

Jan Zizka et al. (Eds) : CCSEIT, MoWiN, IT, AIAP, ICBB - 2015

pp. 37–48, 2015. © CS & IT-CSCP 2015 DOI : 10.5121/csit.2015.51105

PERFORMANCE OF THE MAXIMUM

STABLE CONNECTED DOMINATING SETS

IN THE PRESENCE OF STATIC NODES IN A

MOBILE ADHOC NETWORK

Natarajan Meghanathan

Jackson State University, 1400 Lynch St, Jackson, MS, USA

ABSTRACT

The topology of mobile ad hoc networks (MANETs) change dynamically with time. Connected

dominating sets (CDS) are considered to be an effective topology for network-wide broadcasts

in MANETs as only the nodes that are part of the CDS need to broadcast the message and the

rest of the nodes merely receive the message. However, with node mobility, a CDS does not exist

for the entire duration of the network session and has to be regularly refreshed (CDS

transition). In an earlier work, we had proposed a benchmarking algorithm to determine a

sequence of CDSs (Maximum Stable CDS) such that the number of transitions is the global

minimum. In this research, we study the performance (CDS Lifetime and CDS Node Size) of the

Maximum Stable CDS when a certain fraction of the nodes in the network are static and

compare the performance with that of the degree-based CDSs. We observe the lifetime of the

Maximum Stable CDS to only moderately increase (by a factor of 2.3) as we increase the

percentage of the static nodes in the network; on the other hand, the lifetime of the degree-based

CDS increases significantly (as large as 13 times) as we increase the percentage of static nodes

from 0 to 80.

KEYWORDS

Mobile Ad hoc Networks, Connected Dominating Set, Stability, Degree, Simulations

1. INTRODUCTION

A mobile ad hoc network (MANET) is a dynamic distributed system of wireless nodes that move

arbitrarily with time [1]. The wireless nodes operate in a limited transmission range and are

battery-charged. Two nodes can communicate directly only if they are within the transmission

range of each other. Hence, communication between any two nodes in a MANET is typically

through one or more intermediate nodes (multi-hop paths). Several communication protocols

have been proposed for unicast [2-3], multicast [4-5] and broadcast [6-7] communication in

MANETs. In this paper, we focus on broadcast communication in MANETs. Specifically, our

focus is on connected dominating sets (CDS), typically considered the graph-theoretic equivalent

for a communication topology that can facilitate network-wide broadcasts. A CDS is a subset of

the nodes in the network such that every node in the network is either in the CDS or is a neighbor

(i.e., has a wireless link) of a node in the CDS.

Broadcasts are considered to be resource-intensive operations in terms of both energy

consumption at the nodes as well as the volume of traffic generated due to redundant

retransmissions. If each node in the network broadcasts the message exactly once in its

38 Computer Science & Information Technology (CS & IT)

neighborhood, then every node receives a copy of the message from each of its neighbors

(referred to as flooding). Though flooding guarantees that the broadcast message reaches every

node in the network, each node loses energy to receive message broadcast by each of its

neighbors (in addition to the energy lost at each node to transmit/ broadcast the message once in

its neighborhood). It is not required for every node in the network to broadcast the message in its

neighborhood. Instead, if we use a CDS like communication topology for broadcast, then it would

be sufficient if only the constituent nodes of the CDS broadcast (retransmit) and the rest of the

nodes only spend energy to merely receive the message. The lower the number of nodes

constituting the CDS (referred to as CDS Node Size), the lower the number of retransmissions.

Unfortunately, the problem of determining a minimum node size CDS is NP-hard [8]. Several

heuristics have been proposed to determine CDSs with approximation ratios for the CDS Node

Size as low as possible. A common thread among all of these heuristics is to give preference to

include nodes that have a larger degree as part of the CDS so that the CDS Node Size is as low as

possible. Apparently, nodes with a larger degree (larger number of neighbors) were the preferred

candidates for inclusion to the CDS.

