SWI-

Prolog [3], Gnu-Prolog [4], B-Prolog [5], XSB [6], Ciao [7] and SICStus-Prolog [8]), to manage

the inference engine’s beliefs in given sentences as a Dependency Network. Figure 1 gives an an

overview of Problem Solving Systems that uses Tms along with IE. A Tms is a knowledge

representation method for representing both beliefs and their dependencies. A Tms is intended to

satisfy a number of goals. One of these goals is the ability to remember derivations computed

previously. It may happen that the same question is being asked from the problem solver over and

over. If the previous knowledge is not cached when the question was answered for the first time,

then the IE needs to re-compute the knowledge again and again. But if the previous knowledge

was in the knowledge base, then there is no need for retracing the same knowledge. The use of

Tms can avoid such retracing.

228 Computer Science & Information Technology (CS & IT)

Jtms is the simplest type of Tms where one can examine the consequences of the current set of

assumptions. Jtms is a domain-independent belief revision system [9] which is usually coupled

with an inference engine that does the actual inference work. Jtms operates on propositional

objects and is used to record and maintain dependencies between deductive inferences. This can

be done by representing deductive dependencies as a Jtms network.

Figure 1: An overview of Problem Solving Systems

2. JTMS NODES AND JUSTIFICATIONS

The basic Jtms specification can be given in terms of two sets: the set of enabled assumptions

(domain propositions) and the set of justifications. Propositions of the domain are mapped into

nodes where each node is labeled either IN or OUT depending on whether or not it is currently

assumed. Nodes corresponding to propositions that the system currently believes in are labeled IN

while currently disbelieved propositions are labeled OUT. A node is labeled OUT by default but

Jtms may label a node as IN in exactly two cases: either by a request from the inference engine or

if there exists an active justification that supports the node.

In order to form a Jtms network the nodes are linked by justifications. A justification is a structure

that is responsible for recording a single inference. A justification has two sets of nodes, the in

-list and the out - list as its antecedent and a single node as its consequent. A justification is said

to support its consequent node. Note that it is possible to have multiple justifications supporting

the same node. An active justification is a justification where all the nodes in the in - list are

labeled IN and all the nodes in out -list are labeled OUT. The consequent node of an active

justification will be labeled IN while the consequent node of an inactive justification will be

labeled OUT unless it has another active justification supporting it.

3. JTMS AND NON-MONOTONIC LOGIC

Search is one of the most important needs of problem solvers. Usually the problem solvers suffer

from retracing conclusions. If a problem solver cached its inference, then it would not need to

retrace conclusions that it had already derived earlier in the search. By caching the inferences, the

problem solver avoid throwing away useful results and avoid wasting effort rediscovering the

same things over and over. One of the Jtms goals, inherited from the Tms, is that Jtms is able to

remember derivations computed previously. Jtms can do this by caching the inferences. This

effort of Jtms can help in implementing incremental tabling[10] features for Prolog that will work

with non-monotonic logic [11, 12] programs. The idea is that instead of remembering the end

results as traditional memoing implementations does, the Prolog inference engine caches its

inferences by the help of Jtms. By caching the inferences, Jtms will reflect any change in data

through its network to keep the inferences updated. The responsibility of Jtms is answering

queries correctly with respect to the contents of Jtms nodes and justifications at the moment the

query is made.

Computer Science & Information Technology (CS & IT) 229

Example 1

Figure 2 shows an example of an Sldnf-resolution [13] . The Sld-derivation [14] tree is for the

query ?-bachelor(X) with respect to the Prolog program of Figure 2. There are two branches in

the main proof structure with only one being successful. The only answer generated for the query

?-bachelor(X) is coming from the second branch. Figure 3 shows

Figure 2: An example of Sldnf-dervation tree.

Figure 3: Jtms network for proof tree of Figure 2

an example of a justification network for the proof tree in Figure 2. Nodes are shown by printing

their corresponding domain atoms. Justifications are shown as circles. The antecedents of a

justification are identified by arrows pointing towards the justification while the consequent is

pointing away from the justification. A negative literal in the antecedent (i.e. a member of the

justifications out - list) is identified by placing a : sign on top of the arrow pointing to the

justification. Figure 3 also shows the current labeling of the nodes. Labels that are printed in bold

are specified by the inference engine while the

230 Computer Science & Information Technology (CS & IT)

rest are assigned by the Jtms. Note that Jtms network of Figure 3 has two justifications that

correspond to the two proof branches of Figure 2 proof tree, whether or not the proof branch was

successful. This will allow the Jtms network to reflect any changes in data. (i.e. the query results

are always correct and updated).

