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ABSTRACT 

 

To predict and identify details regarding function from protein sequences is an emergency task 

since the growing number and diversity of protein sequence. Here, we develop a novel approach 

for identifying conservation residues and motifs of ligand-binding proteins. In this method, 

called MuLiSA (Multiple Ligand-bound Structure Alignment), we first superimpose the ligands 

of ligand-binding proteins and then the residues of ligand-binding sites are naturally aligned. 

We identify important residues and patterns based on the z-scores of the residue entropy and 

residue-segment entropy. After identifying new pattern candidates, the profiles of patterns are 

generated to predict the protein function from only protein sequences. We tested our approach 

on ATP-binding proteins and HEM-binding proteins. The experiments show that MuLiSA can 

identify the conservation residues and novel patterns which are really correlated with protein 

functions of certain ligand-binding proteins. We found that our MuLiSA can identify 

conservation patterns and is better than traditional alignments such as CE and CLUSTALW in 

some ligand-binding proteins. We believe that our MuLiSA is useful to discover ligand-binding 

specificity-determining residues and functional important patterns of proteins. 
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1. INTRODUCTION 
 
Human genome have been sequenced and led to a flood of sequence information. On the other 
hand, recent developments in X-ray crystallography and NMR have made it faster in solving 
protein structures. These data contains a lot of information that can be extracted by techniques 
which were used to visualize the sequence conservation information. The residues most related to 
the functions of a protein are often the most conserved (1). Many studies have demonstrated that 
most protein domains of same protein families, such as PROSITE (2) and Pfam (3), share 
conserved peptide patterns, called motifs, and some critical residues. The fundamental problems 
in proteomics include both identifying and understanding the role of the essential sites that 
determine that structure and proper function of the proteins. After solving these problems, 
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researchers can apply this useful information as a clue to predict protein functions without protein 
structure information. 
 
Many groups have used the identification of conserved patterns as a method to predict protein 
function. Some of these groups predict protein motifs using principle component analysis (4-7). 
Other groups use structure alignment (8) or sequence alignment (9) as a method to identify 
conservation sites. Evolutionary trace analysis was used to predict functional patterns in different 
phylogenic trees and look for functional important residues (8, 10-13). However, these methods 
always use protein structure or protein sequence information to predict protein conservation 
patterns and may miss these conservation patterns because of the noises from other protein 
structures which are far apart from ligand-binding site. 
 

 
 

Figure 1. The workflow of analysis and identification of conservation patterns and residues in proteins by 
MuLiSA. This flow starts from dataset preparation and clustering, followed by multiple ligand-bound 

structure alignments (MuLiSA), tool evaluation and protein function prediction. 
 
2. MATERIALS AND METHODS 

 
Identification of conservation patterns and residues in proteins by multiple ligand-bound structure 
alignments encompasses a variety of sequential computational phases, including dataset 
preparation, dataset clustering, multiple ligand-bound structure alignments, post-alignment 
analysis and entropy calculation, tool verify and protein function prediction (Figure 1). In dataset 
preparation, we first select one kind of ligand-binding protein that we are interested and get 
ligand-binding protein list from PDBsum (18) database. Because we need precise protein 
structures to identified conservation residues and motifs, we only select protein structures 
resolved by X-ray diffraction. Then we select ligand-binding domains using programs from 
SCOP database (19). In data clustering, we generate all-against-all multiple ligand-bound 
structure alignments of these selected ligand-binding domains and generate one structure 
similarity matrix and one un-gapped sequence identity matrix for each kind of ligand-binding 
proteins. Once we have these two matrixes, we select non-redundant protein domains, and 
undergo protein domain clustering. 
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In the main step of MuLiSA, first we choose the alignment center domains C of each domain 
cluster based on structure similarity. Second, we undergo C centered multiple ligand-bound 
structure alignment. After we generate the alignments, z-score calculation of position entropy can 
help us to identify conservation residues of each domain cluster. For we believed that the 
functional important motifs mostly composed of functional important residues, we identified 
pattern candidates by conservation residues extension. Finally, we used SCOP (19) and PROSITE 
(2) databases to verify our results; and then we generate profiles of pattern candidates and use 
them to search for protein sequence with these patterns in SWISS-PROT database (20). 
 