In [9], we observed that the degree-based heuristics are quite unstable in the presence of node

mobility in MANETs. We had then proposed a benchmarking algorithm to determine a sequence

of connected dominating sets over the duration of a network session such that the number CDS

transitions is the global minimum. Referred to as the Maximum Stable CDS algorithm, the

benchmarking algorithm assumes the entire sequence of future topology changes is known a

priori and determines a sequence of long-living stable CDSs as follows: Whenever a CDS is

required at time instant t, we determine a connected graph of the network (called a mobile graph)

whose constituent edges exist for the longest possible time starting from time instant t; we then

simply run a CDS algorithm/heuristic on the mobile graph and use the CDS for the duration of the

mobile graph and repeat the above procedure for the entire network session. The algorithm can be

used to arrive at a sequence of long-living stable CDSs such that the number of transitions (from

one CDS to another) during a network session is the global minimum and the average CDS

lifetime is the global maximum (benchmarks).

As in many MANET simulation studies, the performance comparison of the Maximum Stable

CDS proposed in [9] vis-a-vis the degree-based CDS was only conducted when all the nodes in

the network are mobile and not conducted when a certain percentage of the nodes in the network

are static. This formed the motivation for our research in this paper. Our hypothesis is that the

stability of the degree-based CDS would significantly increase with increase in the percentage of

static nodes in the network (compared to the CDS lifetime incurred when all nodes were mobile)

as there are good chances that an appreciable fraction of the static nodes are also part of the

degree-based CDS and contribute towards its stability and cover the non-CDS nodes that could be

mobile; on the other hand, the lifetime of the Maximum Stable CDS would only marginally

increase, as it would be difficult to find a connected mobile graph that exists for a longer time

even in the presence of a certain fraction of static nodes.

The rest of the paper is organized as follows: Section 2 presents a heuristic to determine degree-

based CDS and evaluates its run-time complexity. Section 3 presents the Maximum Stable CDS

algorithm to determine a sequence of stable CDSs, explains its proof of correctness and illustrates

its working with an example. Section 4 presents the simulation results evaluating the lifetime and

node size of the Maximum Stable CDS vis-a-vis the degree-based CDS under an extensive set of

mobility scenarios varying the maximum node velocity and the percentage of static nodes for

each level of node mobility. Section 5 differentiates our work from related work. Section 6

concludes the paper. Throughout the paper, the terms 'node' and 'vertex', 'link' and 'edge' are used

interchangeably. They mean the same.

Computer Science & Information Technology (CS & IT) 39

2. HEURISTIC FOR DEGREE-BASED CONNECTED DOMINATING SET

In this section, we first describe a heuristic that could be used to determine the CDS for a network

graph based on the degree (the number of neighbors of a vertex) in the graph. We then illustrate

examples to show the execution of the CDS construction heuristic. We finally describe an

algorithm that can be used to validate the existence of a CDS at any time instant.

2.1. Generic Heuristic to Determine a CDS

The overall idea is to give preference (for inclusion to the CDS) for vertices that have a larger

degree. As indicated in the pseudo code of Figure 1, we maintain three lists: CDS Node List -

vertices that are part of the CDS; Uncovered Node List - vertices that are yet to be covered by a

node in the CDS Node List; Candidate Node List - vertices that are covered by a node in the CDS

Node List, but not yet considered for inclusion to the CDS Node List. Initially, the CDS Node

List is empty and the Uncovered Node List is the set of all the vertices in the graph; to start with,

the Candidate Node List has a single entry corresponding to the vertex that has the largest degree.

The Candidate Node List is implemented as a priority queue and the vertices in the Candidate

Node List are stored in the decreasing order of their degree (the vertex with the largest degree is

the first vertex to be removed from this list). In each iteration, we remove a vertex from the

Candidate Node List and if it has one or more uncovered neighbor nodes, then the vertex is added

to the CDS Node List and the newly covered neighbor nodes are removed from the Uncovered

Node List and included in the Candidate Node List. If a vertex removed from the Candidate Node

List has no uncovered neighbors, then the vertex is not included in the CDS Node List. We repeat

the above procedure until the Uncovered Node List gets empty or there are no more vertices in

the Candidate Node List. If the Candidate Node List gets empty while the Uncovered Node List is

not yet empty, then it implies the underlying graph is not connected (i.e., all the vertices are not in

one component). If the underlying graph is connected, the iterations stop when there are no more

vertices in the Uncovered Node List (this implies, all the vertices in the graph are covered by at

least one node in the CDS Node List).

