

David C. Wyld et al. (Eds) : ICAITA, CDKP, CMC, SOFT, SAI - 2016

pp. 39– 51, 2016. © CS & IT-CSCP 2016 DOI : 10.5121/csit.2016.61304

MODEL CHECKERS –TOOLS AND

LANGUAGES FOR SYSTEM DESIGN- A

SURVEY

Shubha Raj K B and Suryaprasad J

Department of Computer Science and Engineering,

PESIT-Bangalore South Campus, Bengaluru, Karnataka, India
{shubharajkb, surya}@pes.edu

ABSTRACT

For over four decades now, variants of Model Checkers are being used as an approach for

formal verification of systems consisting of software, hardware or combination of both. Though

various model checking tools are available like NuSMV, UPPAAL, PRISM, PAT,FDR, it is

difficult to comprehend their usage for systems in different domains like telecommunication,

automobile, health and entertainment. However, industry experts and researchers have

showcased the use of formal verifications techniques in various domains including

Networking, Security and Semiconductor design. With current generation systems becoming

more complex, there is an urgent need to better understand and use appropriate methodology,

language and tool for definite domain. In this paper, we have made an effort to present Model

checking in detail with relevance to available tools and languages to specific domain. For

novices in the field, this paper would provide knowledge of model checkers languages and tools

that would be suitable for various purposes in diverse systems.

KEYWORDS

Formal Methods, Formal Verification, Model Checkers, System Modelling

1. INTRODUCTION

The cutting edge technologies in some of the critical systems like Cyber Physical Systems,

Mobile Cloud Computing, Wireless Sensor Network and Mobile Crowd Sensing systems have

high degree of complexity. The complexities of these systems are due to the challenges in

conformance of software, hardware, network, telecommunication and mobile industry. Large

software systems comprise of several million lines of source code. Additional complexities could

include structural, environmental (Reactive, Ubiquitous, context-aware), application domain and

communication complexity. Hence, it is difficult to understand the requirements, architecture,

design, implementation and testing of these systems unless a precise engineering notion is used.

One of the systematized tactics that is prevalent to achieve reliable and correct system is Formal

Methods (FM) [1][2][3].

Formal methods are techniques used to model complex systems as mathematical entities [18].

They are required for specifying and verifying the system and to ensure that the system is

developed “correctly”. Formal methods may not be suitable for all types of applications like;

problems over simple domains are usually less complex and do not warrant formal methods.

Formal methods are vital whenever the cost of failure is high in business critical systems, safety

critical systems and machine critical systems [9].

40 Computer Science & Information Technology (CS & IT)

The development of safety-critical systems requires the use of formal methods for specifying and

analyzing critical components and their properties. Formal methods are used at all stages of

System development that is at Specification [2][6], Architecture [11][22][13], Design[24][8],

Coding[15][16][17] and Testing[18][9].

Typically Formal methods are employed to

• Verify the mathematic model at any time of system development

• Find errors at early stage

• Reduce system cost, development time and effort to build the system

• Improve quality of the system like security, reliability and performance and so on

An application which primarily uses the traditional structured development techniques may use

formal methods only for the purpose of documenting data dictionaries. The objectives of these

applications will have different impacts on the development process and consequently will

influence different choices of model checking techniques. In Formal Methods, mainly we have

two main steps. One is Formal Specification and the second one is Formal Verification. Currently

there are many techniques that are employed to verify the correctness of system being built like

inspection, audit, testing, review, simulation, walkthrough and formal verification. Among these,

the Formal Verification techniques offer a formal proof grounded on mathematical model of the

system. We need suitable methodologies, tools and languages which can assist in early detection

of defects in a structured manner. One such option would be to explore formal verification

techniques. There are two types of formal verification; Automatic (Model Checkers) and semi-

automatic (Theorem Provers). Here, we focus primarily on Model checkering Languages and

Tools with a discussion on current challenges.

There are mainly three major steps in model checking process, namely:

1. System Specification

2. System Modeling

3. System Verification

The rest of the paper is structured as follows: In Section 2, we present one of the inputs of the

model checking tool that is Formal specification methods. Section 3 outlines the Formal

modelling methods. Section 4 summarizes the formal verification methods. Section 5 briefly

discusses the types of model checking methods and their corresponding tools. Section 6 describes

model checkers tools and their practical application in various domains. In Section 7, model

checking languages are described in detail. Section 8 draws conclusion.