2.1. Preparation of ligand-binding proteins 

 
We have applied MuLiSA to three kinds of ligand-binding proteins, which are ATP-binding 
proteins, ADP-binding proteins, and HEM-binding proteins. The ligand-binding protein lists were 
taken from PDBsum database (18). In order to get ligand-binding domains, first we need to get 
ligand-binding protein structures. Protein structure three-dimensional information was 
downloaded from Protein Data Bank (PDB) database(21) according to ligand-binding protein lists 
getting from PDBsum database (18). The ligand-binding domains were chosen downloaded from 
Structure Classification of Proteins (SCOP) database (19). 
 
Ligand-binding domains were chosen with four criteria, they are as follows: 1) When one of 
distances between atoms of residues of the domain and atoms of ligands is near than 5Å, we think 
that this domain is a ligand-binding domain. 2) Because multiple ligand-bound structure 
alignment first superimposed the ligands of aligned proteins, we only choose protein domains 
which only bind with one ligand. 3) We only choose ligand-binding domains which the ligand 
they bind is only bind by one protein domain. 4) We only choose one protein domain in one 
protein structure. Because the SCOP domain files do not contain ligand information, after 
choosing these domains we must add back ligand information from Protein Data Bank (PDB) 
database (21) into these protein domain files. It must be mentioned that we only choose protein 
domains solved by x-ray crystallography because we think that these structures are more 
convincing. 
 
2.2. Datasets for verification 
 
To verify whether our alignment results is reasonable and can reflect protein function 
information, we use the classification of Structural Classification of Proteins (SCOP) database 
(19) as the benchmark of our structure similarity matrix for non-redundant domain clustering. 
PROSITE patterns from PROSITE database (2) were also used to quality assessment and 
refinement of multiple ligand-bound structure alignments. The protein sequences and annotations 
were downloaded from SWISS-PROT database (20) and were used for profile verification and 
protein function prediction. 
 
2.3. Method 
 
The main idea of this tool is that we try to align together conservation residues of proteins at 
ligand-binding sites by ligand superimposition; and then identify conservation residues and 
patterns by z-score of entropy calculation. Because we have to change the three-dimensional 
coordinates of proteins along with superimposed ligands, we developed a structure superimpose 
tool to deal with this problem. We developed this program MuLiSA from ICP algorithm(22), this 
program can make proteins and ligands rotation and displacement on three-dimensional space. 
After we get the superimposed protein structures, we regard two residues are aligned together 
based on three order rules: 1) Rule 1: Cβ or Cα (Gly) atom of amino acid residues in 1Å; 2) Rule 
2: Cβ or Cα (Gly) atom of same amino acid residues in 4Å; 3) Rule 3: Cβ or Cα (Gly) atom of 
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same group amino acid residues in 4Å or Cβ or Cα (Gly) atom of different group amino acid 
residues in 2Å. 
 
The amino acid groups are defined as follows: 1) Basic amino acids: lysine, arginine, and 
histidine; 2) Acidic amino acids: aspratate, glutamate, asparagine, and glutamine; 2) Aromatic 
amino acids: phenylalanine, and tryptophan; 3) Aliphatic amino acids: glycine, alanine, valine, 
leucine, isoleucine, and methionine; 4) Hydroxyl containing amino acids: serine, threonine, and 
tyrosine; 5) Disulfide-bond forming amino acid: cysteine; 6) Cyclic amino acid: proline. 
 
2.4. Sequence identity matrix and structure similarity matrix 
 
If two protein domains have the similar function and have highly similar structures in ligand-
binding sites, these two protein domain structures should fit well in three-dimensional space. We 
introduced structure similarities in accordance with multiple ligand-bound structure alignments to 
present this information. ST

ab is the structure similarity of protein domain a and protein domain b. 
La is the length (residue numbers) of protein domain a, Lb is the length (residue numbers) of 
protein domain b, and L is the aligned residue number of protein domains a and b. ST

ab is given as 
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. We also generate un-gapped sequence identity matrix between protein domains 