--
Input: Graph G = (V, E); Degree Score Vector D(V) for all the vertices

Output: CDS Node List

Initialization: CDS Node List = ϕ; ∀ x∈V, Uncovered Node List = {x; D(x)}

 Candidate Node List = {s; D(s)} where s ∈V and D(s) =)}({ iDMax
Vi∈

Begin CDS Construction

 while (Candidate Node List ≠ ϕ AND Uncovered Node List ≠ ϕ) do

 Vertex candidateNode = Dequeue(Candidate Node List)

 uncoveredNodes = {x | x ∈Neighbors(candidateNode) AND

 x ∈Uncovered Node List}

 if (uncoveredNodes ≠ ϕ) then

 CDS Node List = CDS Node List ∪ {candidateNode}

 ∀ x ∈ uncoveredNodes,

 Uncovered Node List = Uncovered Node List - {x; D(x)}

 Candidate Node List = Candidate Node List ∪ {x; D(x)}

 end if

 end while

 if (Uncovered Node List = ϕ) then

 return CDS Node List

 end if

End CDS Construction

--
Figure 1. Pseudo Code for a CDS Construction Heuristic based on Node Degree

40 Computer Science & Information Technology (CS & IT)

Note that the degree score for a node is determined offline (prior to the execution of the heuristic)

and is not updated during the execution of the heuristic. In other words, the ordering of the nodes

in the Candidate Node List in each iteration is based on the initial (static) degree values input to

the heuristic. Thus, for example, if two nodes u and v with degree scores of 4 and 6 respectively

are in the Candidate Node List, but node v has only two uncovered neighbors whereas node u has

three uncovered neighbors, node v with a relatively larger degree score would still be ahead of

node u in the Candidate Node List.

The time complexity for the CDS construction heuristic is O(VlogV + ElogV), where V and E are

respectively the number of vertices and edges in the network graph; O(logV) is the time

complexity for a dequeue operation in a priority queue (Candidate Node List) maintained as a

Max-Heap [8] as well as the time complexity to include a vertex in the Candidate Node List by

visiting the neighbors of the vertex that is added to the CDS Node List. We could run the while

loop at most V times, once for each vertex, and across all such iterations, the entire set of edges

are traversed and the end vertices of the edges are considered for inclusion to the Candidate Node

List. Hence, the overall time complexity of the generic heuristic to construct a degree-based CDS

is O((V+E) logV).

2.2. Example to Construct Degree-based CDS

In this section, we show the execution of the degree heuristic on a sample network graph. For

each vertex in Figure 2, the ID is indicated inside the circle and the degree of the vertex is

indicated outside the circle. The last graph in each of these figures is a CDS graph comprising of

only edges between two CDS nodes (indicated as solid lines) and edges between a non-CDS node

and a CDS node (indicated as dotted lines).

Figure 2. Example to Illustrate the Construction of a Degree-based CDS

Figure 2 illustrates the execution of the heuristic to determine degree-based CDS: in iteration 3,

even though vertices 3 and 7 have the same larger degree (3), vertex 3 is not considered for

inclusion to the CDS because all of its three neighbors are already covered (i.e., none of the

neighbors of vertex 3 are in the Uncovered Node List); on the other hand vertex 7 has one

uncovered neighbor and is hence included to the CDS Node List. The sequence of vertices

included in the Degree-based CDS are 2, 4, 7 and 6. One significant observation could be made in

the toy example shown in Figure 2: Vertex 3 with a relatively higher degree (3) is connected to

two high-degree vertices (vertices 2 and 7), but does not contribute much in terms of covering

nodes that are yet in the Uncovered Nodes List once vertices 2 and 7 get into the CDS Node List.

Thus, vertex 3 is a highly enclosed vertex that is not exposed much to vertices outside its own

Computer Science & Information Technology (CS & IT) 41

community. On the other hand, even if vertex 2 gets into the CDS Node List, vertex 7 could also

get into the CDS Node List, because they are connected to two different vertices/communities

(vertices 8 and 6) that only either of them could cover, but not both.

2.3. Algorithm to Validate the Existence of a CDS

We now present the algorithm that we use to validate the existence of a CDS at any time instant.