Coming back to the example of Figure 3, consider that married(maher) is asserted to the database

of Prolog facts in Figure 2. Jtms reflect this change through it’s network in order to keep the

network updated. Jtms is capable of updating (revising) its belief bachelor(maher) without

invoking the inference engine by propagating the changed value through the network. The

resultant network is shown in Figure 4.

Figure 4: Jtms network of Figure 3 after asserting married(maher) to the database of

Prolog facts in Figure 2.

4. CONCLUSION

The main idea of our approach presented in this papaer is to cache the proof generated by the

deductive inference engine. The proof structure is converted into a justification based truth-

maintenance (Jtms) network. Jtms saves the dependency between deduced facts and the facts used

to make the deduction in order to be able to efficiently cache the proof structure. The system

translates every successful branch of a query into a Jtms network that links the facts and the rule

used in the branch to the answer generated by that branch. A justification is installed for each

complete branch of the SLD-tree. When a query is re-evaluated, the system returns the answers of

the query by collecting the IN consequences of each query’s Jtms justification.When changes in

database of facts take place, the system propagtes the effect of the changes through the Jtms

network to ensure that the proof structure is both correct and complete.

REFERENCES

[1] Jon Doyle. A truth maintenance system. Artif. Intell., 12(3):231–272, 1979.

[2] Kenneth D. Forbus and Johan de Kleer. Building problem solvers. MIT Press, Cambridge,MA, USA,

1993.

[3] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-Prolog. Theoryand

Practice of Logic Programming, 12(1-2):67–96, 2012.

[4] Daniel Diaz, Salvador Abreu, and Philippe Codognet. On the implementation of gnu prolog.TPLP,

12(1-2):253–282, 2012.

Computer Science & Information Technology (CS & IT) 231

[5] Neng-fa Zhou. The language features and architecture of b-prolog. Theory Pract. Log. Program.,12(1-

2):189–218, January 2012.

[6] Konstantinos F. Sagonas, Terrance Swift, and David Scott Warren. The xsb programming system. In

Workshop on Programming with Logic Databases (Informal Proceedings), ILPS,page 164, 1993.

[7] Manuel V. Hermenegildo, Francisco Bueno, Manuel Carro, Pedro López-García, Edison Mera,José F.

Morales, and German Puebla. An overview of ciao and its design philosophy. CoRR,abs/1102.5497,

2011.

[8] Mats Carlsson and Per Mildner. Sicstus prolog – the first 25 years. CoRR, abs/1011.5640,2010.

[9] Stuart C. Shapiro. Belief revision and truth maintenance systems: An overview and a

proposal.Technical report, 1998.

[10] Diptikalyan Saha. Incremental evaluation of tabled logic programs. PhD thesis, Stony Brook,NY,

USA, 2006. AAI3258884.

[11] Guido Boella and Leendert W. N. van der Torre. A non-monotonic logic for specifying and querying

preferences. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI, pages 1549–1550.

Professional Book Center, 2005.

[12] Drew McDermott. Nonmonotonic logic ii: Nonmonotonic modal theories. J. ACM, 29(1):33–57,

January 1982.

[13] David H. D. Warren. An abstract prolog instruction set. Technical Report 309, AI Center,SRI

International, 333 Ravenswood Ave., Menlo Park, CA 94025, Oct 1983.

[14] Stefan Brass. Magic sets vs. sld-resolution. In Johann Eder and Leonid A. Kalinichenko, editors,

ADBIS, Workshops in Computing, pages 185–203. Springer, 1995.

AUTHORS

Tahir M. Ali received his BSc and Ms from Kuwait University and PhD from University

of Malaya. He is currently an Assistant Professor of Computer Science in G ulf University

for Science and Technology, and also serving as the IT director. His main research interest

is in field of Artificial Intelligence (AI), in particular, logic programming and scheduling

algorithms.

Ziad H. Najem received his BSc from Kuwait University and Ms and PhD from

University of Illinois at Urbana-Champaign. Prior to joining the Department of Computer

Science at Kuwait University in 1999, Dr. Najem worked as a Scientific Resear cher at

Kuwait Institute

for Scientific Research.

Mohd Sapiyan Baba is currently a Professor of Computer Science in Gulf University for

Science and Technology, Kuwait. He was a lecturer in University of Malaya for more

than 30 years, teaching Mathematics and Computer Science courses, and supervised

numerous students for their research projects at undergraduate and postgraduate levels.

His main research interest is in field of Artificial Intelligence (AI), in particular, the

application of AI in Education