for non-redundant protein domain selection based on only aligned residues of protein domains a 
and bS
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Redundant protein domains must be removed because the profiles generated from alignments 
may be incredible. We regarded two protein domains are redundant protein domains when their 
structure similarity and sequence identity are both above 0.8; therefore, we first cluster these 
protein domains and only choose one with no mutation residues and with the smallest X-ray 
diffraction resolution. In order to generate a convincing multiple alignments, we must choose an 
alignment center domains C before we generate this alignments. In structure similarity matrixes, 
the non-redundant protein domain of one cluster which has the highest structure similarity with 
other protein domains than others was selected as the alignment center C of this cluster. This 
protein domain was used to be the alignment center of multiple ligand-bound structure alignment. 
 
2.5. Identification of conservation residues and pattern candidates 

 
To identify these conservation residues, we used entropy (Sp), defined as ( )∑

=

−=
20

1
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i
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, 

where i and fpi  denote the ith amino acid type, the probability of finding the amino acid type i at 
position p. The entropy is 0 when this position is totally conserved. In order to estimate the 
statistical significance of the position entropy, z-score was applied to identify relative 

conservation positions: 
σ
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p

, where Zp is the z-score value of position p, σis the standard 

deviation of all positions entropy,µis the average value of all positions entropy and Xp is the 
entropy of position p. We identified a conservation position p when Zp > 2.5. 
 
We generate alignment profiles of pattern candidates (discovered by our MuLiSA) and PROSITE 
patterns from multiple ligand-bound structure alignments. { } 201     where ≤≤= ifPF

i

ppi
, where 

PFp is the profile of position p; fp
i is the probability of the ith amino acid type at position p.We 
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then used profiles to search for matched protein segments in protein sequences. The search 
window size is the length of profiles and shifts one residue each time. Each protein sequence 
should have N-(n-1) (N is the length of this sequence and n is the length of this pattern) profile 
search scores, and we suppose the segment with the highest profile search score of this protein 
sequence should be the pattern candidate that we are looking for. The scoring function is as 

follows: 
n

S

n

p i
piPF∑∑

= =
=

1

20

1 , where S is the profile search score, n is the length of a pattern, PFpi is the 

profile value of amino acid type i at position p. The score is 1 when a segment perfectly matches 
this profile. 
 

Table 1. Statistics of proteins, domains and pattern candidates 
 

Ligand 
name 

No. of 
proteins 

a 

No. of 
selected 
domains 

b 

No. of  non-
redundant 
domains c 

Clusters d 
Selected 

alignment 
center C e 

No. of 
important 
residues f 

No. of  
pattern 

candidates 
g 

ATP 173 60 46 

Protein kinases 
catalytic subunit 

(7) 
d1phk__ 10 1 

Class I 
aminoacyl-tRNA 
synthetases (RS), 
catalytic domain 

(4) 

d1maua_ 16 3 

Heme 1145 860 131 

CCP-like (13) d1llp__ 11 3 

Cytochrome 
P450 (13) 

d1eupa_ 12 3 

Cytochrome b5 
(5) 

d1cyo__ 4 1 

Monodomain 
cytochrome c 

(23) 
d1i54a_ 3 1 

Cytochrome c' 
(4) 

d1i54a_h 3 1 

 
a Number of ligand-binding proteins in PDBsum database. 
b Number of ligand-binding domains selected by our program. 
c Number of selected non-redundant domains. 
d The domain clusters that according to structure similarity and SCOP database classification; the domain 

names are based on SCOP database nomenclature. We only choose domain clusters with domain number 
> 3 because the alignments are more statistical meaningful; and we only choose domain clusters with 
PROSITE patterns because we need benchmarks to verify our results. The numbers in the parentheses are 
the non-redundant domain numbers of each cluster. 

e The alignment center C domain of each cluster. The alignment center C chosen is important; because in 
MuLiSA, the alignment center C highly affects the alignment results. 

f Number of conservation residues with z-score > 2.5. 

g Number of identified pattern candidates with length equal or longer than 5 residues. 
h We choose same alignment center C of domain clusters: monodomain cytochrome c and cytochrome c', 

because same pattern candidates were identified in these clusters. 
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3. RESULTS 