This algorithm would be very useful in discrete-event simulations when we tend to use a CDS

that existed at an earlier time instant (say, t-1) at a later time instant (t). That is, given a CDS

Node List that was connected (i.e., the CDS nodes are reachable from one another directly or

through one or more intermediate CDS nodes) and covered the non-CDS nodes in the network

graph at time instant t-1, we want to validate whether the same holds true at time instant t. We do

so by first constructing a CDS graph based on the CDS Node List at time instant t. All the

vertices in the network are part of the CDS graph and the edges in the CDS graph are those that

exist between any two CDS nodes as well as between a CDS node and a non-CDS node at time

instant t. We check if the CDS Node List is connected at time instant t by running the Breadth

First Search (BFS) [8] algorithm, starting from an arbitrarily chosen CDS node and see if every

other CDS node could be reached as part of the BFS traversal only on the CDS-CDS edges. If all

the CDS nodes could be visited, the CDS Node List is considered to be connected. We then check

whether every non-CDS node has an edge to at least one CDS node at time t. If both the

validations (connectivity of the CDS Node List and coverage of every non-CDS node by at least

one CDS node) are true, then we consider the CDS to exist at time instant t.

3. BENCHMARKING ALGORITHM FOR MAXIMUM STABILITY CDS

In this section, we describe a benchmarking algorithm [9] proposed to determine a sequence of

longest-living connected dominating sets for MANETs such that the number of transitions is the

global minimum and the average lifetime of the CDS is the maximum. We refer to the algorithm

as the Maximum Stable CDS algorithm; it works on the basis of graph intersections and assumes

the availability of information about topology changes for the entire duration of the network

session. The algorithm introduces the notion of a mobile graph G(t,, t+k) = G(t) ∩ G(t+1)

∩ G(t+2) ∩ ... ∩ G(t+k), wherein G(t), G(t+1), G(t+2), ..., G(t+k) are static graphs (snapshots)

of the network at time instants t, t+1, t+2, ..., t+k respectively. A mobile graph G(t,, t+k) is thus

a graph that essentially captures the vertices and edges that exist in the network for all the time

instants t, t+1, t+2, ..., t+k. The Maximum Stable CDS algorithm works as follows: Whenever a

CDS is required at time instant t, we determine a mobile graph G(t,, t+k) such that G(t,, t+k)

is connected and G(t, ..., t+k+1) is not connected. We determine a CDS on such a longest-living

connected mobile graph G(t,, t+k) and repeat the above procedure for the duration of the

network session to obtain a sequence of longest-living CDSs such that the number of transitions

needed to change from one CDS to another is the optimum (minimum). We say the optimum

number of transitions incurred is the global minimum because the algorithm assumes the

knowledge of the entire topology changes and always chooses the longest-living mobile graph

since the time instant starting from which a CDS is needed. Later, we also prove that the number

of transitions accomplished by any other CDS construction algorithm cannot be below the value

obtained for the Maximum Stable CDS algorithm. Accordingly, the average of the lifetimes of the

longest-living connected dominating sets in the sequence determined by the Maximum Stable

CDS algorithm for the duration of the network session is the global maximum and can serve as a

benchmark to compare the average lifetime incurred with any other sequence of connected

dominating sets (like the degree-based CDSs) under identical conditions.

As seen in the pseudo code for the Maximum Stable CDS algorithm (Figure 3), it does not matter

what CDS construction heuristic we use to determine a CDS in each of the longest-living mobile

42 Computer Science & Information Technology (CS & IT)

graphs G(i, ..., j), because the CDS would not exist in the mobile graph G(i, ..., j+1) as the latter

would not be a connected graph. In this research, we determine the connected dominating sets in

the longest-living mobile graph G(i, ..., j) based on the degree of the vertices in the mobile graph

G(i, ..., j). The average lifetime of the Maximum Stable CDS would not be affected because of

this; however, the size of the Maximum Stable CDS is likely to be affected. As degree-based

CDSs are likely to incur a lower CDS Node Size, it would be only appropriate to determine the

connected dominating sets in each of the longest-living mobile graphs G(i, ..., j) using the degree

of the vertices in the mobile graph so that the Maximum Stable CDS would incur a lower CDS

Node Size and at the same time incur the maximum lifetime. The time complexity of the

Maximum Stable CDS algorithm depends on the time complexity of the underlying heuristic used

to determine the CDSs in each of the mobile graphs. As one can see in the pseudo code (Figure

3), there could be at most T mobile graphs (where T is the number of static graph snapshots,

number of graph samples) on which a CDS heuristic needs to be run; if we use a Θ(V2) heuristic

to determine degree-based CDSs, then the overall time complexity of the Maximum Stable CDS

algorithm is O(V2
T).