2. SYSTEM (PROPERTY/FEATURE) SPECIFICATION

To apply formal methods, first we should know the characteristics of the problem domain and the

complexity of their modeling [4. Typically, we can specify the properties of the system using

temporal logic and automata. Table 1 list the distinct types of Temporal Logics and their

abbreviations.

Computer Science & Information Technology (CS & IT) 41

Table 1. Distinct Types of Temporal Logics.

Temporal-based PSL (Property Specification

Languages)

Stochastic Logics

LTL Linear Temporal Logic Continuous Stochastic Logic (CSL)

CTL Computational Temporal Logic Probabilistic Reward Computation Tree Logic

(PRCTL)

CTL* Combination of LTL and CTL Continuous Stochastic Reward Logic (CSRL)

PLTL Probabilistic LTL Continuous Stochastic Logic (CSL)

PCTL Probabilistic CTL Continuous Stochastic Logic (CSL)

TCTL Timed CTL Probabilistic Reward Computation Tree Logic

(PRCTL)

Temporal logic is a variant of modal logic for expressing temporal modalities and representing

propositions qualified in terms of time. Depending upon the system types, we have to select the

distinct types of temporal logic. LTL is more suitable for specifying sequential systems.

Whenever we have to verify branching cases in some of the states, then CTL is more suitable.

When systems are stochastic in nature, during that time Probabilistic CTL and Probabilistic CTL

are appropriate PSL. When we need branching CTL and TCTL are more applicable. Stochastic

model may be continuous or discrete. Some of the stochastic logics are CSL, PRCTL and CSRL.

3. SYSTEM MODELLING METHODOLOGIES

Inputs to Model Checking are system modelling and system specification. Once we know the

system specifications from the requirement document, next step is to model the system. We can

model the system using Finite Automata or a graph at the early stages of system development like

at architecture or design level. During design or at architecture level, we have to model systems

without implementation (code). When we have to verify the source code, then we have to extract

the model from source code. Software model checkers are suitable for extracting model from the

source code. There are different methods to Model system formally as specified in the Table 2.

Some are text based and others are graphics based. Graph based include Petrinets, state chart and

Statemate.

Table 2. Distinct Methods to model the systems

Approaches for

modelling System
Characteristics

Finite State Machine

[8]

It is an abstract method having finite number of states. The modelled system

can be in only one state at any particular instance in time. Here we have

timed automata and hybrid automata.

Labelled Transition

System (Kripke

Structure)[19]

It is a labelled transition graph that can sufficiently capture the temporal

behaviour of reactive systems

Model extraction from

code

(Software Model

checkers)

Model extraction from some of the programming languages like C, JAVA

and .NET and their corresponding tools are listed below.

C CBMC (C Bounded Model Checker), BLAST (Berkeley Lazy

Abstraction Software Verification Tool), CPAchecker

(Configurable Program Analysis Checker), DSVerifier (Digital

Systems Verifier), ESBMC, LLBMC (Low-Level Bounded

Model Checker), SATABS (SAT-based Predicate Abstraction for

ANSI-C)

 JAVA JavaPathFinder, BANDERA

.NET MoonWalker

42 Computer Science & Information Technology (CS & IT)

Process Algebra It is a framework to model concurrent systems. Under this framework we

have CSP, CCS and ACP.

Petrinets, Statechart,

Statemate

Graph based formal specification languages

Table 3 provides input regarding three main semantic models according to untimed, timed and

stochastic/probabilistic system category. Once we understand the basic fundamental concepts to

model a given system, later it is easy to select the model checking tools. Otherwise selecting the

tool is very difficult task. During the design time, if our aim is to check time critical system, then

we have to use timed transition system.

Table 3. Types of Semantic model and their purposes

Types of

Semantic

Model

Purpose MC Applications

Label

Transition

System

• For untimed systems

Finite state Machine

Process Algebraic based Model

Graph Transition Model

NuSMV [19],

CADENCE SMC,

ARC,DIVINE

Edinburgh CWB,

GEAR,LTSA,

LTSmin

Used whenever we need

only the concurrency

problem without timing

and stochastic features

Timed

Transition

System

• Timed automata

• Timed process Algebra

UPPAAL,RED

PAT,MRMC

When precise

constraints on the

timing of events are

needed, timed

automata are the high-

level model.

Probabilistic

Semantic

Model

For Markov Decision Process PRISM[21][22],

MRMC,

[64],CADP[24],

Modest, Toolset[25]

Mobius [26]

Used to model various

sources of uncertainty

[20].