 
In order to identify the wealth of information present in protein structures, we analyzed 
conservation residues and patterns in multiple ligand-bound structure alignments. Most sequence 
and structure alignment techniques are protein-based alignment; in other words, these techniques 
analyze residue conservation only by comparing protein structure or protein sequence similarity. 
At the present, we have applied MuLiSA to ATP- and HEM-binding proteins and identified 
several conservation residues and pattern candidates. We have generated sequence profiles from 
multiple alignments and used them to discover protein sequences which may have these profiles. 
We also proved that MuLiSA is better than other tools in several cases and can discover 
functional information when comparing with SCOP (19) and PROSITE database(2). Our major 
intention was to extract protein structure information from ligand-binding proteins and apply this 
information to protein function prediction. Table 1 shows some statistics about the dataset we 
used in this study. Through getting ligand-binding protein lists, selecting ligand-binding domains, 
domain clustering, non-redundant domains and alignment center C selection, we use MuLiSA and 
z-score of entropy calculation to identified conservation residues and pattern candidates of each 
cluster. These identified conservation residues may be functional important and we survey the 
literature and it proves that some of these identified conservation residues are critical to ligand-
binding or correlate with conformation stability. After pattern candidate identification, we 
generate profiles of these pattern candidates and use these profiles predict protein functions. 
 
3.1. ATP-binding proteins 
 
ATP, adenosine triphosphate, is the major energy currency of the cell. It transfers energy from 
chemical bonds to endergonic reactions of the cell. ATP powers most of the energy-consuming 
activities of cells, such as muscle contraction, synthesis of polysaccharides, active transport of 
ions and nerve impulse. Because of ATP is a so important compound and because of the large 
number of experimental data, like ATP-binding protein structures and literatures, we choose 
ATP-binding proteins as our first research target. We have generated structure similarity matrix 
of non-redundant ATP-binding domains for functional-based domain clustering, and we also 
identified conservation residues and pattern candidates. Finally, we used profiles of pattern 
candidates to undergo protein function prediction. 
 

3.1.1 Structure similarity matrix and alignment center selection 

 
Figure 2 shows the structure similarity matrixes and SCOP classifications of 25 non-redundant 
ATP-binding domains. When comparing with classifications of SCOP database (19), protein 
domains with higher structure similarities are usually clustered together and they are always 
belong to same SCOP families. As we all agree that SCOP database (19) is a convincing domain 
structural and functional classification database, it tells us that the multiple ligand-bound 
alignment and structure similarity calculation is reasonable and can reflect structural and 
functional information. 
 
In Figure 2A, the domains belong to the same SCOP families are with same colors. The bold 
values means the structure similarity is larger than the average value of the row; in other words, 
the domain in this row is much similar with these compared domains than others. In this matrix, 
we find that most domains of same SCOP family usually have higher structure similarity with 
each other (see the regions with red frame), it tell us that the multiple ligand-bound structure 
alignment and structure similarity calculation is reasonable and can reflect structural and 
functional information. Figure 2B shows the SCOP classification of protein domains. 
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The alignment center C chosen is important; because in MuLiSA, the alignment center C highly 
affects the alignment results. The alignment center C of one cluster is chosen when one domain 
has higher structure similarity with other domains than others in this cluster. For example, the 
first cluster in Figure 2A, “Class I aminoacyl-tRNA synthetases (RS), catalytic domain family”, 
contains four domains: d1gtra2, d1h3ea1, d1maua_and d1n77a2. The structure similarity 
summation of d1gtra2 with others is 0.3+0.39+0.34=1.03; d1h3ea1 is 0.3+0.44+0.36=1.1; 
d1maua_is 0.39+0.44+0.36=1.19; and d1n77 is 0.34+0.36+0.36=1.06. Therefore, we choose 
d1maua_ as the alignment center C of this cluster. 
 