--
Input: Static graphs G1, G2, ..., GT, where T is the duration of the network session

Output: Maximum Stable CDS

Auxiliary Variables: i, j

Initialization: Maximum Stable CDS = ϕ; i = 1; j = 1

Begin Maximum Stable CDS Construction

 while (i ≤ T) do

 while G(i, ..., j) is connected AND j ≤ T do

 j ← j + 1

 end while
 if (i < j) then

 j ← j - 1

 Maximum Stable CDS = Maximum Stable CDS ∪ {CDS in G(i, ..., j) }

 i ← j + 1

 end if

 else

 i ← i + 1

 end else

 j ← i

 end while

return Maximum Stable CDS

End Maximum Stable CDS Construction

--

Figure 3. Pseudo Code for the Benchmarking Algorithm to Determine Maximum Stable CDS

3.1. Proof of Correctness

We now present an informal proof of correctness of the Maximum Stable CDS algorithm. For a

more formal proof, the interested reader is referred to [9]. To prove that the Maximum Stable

CDS algorithm finds a sequence of long-living CDSs that incur the minimum number of

transitions (say m), assume the contrary - i.e., there exists a hypothetical algorithm that

determines a sequence of CDSs that undergo n transitions such that n < m. We will now explore

whether this is possible. For n < m to exist, there has to be an epoch of time instants [p, ..., s] that

is a superset of an epoch of time instants [q, .., r] such that p < q < r < s and that the hypothetical

algorithm was able to find a CDS that existed during time instants [p, ..., s], but the Maximum

Stable CDS algorithm can only find a CDS that existed during time instants [q, ..., r] and had to

Computer Science & Information Technology (CS & IT) 43

go a transition at time instant r + 1. This implies the Maximum Stable CDS algorithm could not

find a connected mobile graph G(q, ..., r+1) and could only find a connected mobile graph G(q,

..., r). This means there existed no connected mobile graph from time instants [q, ..., s] and hence

there is no connected mobile graph from time instants [p, ..., s]. If that is the case, it would not be

possible to find a CDS that exists from time instants [p, ..., s]; thus, the sequence of connected

dominating sets determined by the hypothetical algorithm has to undergo at least as many

transitions as those determined by the Maximum Stable CDS algorithm, which is a contradiction

to our initial assumption that n < m. Hence, the number of transitions (m) incurred by the

sequence of long-living CDSs determined by the Maximum Stable CDS algorithm serves as a

lower bound for the number of transitions (n) incurred by any other algorithm/heuristic to

determine a sequence of CDSs.

Figure 4. Example to Illustrate the Execution of the Maximum Stable CDS Benchmarking Algorithm and a

Comparison of Maximum Stable CDS vs. Degree-based CDS

3.2. Example

Figure 4 presents an example to illustrate the execution of the Maximum Stable CDS algorithm

on a sequence of five static graphs G1, ..., G5 and a comparison of the number of transitions

(changes from one CDS to another) and CDS Node Size incurred for Maximum Stable CDS vis-

a-vis a degree-based CDS on the same sequence of static graphs. We see that there exists a

connected mobile graph G(1, 2, 3) and a connected mobile graph G(4, 5). Hence, it would suffice

to use one CDS determined on the mobile graph G(1, 2, 3) and another CDS determined on the

mobile graph G(4, 5) - resulting in only one CDS transition across the five static graphs. On the

44 Computer Science & Information Technology (CS & IT)

other hand, the degree-based CDS determined on an individual static graph does not exist in the

subsequent static graph. Hence, we end up determining a new degree-based CDS on each of the

five static graphs - resulting in a total of four CDS transitions across the five static graphs. In

Figure 4, we use a degree-based heuristic to determine a CDS on each of the two mobile graphs.

We do observe a tradeoff between CDS Node Size and the number of CDS transitions. The

average CDS Node Size incurred for the Maximum Stable CDS is (3*5 + 2*7) / 5 = 5.8, whereas

the average CDS Node Size incurred for degree-based CDS is (3*4 + 2*5) / 5 = 4.4. The mobile

graphs G(1, 2, 3) and G(4, 5) have relatively fewer links than the individual static graphs. Hence,

it is not possible to cover a larger number of nodes with the inclusion of few nodes in the CDS.

As a result, the Maximum Stable CDS incurs a relatively larger CDS Node Size compared to that

of the degree-based CDS.