4. SYSTEM VERIFICATION

According to ISO/IEC/IEEE 15288, system verification includes set of activities that compares a

system or system elements against the requirements, architectures [29] and design characteristics

and other properties to be verified including deadlock freeness, safety, fairness and aliveness.

System verification is used to establish that the design, product or system under consideration

possesses the requisite properties.

The system verification methods can be broadly classified into three categories based on the

system components or implementation, namely: (a) hardware verification [34] (b) software

verification, and (c) System Integration verification. Quality expectations/predications are very

high need in hardware systems due to higher fabrication cost and testing involved. Formal

Verification uses mathematical reasoning to guarantee the absence of errors. It is an effective bug

hunting technique [20]. Testing checks that system behaves correctly under a finite number of test

cases, whereas formal verification is designed to be exhaustive.

Different types of Formal Verification (FV) Techniques

Computer Science & Information Technology (CS & IT) 43

• Model Checker (e.g.: SPIN, UPPAAL, PAT, FDR, NuSMV)

• Theorem Proving (e.g.: PVS, HOL [35])

Theorem Proving is used for system with infinite number of states. Commercial use of automated

theorem proving is in integrated circuit design and verification. Some of the companies like Intel

and AMD use automated theorem proving to verify that division and other operations are

correctly implemented in their processor design. But in this paper our aim is describe model

checking techniques.

FV is used in various domains for distinct purposes as below.

• Development of Integrated Circuits

• For verifying Electronic Design Automation (EDA) tools

• Stringent regulations for certifications

• To check the correctness of device drivers, cryptographic and communication protocols

• Embedded Control systems [14].

o Medical devices such as pacemakers and sensors

o Communication networks

• Safety critical system

o Avionic Industry, Nuclear energy, Process control, Robotics, Transport, Medical.

5. TYPES OF MODEL CHECKING

Model Checkers (MC) are classified as Modern Model Checkers (Software MC) and Traditional

Model Checkers [1]. Another category is based on types of verification algorithms as explained

below.

• Explicit Model Checker

• Symbolic Model Checker

• Bounded Model Checker

o SAT (Propositional Satisfiability): In BMC, Model checking complexity is

reduced to a propositional satisfiability problem that can be solved with SAT

(Satisfiability) solvers. So the size of state space will decrease and increases the

performance (speed).

o SMT (Satisfiability Modulo Theories) [27]: It is an extension of propositional

satisfiability (SAT) which is the most well know constraint-satisfaction problem.

It generalizes Boolean satisfiability by adding equality reasoning, arithmetic,

fixed-size bit vector, arrays, quantifiers and other useful first-order theories.

44 Computer Science & Information Technology (CS & IT)

• On-line Model checkers [28]

• Parallel Model checkers

• Software Model checkers

Depending upon the choices of the system model [FSM, Process Algebra, GTS] and property

specification methods [temporal Logic, automata], different Model checking approaches like

Explicit MC, Symbolic MC, Bounded MC and On-line MC (OMC). Parallel model checkers are

used in Semiconductor Industry for verifying multicore processor.These distinct model checker

are typically classified by how states are stored and manipulated. Table 4 gives brief knowledge

about the characteristics of the different model checkers and listed reduction methods used in

different types of model checking tools.

Table 4. Model checkers types and their characteristics

Explicit Model

Checker

Symbolic Model

Checker
Bounded Model Checker

On-line Model

checkers

States are indexed

directly

Second generation

MC. Here state of

the system is

represents by

Boolean Functions.

Bounded because only states

reachable within a bounded

number of times. If length

of the path can’t be found at

a given length K, then the

search is continued for

higher than K.

Here parameters of

models are continually

adjusted to remedy

possible modelling

faults [18] [17].

Graph algorithms

are used to explore

the state space

starting from the

initial state

To resolve the

problem of state

space explosion by

enumerating states

symbolically

It is a successor of

propositional SAT solvers

It drops the need for

models to be accurate

far into the future.

It construct State

Transition Graph by

reclusively

generating

successor of the

Initial state

Boolean formulas

are represented

using the data

structure BDD or

OBD to improve

the efficiency

Used in semiconductor

industry

OMC offers safety

assurances for short

time frames only and

renews these

assurances continually

during operation

Graph is created

using DFS (Depth

First Search), BFS

(Breadth First

Search) or in

Heuristic manner

Applicable to system level

software

It is used in Medical

domain because

patient model is like to

be inaccurate as the

physiology of the

human body is

complex and differs

between individuals.