 

 
 
Figure 2 (A) Structure similarity matrix of 25 non-redundant ATP-binding domains; (B) SCOP 
classification of 25 non-redundant ATP-binding domains. The domains belong to same SCOP families are 
with same colors. The bold values means the structure similarity is larger than the average value of the row; 
in other words, the domain in this row is much similar with these compared domains than others. In this 
matrix, we find that most domains of same SCOP family usually have higher structure similarity with each 
other (see the regions with red frame), it tells us that the multiple ligand-bound structure alignment and 
structure similarity calculation is reasonable and can reflect structural and functional information. The 
protein domains were classified according to SCOP classification hierarchy: class, fold, superfamily, and 
family. The protein domains were named by SCOP database nomenclature. 
 
3.1.2 Protein functional motifs and residues 

 
Figure 3 shows the multiple ligand-bound structure alignment results and the identified 
conservation residues in “Protein kinases, catalytic subunit family” of ATP-binding domains. The 
identified conservation residues, aligned positions with z-score of entropy calculation > 2.5, are 

A

B



82 Computer Science & Information Technology (CS & IT) 

 

close to ATP in three-dimensional space. It implies that these conservation residues may play 
important role in ATP-binding. In Figure 3B, the labeled residue numbers belong to protein 
domain d1phk__, which is the selected alignment center C of this cluster; and the red framed 
region means the PROSITE patterns. We observed that most identified conservation residues 
were on these PROSITE pattern region, it tell us that identifying pattern candidates from 
conservation residues extension may be a reasonable approach. 
 

 
 
Figure 3. MuLiSA result and identified conservation residues in “Protein kinases, catalytic subunit family” 
of ATP-binding domains. (A) Three-dimensional distributions of identified conservation residues and the 
ligand superimposition. Yellow: d1phk__; blue: d1atpe_; green: d1qmza_; red: d1csn__; grey: d1hck__; 
pink: d1gol__; light blue: d1h1wa_; (B) Multiple ligand-bound structure alignment result of “Protein 
kinases, catalytic subunit family” domains. The identified conservation residues, aligned positions with z-
score of entropy calculation > 2.5, are close to ATP in three-dimensional space. It implies that these 
conservation residues may play important role in ATP-binding. The labeled residue numbers belong to 
protein domain d1phk__, which is the selected alignment center C of this cluster; and the red framed region 
means the PROSITE patterns. We observed that most identified conservation residues were on these 
PROSITE pattern region, it tell us that identifying pattern candidates from conservation residues extension 
may be a reasonable approach. 
 
3.1.3 Protein functional pattern verifications 
 

In order to verify the effectiveness of profiles generated from our alignments in protein function 
prediction, we compare the performance in profile search between dataset 1, which contains 
protein sequences with PROSITE pattern; and dataset 2, which contains protein sequences not 
only with PROSITE pattern but also have “ATP-binding” annotations in SWISS-PROT database. 
Dataset 1 contains protein sequences contain PROSITE pattern: aminoacyl-transfer RNA 
synthetases class-I signature and dataset 2 contains protein sequences contain not only PROSITE 
pattern: aminoacyl-transfer RNA synthetases class-I signature but also have “ATP-binding” 
annotations in SWISS-PROT database. We observed that the area under curves of dataset 2 is 
larger than the area under curves of dataset 1. Because the profile of pattern candidates were 
generated from alignments of ATP-binding domains and the protein sequences in dataset 1 are 
not all have “ATP-binding” annotations in “KW” of SWISS-PROT database, we suppose that the 

A

B



Computer Science & Information Technology (CS & IT)                                   83 

 

profile of pattern candidate is more convincing in ATP-binding proteins but not proteins only 
with PROSITE patterns. 
 

Table 2. Hit rate comparison of dataset difference in profile verification of ATP-binding proteins 
 

Family 
PROSITE patterns and 

pattern candidates a 

Dataset 1 c Dataset 2 d 

No. of 
sequence e 

Hit rate f 
No. of 

sequence 
Hit rate 

Protein kinases 
catalytic subunit 

Protein kinases ATP-
binding region signature 

859 

85.15% 

773 

89.18% 

Serine/ Threonine protein 
kinases active-site 

signature. 
85.73% 86.67% 

Pattern candidate 1 b 84.79% 86.76% 
Pattern candidate 2 64.19% 68.35% 
Pattern candidate 3 71.37% 75.43% 