4. SIMULATIONS

We conducted the simulations in a discrete-event simulator implemented in Java. We assume a

network of dimensions 1000m x 1000m; the number of nodes is fixed as 100 and the transmission

range of the nodes is fixed at 250m; for these values, on average, there are

π*250*250*100/(1000*1000) = 20 neighbors per node. The overall connectivity of the network

for the above conditions is observed to be more than 99.5%. Initially, the nodes are uniform-

randomly distributed throughout the network. The number of static nodes in the network is varied

with values of 0, 20, 40, 60 and 80. Since the total number of nodes in the network is 100, the

above values for the number of static nodes also represent the percentage of static nodes in the

network. A node designated to be static in the beginning of the simulation does not move at all for

the duration of the simulation; likewise, a node designated as mobile - keeps moving for the entire

simulation.

The node mobility model used is the Random Waypoint Model [10], wherein the maximum

velocity of each mobile node is vmax and it is varied with values of 5 m/s (low mobility), 25 m/s

(moderate mobility) and 50 m/s (high mobility). According to the Random Waypoint Model, each

mobile node starts from its initial location and chooses to move to an arbitrary location (located

within the network boundaries) with a velocity that is uniform-randomly selected from the range

[0, ..., vmax]; after moving to the chosen location, the node chooses another arbitrary location

(within the network) and moves to the chosen location with a new velocity that is uniform-

randomly chosen from the range [0, ..., vmax]. In other words, a node moves in a straight line from

one location to another chosen location with a particular velocity and after reaching the targeted

location, the node chooses another target location to move with a velocity that could be different

from the one used before. A mobile node moves like this for the duration of the simulation

session and generates a mobility profile for a particular combination of values for the number of

static nodes and maximum node velocity. The collection of the mobility profiles of all the nodes

is stored in a mobility profile file and is feed in to the heuristic/algorithm for determining a

degree-based CDS and the Maximum Stable CDS. We generate 100 such mobility profile files for

each of the combinations of the values for the number of static nodes (0, 20, 40, 60 and 80) and

the maximum node velocity (5 m/s, 25 m/s and 50 m/s). The decision of whether a node will be

static or mobile is made prior to creating each of the mobility profile files.

We run the simulations for each mobility profile file and average the results observed for the CDS

Lifetime and CDS Node Size for the degree-based CDS as well as the Maximum Stable CDS. We

start the simulations at time 0 sec (based on the initial distribution of the nodes in a particular

mobility profile file) and run the simulations for a period of 1000 seconds, sampling the network

for every 0.25 seconds of the simulation. We take a snapshot of the network at each of these

sampling time instants (referred to as the static graphs). We use the following approach to run the

simulations for the degree-CDS: Whenever a CDS is needed at a particular time instant t, we

Computer Science & Information Technology (CS & IT) 45

determine the degree scores of the nodes based on the static graph snapshot of the network at time

instant t and feed in these scores to the CDS construction heuristic (described in Section 2.1). The

CDS determined at time instant t is used for the subsequent sampling time instants as long as it

exists (validated using the algorithm presented in Section 2.3). When the currently known CDS is

observed to no longer exist at a particular time instant, we repeat the above procedure. We

continue like this for the duration of the simulation and measure the lifetime and node size for the

sequence of degree-based connected dominating sets used for the particular mobility profile file.

We average the results for these two metrics (Figures 5-7) observed for all the mobility profile

files generated for a particular combination of values for the number of static nodes and vmax. In

the case of the Maximum Stable CDS algorithm, for a particular simulation run under a mobility

profile file, we determine a sequence of connected mobile graphs for the duration of the

simulation session and run the degree-based CDS construction heuristic to determine a sequence

of connected dominating sets. We repeat this procedure for all the mobility profile files generated

and determine the average of the lifetime and node size for the sequence of Maximum Stable

CDSs for the particular combination of values of the number of static nodes and vmax.