Methods: Here

Partial Order

Reduction (POR) is

used for state-space

exploration problem

Best to find shallow bugs

[programs without deep

loops]

Example: Heart rate

and oxygen in the

blood depend on the

patient’s condition

It depends on

extensive search

through explicit

representation of

reachable system

states [7].

It supports full

counterexample trace. SAT

based Bounded Model

Checking is typically

quicker in finding bugs

compared to BDDs.

A generalized model

will always slip

individual

characteristics

Computer Science & Information Technology (CS & IT) 45

Table 5, list the tools developed under each model checking type and their limitation. Depending

upon the system types and types of properties we have to verify, we have select more than one

model checking tools in system development. DIVINE [30[31] is an example for Parallel Model

checker. Limitations of parallel Model checkers are communication and load balancing.

Table 5. List of Model Checking Tools and their limitations

Explicit Model

Checker

Symbolic Model

Checker
Bounded Model Checker

On-line Model

checkers

Tools:

SPIN,

ZING [7][23]

PRISM [21][22]

DiViNe

Tools: SAL,

NuSMV

BEBOP

MOPED

SMART MC

CadenceSMV,

Tools:

SAT-based:SAL (Symbolic Analysis

Laboratory) NuSMV

SMT-based [27] Z3, CVC4

Tools:

Java

PathExplorer

(JPaX) [32]

Limitation: It

suffers from the

state-space

explosion

problem due to

the exponential

growing of the

explicit state

space

Limitation: Human

verifier manually

adjusts the order of

the state variable.

This can impact the

size of the Binary

Decision Diagram

(BDD).So

performance will

reduce. Solution is

BMC

Limitations: In SAT procedure, the

variables must be Boolean type. Due to

this it is inexpressive for industrial

problems.

Example: Computer Programs

variables of type other than Boolean

must be encoded into Boolean/bit

variables which can result in a large

formula.

Solution: Alternative new technique is

SMT (Satisfiability Modulo Theories).

Why BMC? SMT-based BMC are

more expressive than SAT-based

BMC.

Why OMC: It

permits safety

assignment at

all times and

provides means

to react before

safety

violations

occur.

Table 6, showcases few software model checkers and their purpose for different programming

langauges as well as solutions to the state space explosion and their purpose. SLAM project is

used for making reachability analysis for large sequential C programs mainly to Device Driver

[1]. BLAST is to prevent all memory safety violations. JPF is used for verification and testing

environment for Java programs.

Various abstraction techniques are used depending upon the usage. Some of the abstarction

techniques are modular, lazy, Process counter abstraction, parallel modle checking and slicing

methods. Few reduction methods are symmetric reduction, and partial order reduction. To achive

good performance advanced optimization methods are now a days adapted in various model

checking tools.

46 Computer Science & Information Technology (CS & IT)

Table 6. Software model checkers

Year Tools Developed by State-explosion solutions used

2000 (SLAM project)

CHESS

MODIST

Microsoft Modular Abstraction

BDD

2002 BLAST University of California

Berkeley

Lazy abstraction

BDD

2002 JPF (Java

PathFinder) [5]

NASA • Compression techniques is

used to handle big states

• Partial Order Method

• Symmetric Reduction

method

• Slicing Abstraction

• Runtime analysis

Techniques

Some of the demerits of Model checking are listed as below.

• Temporal logic specifications are complex.

• Writing specifications is difficult.

• State explosion is a major problem.

6. MODEL CHECKER TOOLS

Depending upon the characteristics of the system, application domain, here are the some of the

examples of application of tools for a particular system as shown in the Table 7. The objectives

for applying a formal method to a project must be clearly identified and documented. Though we

have described in the previous sections about system specification and modelling methods, for

detailed understanding of formal languages, we are describing model checking languages in the

next section 7. Various model checking tools are used for distinct domain like communication,

embedded system, Software Engineering, hardware and healthcare so on. Here we have listed few

purposes like to model concurrent software, real-time systems, clock synchronized protocols,

synchronous digital logic, asynchronous systems, consistency of software data structure. Table 7,

list few model checking tool names and their abbreviation. For SPIN model checker, Promela is

the specification language. It is based on the process algebra. In UPPAAL, for formal modelling

timed automata is used for system modelling.