Class I aminoacyl-
tRNA synthetases 

(RS), catalytic 
domain 

Aminoacyl-transfer RNA 
synthetases class-I 

signature 1129 
26.61% 

1056 
50.42% 

Pattern candidate 1 20.18% 37.43% 

 
a PROSITE patterns and pattern candidates that we identified. 
b Pattern candidate 1 of “Protein kinases catalytic subunit family”. 
c Dataset 1: sequences only with PROSITE patterns 
d Dataset 2: sequences with PROSITE patterns and SWISS-PROT annotations 
e Number of sequences recorded which have PROSITE patterns in this cluster. For example, in “Protein 

kinases catalytic subunit family”, number of sequences which have Protein kinases ATP-binding region 
signature or Serine/ Threonine protein kinases active-site signature is 859; hence the number of sequences 
of pattern candidates in this cluster is 859. 

f Average hit rate when true positive rate are 50%, 60%, 70%, 80%, 90% and 100%. 
 
Table 2 summarize the average hit rate of true positive rates 50%, 60%, 70%, 80%, 90% and 
100% in dataset 1: sequences with PROSITE pattern, and database 2: sequences with PROSITE 
pattern and SWISS-PROT annotations for profile verification. We observed that whether in 
dataset 1 or dataset 2, the hit rate of PROSITE patterns are all higher than pattern candidates. 
Thus, the PROSITE pattern is really meaningful for protein sequences which have these 
PROSITE patterns. However, we also observed that the hit rates in dataset 2 are generally higher 
than hit rates in dataset 1. Because dataset 1 only contains sequences with PROSITE patterns but 
database 2 contains sequences with PROSITE pattern and SWISS-PROT annotations, it tell us 
that the profiles we generated from multiple alignments of ATP-binding proteins may be more 
meaningful for protein sequences with “ATP-binding” annotations in SWISS-PROT database. 
 
In Table 3, we summarized the true-positive rates, profile scoring scores, and z-score of profile 
scoring scores of top 100, 500, 1000, 1500, 2000, 2500 and 3000 ranked sequences in profile 
scoring ranking list. We also compare the hit rates between pattern candidates and PROSITE 
patterns. We observed when protein sequences with profile scoring score 0.600, the true positive 
rate is 82.27% and the z-score is 2.87. Thus when protein sequences with profile scoring score 
higher than 0.600, we can say these protein sequence may be ATP-binding proteins with 82.27% 
confidence. When comparing with the hit rate of our defined pattern candidates and PROSITE 
patterns, we observed that almost all the top 3000 ranked protein sequences with “ATP-binding” 
annotations were all searched by pattern candidates. Although some of pattern candidates 
partially overlapped with PROSITE patterns, it tells us that the pattern candidates are useful for 
protein function prediction in ATP-binding proteins. 
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Table 3. Hit rate comparison of pattern candidates and PROSITE patterns in protein function prediction of 
ATP-binding proteins 

 

No. of top 
ranked 

sequence a 
True-positive rate b 

Profile 
scoring 
score c 

Z-score of 
profile 
scoring 
scored 

Hit rate of all 
pattern candidates e 

Hit rate of 
PROSITE 
pattern f 

100 100.00% (100) 0.840 6.52 100.00% (100) 0.00% (0) 
500 98.40% (492) 0.720 4.70 100.00% (492) 0.00% (0) 
1000 95.70% (957) 0.650 3.63 99.79% (955) 0.21% (2) 
1500 82.27% (1234) 0.600 2.87 97.65% (1205) 2.35% (29) 
2000 76.65% (1533) 0.583 2.61 80.43% (1503) 19.57% (30) 
2500 70.28% (1757) 0.567 2.37 94.25% (1656) 5.75% (101) 
3000 61.53% (1846) 0.556 2.20 94.53% (1745) 5.47% (101) 

 
a The top ranked sequence number. For example, 100 in this column means the 100 ranked sequences with 
highest profile scoring score in profile scoring ranking list of ATP-binding protein prediction. 

b True positive rate of protein sequences with “ATP-binding” annotations of top 100, 500, 1000, 1500, 
2000, 2500 and 3000 ranked sequences in profile scoring ranking list of ATP-binding protein prediction. 

c The smallest profile scoring scores of top 100, 500, 1000, 1500, 2000, 2500 and 3000 ranked sequences.  
d Z-score of profile scoring scores. The average of all SWISS-PROT sequence scores is 0.411515; the 

standard deviation of all SWISS-PROT sequence scores is 0.065701. 
e Hit rate of true positives that predicted by profiles of our defined pattern candidates. 

f Hit rate of true positives that predicted by profiles of PROSITE patterns. 
 