As expected, the Maximum Stable CDS incurred a larger CDS lifetime compared to that of the

degree-based CDS. However, for any given level of node mobility (vmax), the difference in the

CDS lifetimes between the Maximum Stable CDS and degree-based CDS significantly decreases

with increase in the percentage of static nodes in the network. For vmax = 5 m/s, the ratio of the

lifetime of the Maximum Stable CDS to that of the degree-based CDS decreases from a factor of

about 10 to 2.5 as we increase the percentage of static nodes from 0 to 80. As the value of vmax

increases, the reduction in the difference is even more prominent. For vmax = 25 m/s, the ratio of

the lifetime of the Maximum Stable CDS to that of the degree-based CDS decreases from a factor

of about 7.5 to 1.8; and for vmax = 50 m/s, the ratio of the lifetimes decreases from a factor of

about 7 to 1.4. Thus, the lifetime of degree-based CDS becomes very comparable to that of the

Maximum Stable CDS when 80% of the nodes in the network are static and only 20% are mobile.

In general, when more than half of the nodes in the network are static, the lifetime of the degree-

based CDS starts to swiftly approach the lifetime of the Maximum Stable CDS. Thus, as

predicted in our hypothesis, the presence of static nodes in the network has a very positive effect

on the stability of the degree-based CDSs, but only a marginal effect on the lifetime of the

Maximum Stable CDS.

Figure 5. Average CDS Lifetime and Average CDS Node Size: Maximum Node Velocity, vmax = 5 m/s

Figure 6. Average CDS Lifetime and Average CDS Node Size: Maximum Node Velocity, vmax = 25 m/s

46 Computer Science & Information Technology (CS & IT)

Figure 7. Average CDS Lifetime and Average CDS Node Size: Maximum Node Velocity, vmax = 50 m/s

The lifetime of the degree-based CDSs increases by a factor of 5 to 13 as we increase the

percentage of static nodes from 0 to 80; the increase is substantial with increase in the level of

node mobility. At vmax = 5 m/s, the increase in the lifetime of the degree-based CDSs is by a factor

of 5 as we increase the percentage of static nodes from 0 to 80; however at vmax = 25 m/s and 50

m/s, the lifetime of the degree-based CDSs increases by a factor of 10 to 13. At the same time, the

node size for the degree-based CDSs remains slightly high when the percentage of static nodes is

low (0, 20 or 40) and then again decreases by a factor of at most 20% when the percentage of

static nodes increases to 60 and 80. Thus, we observe the presence of static nodes in the network

to significantly increase the lifetime and even marginally reduce the node size for the degree-

based CDSs, thereby reducing the stability-tradeoff appreciably. We observe the lifetime of the

Maximum Stable CDS to increase at most by a factor of 2.3 with increase in the percentage of

static nodes. Like it was observed for the degree-based CDSs, the increase is only about 40%

when vmax = 5 m/s and is higher for vmax = 25 m/s and 50 m/s; similarly, the node size for the

Maximum Stable CDSs decreases by about 20% with increase in the percentage of static nodes.

We observe the node size for the Maximum Stable CDS to converge towards the node size of the

degree-based CDS with increase in the percentage of the static nodes.

5. RELATED WORK

MANET simulation studies have typically used the Random Waypoint model as the mobility

model. As per this mobility model, a mobile node moving in a particular direction could pause for

a certain time after reaching a targeted location and then continue to move. The pause time is one

of the parameters of the Random Waypoint mobility model. The influence of static nodes on the

performance of a communication protocol has been so far evaluated only on the basis of this

pause time. Also, such studies have been typically conducted to analyze the performance of

unicast routing protocols (e.g., [11]) and multicast routing protocols (e.g., [12]) for MANETs.

Even in such works, the focus had been on the impact of pause time on metrics such as delay,

throughput, energy consumption, etc, but not explicitly on the lifetime of the communication

topologies like paths and trees. To the best of our knowledge, we have not come across any

studies that consider the influence of static nodes of any form (including pause time) on the

performance of network-wide communication topologies, like that of connected dominating sets

for MANETs. In this paper, we chose to designate certain nodes as static throughout the

simulation and let the other nodes to move (rather than letting all mobile nodes to move and pause

alternately). We wanted to see if the presence of static nodes (nodes that do not move at all) could

improve the overall stability of connected dominating sets (as it is seen in the simulations) so that

we could henceforth come up with a network design strategy wherein even though certain nodes

in a network are bound to be mobile all the time, one may deploy certain percentage of static

nodes that could significantly increase the stability of network-wide communication topologies

such as connected dominating sets.