3.2 HEM-binding proteins 
 

Heme is a member of a family of compounds called porphyrins, which consist of four pyrrole 
rings. Heme metabolism is an important metabolic pathway because many important 
hemoproteins contain heme as a prosthetic group. For example, hemoglobin is a very important 
hemoprotein and it is an oxygen carrier in the blood. There are also cytochromes, which 
participate in important electron transfer reactions, and tryptophan oxygenase which is a 
hemoprotein of intermediary metabolism.  
 
3.2.1 Structure similarity matrix and conservation residues 

 
Our results show that structure similarity matrix and SCOP classifications of 40 non-redundant 
HEM-binding domains. The structure similarity matrix is still similar with SCOP classification 
and MuLiSA can apply to different kinds of ligand-binding proteins. We have also identified 
several conservation residues of protein domain clusters in HEM-binding proteins. Figure 4 
shows the multiple ligand-bound structure alignment result and identified conservation residues in 
“Cytochrome b5 family” of HEM-binding domains. In Figure 4A, the identified conservation 
residues are closed to heme in three-dimensional space. It implies that these conservation residues 
may play important role in HEM-binding. In Figure 4B, the labeled residue numbers were 
belonged to protein domain d1cyo__, which is the selected alignment center C of this cluster, and 
the red framed region means the PROSITE patterns. We observed that most identified 
conservation residues were on these region, it also tell us that identifying pattern candidates from 
conservation residues extension may be a reasonable approach. 
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Figure 4. MuLiSA result and identified conservation residues in “Cytochrome b5 family” of HEM-binding 
domains. (A) Three-dimensional distributions of identified conservation residues and the ligand 
superimposition. Yellow: d1cyo__; blue: d1b5m__; green: d1cxya_; red: d1icca_; grey: d1mj4a_; (B) 
Multiple ligand-bound structure alignment result of “Cytochrome b5 family” domains. The identified 
conservation residues are closed to heme in three-dimensional space. It implies that these conservation 
residues may play important role in HEM-binding. The labeled residue numbers were belonged to protein 
domain d1cyo__, which is the selected alignment center C of this cluster, and the red framed region means 
the PROSITE patterns. 
 

Table 4. Hit rate comparison of pattern candidates and PROSITE pattern in protein function prediction of 
HEM-binding proteins 

 

Top number of 
sequence a 

True-positive rate b 
Profile 
scoring score 

c 

Z-score of 
profile scoring 
score d 

Hit rate of all 
pattern candidates e 

Hit rate of 
PROSITE pattern 

f 
100 92.00% (92) 0.798 4.72 100.00% (92) 0.00% (0) 
200 80.50% (161) 0.744 4.00 96.27% (155) 3.73% (6) 
300 69.00% (207) 0.708 3.52 97.10% (201) 2.90% (6) 
400 69.75% (279) 0.692 3.30 87.81% (245) 12.19% (34) 
500 70.40% (352) 0.685 3.21 90.34% (318) 9.66% (34) 
600 60.33% (362) 0.685 3.21 90.61% (328) 9.39% (34) 
700 57.86% (405) 0.669 2.99 91.60% (371) 8.40% (34) 

 
a The top ranked sequence number.  
b True positive rate of protein sequence with “Heme” annotations in SWISS-PROT database of top ranked 
sequences. 
c The smallest profile scoring scores of top 100, 200, 300, 400, 500, 600 and 700 ranked sequences.  

d Z-score of profile scoring scores. The average of all SWISS-PROT sequence scores is 0.436928; the 
standard deviation of all SWISS-PROT sequence scores is 0.071717. 
e Hit rate of true positives that predicted by profiles of our defined pattern candidates. 

f Hit rate of true positives that predicted by profiles of PROSITE patterns 
 
 
 
 