Computer Science & Information Technology (CS & IT) 47

6. CONCLUSIONS

The simulation results confirm our hypothesis: We observe that for a given level of node

mobility, the lifetime of the Maximum Stable CDS does not increase substantially with increase

in the percentage of static nodes; on the other hand, the lifetime of the degree-based CDS

increases significantly (and approaches the lifetime of the Maximum Stable CDS) with increase

in the percentage of static nodes. As we increase vmax from 5 m/s to 50 m/s, the average lifetime

incurred for the Maximum Stable CDS increases by a factor of 1.4-2.3 as we increase the

percentage of static nodes from 0 to 80. This could be attributed to the fact that the mobility of

certain percentage of nodes is sufficient to disrupt the connectivity of the mobile graphs spanning

over several time instants. On the other hand, as we increase vmax from 5 m/s to 50 m/s, the

lifetime of the degree-based CDS increases substantially (by factors as large as 13) with increase

in the percentage of the static nodes from 0 to 80. Thus, even if a certain fraction of nodes move

faster, the presence of a significant fraction of static nodes helps to boost the lifetime of the

degree-based CDS. In this paper, the degree-based CDS heuristic did not take into account the

presence of static nodes while considering nodes for inclusion in the CDS. With the results

observed in this paper, we anticipate that if the heuristic is adapted to take into account both the

node velocity (or some form of node mobility) and node degree while forming a CDS, the

stability of such CDSs could be significantly higher than that incurred with CDSs determined

using a degree-based heuristic without any appreciable increase in the CDS node size. We thus

anticipate the results of this paper to open new avenues of research for improving the stability of

degree-based heuristics for MANETs.

REFERENCES

[1] C. Siva Ram Murthy and B. S. Manoj, Ad Hoc Wireless Networks: Architectures and Protocols,

Prentice Hall, 1st edition, March 2012.

[2] D. B. Johnson and D. A. Maltz, "Dynamic Source Routing in Ad Hoc Wireless Networks," Mobile

Computing - The Kluwer International Series in Engineering and Computer Science, vol. 353, pp.

153-181, 1996.

[3] C. E. Perkins and E. M. Royer, "Ad Hoc On-demand Distance Vector Routing," Proceedings of the

2nd IEEE Workshop on Mobile Computing Systems and Applications, pp. 90-100, New Orleans, LA,

USA, Feb 25-26, 1999.

[4] C. W. Wu and Y. C. Tay, "AMRIS: A Multicast Protocol for Ad hoc Wireless Networks,"

Proceedings of the IEEE Military Communications Conference, vol. 1, pp. 25-29, Oct 31-Nov 3,

1999.

[5] A. B. Mnaouer, L. Chen, C. H. Foh and J. W. Tantra, "OPHMR: An Optimized Polymorphic Hybrid

Multicast Routing Protocol for MANET," IEEE Transactions on Mobile Computing, vol. 6, no. 5, pp.

551-562, May 2007.

[6] F. Dai and J. Wu, "Performance Analysis of Broadcast Protocols in Ad Hoc Networks Based on Self-

Pruning," IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 11, pp. 1-13,

November 2004.

[7] S. Saha, S. R. Hussain and A. K. M. Ashikur Rahman, "RBP: Reliable Broadcast Protocol in Large

Scale Mobile Ad Hoc Networks," Proceedings of the 24th IEEE International Conference on

Advanced Information Networking and Applications, pp. 526-532, Perth, WA, USA, April 20-23,

2010.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, 3rd ed., MIT

Press, July 2009.

[9] N. Meghanathan and A. Farago, "On the Stability of Paths, Steiner Trees and Connected Dominating

Sets in Mobile Ad Hoc Networks," Ad Hoc Networks, vol. 6, no. 5, pp. 744-769, July 2008.

[10] C. Bettstetter, H. Hartenstein and X. Perez-Costa, “Stochastic Properties of the Random-Way Point

Mobility Model,” Wireless Networks, vol. 10, no. 5, pp. 555-567, September 2004.

[11] S. R. Das, C. E. Perkins, E. M. Royer, "Performance Comparison of Two On-demand Routing

Protocols for Ad hoc Networks," Proceedings of the IEEE International Conference on Computers

and Communications, vol. 1, pp. 3-12, Tel Aviv, Israel, March 26-30, 2000.

48 Computer Science & Information Technology (CS & IT)

[12] K. Kavitha and K. Selvakumar, "Analyzing Multicast Routing Protocols with Different Mobility

Models," International Journal of Emerging Technology and Advanced Engineering, vol. 3, no. 1, pp.

33-41, January 2013.