A

B
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In order to verify the effectiveness of profiles generated from our alignments in protein function 
prediction, we also compare the performance in profile search between datasets 1, which contains 
protein sequences with PROSITE pattern; and dataset 2, which contains protein sequences not 
only with PROSITE pattern but also have “Heme” annotations in SWISS-PROT database. In 
Table 4, we summarized true-positive rates, profile scoring scores, and z-score of profile scoring 
scores of top 100, 200, 300, 400, 500, 600 and 700 ranked sequences in profile scoring ranking 
list. We also compared with the hit rate of pattern candidates and PROSITE patterns. We 
observed that when protein sequences with profile scoring score 0.744, the true positive rate is 
80.50% and the z-score is 4.00. Thus when protein sequences with profile scoring score higher 
than 0.744, we can say these protein sequences may be HEM-binding proteins with 80.50% 
confidence. When comparing the hit rate between pattern candidates and PROSITE patterns, we 
observed that almost all the top 700 ranked protein sequences with annotations were searched by 
pattern candidates. Although some of pattern candidates may partially overlap with PROSITE 
patterns, it tells us the pattern candidates are useful in protein function prediction of HEM-
binding proteins. 
 
3.3 Comparison with CE and CLUSTALW 
 
Because multiple ligand-bound structure alignments only focus on ligand-binding sites, we 
neglect noise from protein structure apart from the ligand-binding sites and get the functional- 
dependent alignments of ligand-binding domains. CE and CLUSTALW are structural alignment 
and multiple sequence alignment tools, respectively. In Figure 5A, we find that only the 
alignments of MuLiSA can align together the PROSITE defined patterns together of two 
domains, d1maua_ and d1gtra2. In Figures 5B and 5C, we find that the shift of conservation 
patterns of CE alignment result. In fact, for CE uses only protein structure information to undergo 
structure alignment, we find that in this case the bad alignment of conservation patterns was 
because of a huge structure similar region apart from ATP-binding site, and it did disturb the 
alignment of PROSITE patterns. In other words, through ligand superimposition can only focus 
on ligand-binding sites and disperse noises from other region, thus the identified conservation 
residues and patterns will be much more related to ligand-binding. 
 

 
Figure 5. The comparison of MuLiSA, CE, and CLUSTALW results of two Class I aminoacyl-tRNA 
synthetases (RS), catalytic domains: d1maua_ and d1gtra2. (A) Alignment comparison between three 
methods. The shadowed region is the PROSITE defined patterns; (B) 3D structure alignment result of 
MuLiSA; (C) 3D structure alignment result of CE. The PROSITE defined patterns together (PROSITE 
pattern:  
      
 

B C

A
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       P-x(0,2)-[GSTAN]-[DENQGAPK]-x-[LIVMFP]-[HT]-[LIVMYAC]-G-[HNTG]-[LIVMFYSTAGPC])  
of two domains, d1maua_ and d1gtra2. (B), two ATPs were nearly superimposed and the PROSITE 
patterns also aligned well. (C) The PROSITE patterns were shifted. In fact, for CE uses only protein 
structure information to undergo structure alignment, we find that in this case the bad alignment of 
conservation patterns was because of a huge structure similar region apart from ATP-binding site, and it did 
disturb the alignment of PROSITE patterns. 
 

4. CONCLUSIONS 
 
We have developed MuLiSA, a multiple ligand-bound structure alignment technique, based on 
functional-dependent ligand information to evaluate residue and pattern conservation. The main 
difference between our tool and others is that we first superimpose the ligands of proteins but not 
protein itself. In this way, the ligand-binding sites are superimposed naturally. Then we could 
identify the conservation residues and pattern candidates according to these positions and 
segments which were superimposed along with ligands. We have applied MuLiSA to ATP-
binding proteins and HEM-binding proteins. MuLiSA can identify conservation residues and 
pattern candidates which play important role in ligand-binding or binding site conformation 
stability. For predicting protein conserved residues and patterns, our MuLiSA achieved high 
accuracies 80.5% and 82.3 for HEM-binding and ATP-binding proteins, respectively. We believe 
that our MuLiSA is very useful for prediction of conserved results, functional motifs, and protein 
functions. 
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