Table 7. MC tools and their abbreviation

Tool Abbreviation Developed By

SPIN Simple Promela Interpreter Bell Labs

UPPAAL Uppsala and Aalborg Uppsala and Aalborg University

NuSMV New Symbolic Model Verifier Carnegie Mellon University

FDR Failures Divergences Refinement University of Oxford

PRISM Probabilistic Model Checker University of Birmingham

Computer Science & Information Technology (CS & IT) 47

Table 8. List of model checker tools and their applicability

MC Purpose Domain

SPIN Used to model concurrent software or asynchronous

processes.

Communication

protocols

UPPAAL Used to model real-time systems

Formal model and analysis of clock-synchronised

protocols in sensor networks based on timed automata

[36].

Timed systems

NuSMV Used to model synchronous digital logic. Digital Circuits

FDR Used to model asynchronous systems

Alloy Used to analyse consistency of software data structures Requirement

Analysis

Simulink

Design Verifier

Used to verify models created in Simulink, a data-flow and

state-machine simulation

Hardware Circuits

SAT

Solvers[19]

Used to in Electronic Design Automation (EDA)

community for checking correctness of Hardware designs

mainly in synthesis and verification.

Hardware design

PRISM Formal model of flooding and gossiping protocols for

analysing their performance probabilistic properties

[35],Cardiac Pacemakers [37]

For automatically verify whether STRAC (Spatio-

Temporal Access Control based on Reputation, one policy

for the IoT) policies conform to security properties [38]

Healthcare

7. MODEL CHECKERS LANGUAGES

There are two different types of specification languages to construct a system model. One is state

based and another is Event based languages [2]. Both the methods are specified in Figure 1.

Figure 1. State-based and event-based Specification Languages

Figure 2, lists the important concepts used to develop formal specification languages. Sets,

Relations, functions are used in state based and Trees. Graph and automata are used in event

based formal specification languages.

48 Computer Science & Information Technology (CS & IT)

Figure 2. Concepts used in formal specification languages.

Current need is to integrate the distinct specification languages to handle different features of the

systems as itemized in Table 8. RAISE is used for handing rich state space. CIRCUS is used for

specification, programming, and verification by refinement. Its semantics is grounded on Hoare.

It motivated by the need for a notation and techniques to reason about designs and

implementations of state-rich reactive processes. Used for reasoning about Safety-critical Java

programs (SCJ), avionics control systems, and Systems of Systems. TCOZ supports Object-

Oriented principles. CML is a combination of Circus and VDM developed for the modelling of

Systems of Systems (SoS).

LOTOS is used for handling concurrency complexities. LOTOS is used for protocol specification

in ISO OSI standards LOTOS is an algebraic language that consists of two parts: a part for the

description of data and operations, based on abstract data types, and a part for the description of

concurrent processes, based on process calculus.

Table 9. Integration of specification languages

State-based

Language

Event-based

Language

Extension Integrated Specification

Language

VDM CCS VDM+CCS RAISE

Z CSP CIRCUS

Object Z Timed CSP Object Z +Timed

CSP

TCOZ

VDM CIRCUS VDM+CIRCUS CML (COMPASS Modelling

Language)

 CSP, CCS CSP+CCS LOTOS (Language Of Temporal

Ordering Specification) [2]

8. CONCLUSION

As systems get complex, a seamless flow becomes imperative. A formal method helps to reduce

errors, cost and ensure that the developed system will meet all expectations. Understanding the

role of tools and languages irrespective of the application domain will invariably be a great asset

to all concerned. The role of Model Checkers in design and verification of systems with relevant

tools and languages is presented in detail. Suitability of Model Checkers tools and languages in

various application domains is mainly based on few characteristics of the domain including

sequential, parallel, timed, untimed, etc. Novices in the field will get a broad view of role of

Model Checkers in system design and verification. Showcasing the usage of respective tool and

Computer Science & Information Technology (CS & IT) 49

language in different domains would be appropriate but is outside the scope of this paper and can

be considered for future work.

REFERENCES

[1] Strunk, E. A, Aiello, M. A & Knight, J. C. (2006) “A survey of tools for model checking and model-

based development”, University of Virginia.

[2] Clarke, E. M & Wing, J. M. (1996) “Formal methods: State of the art and future directions”, ACM

Computing Surveys (CSUR), Vol. 28, No.4, pp626-643.

[3] Kern, C & Greenstreet, M. R. (1999) “Formal verification in hardware design: a survey”, ACM

Transactions on Design Automation of Electronic Systems (TODAES), Vol. 4, No.2, pp123-193.

[4] Liu, Y, Sun, J & Dong, J. S. (2011) “Pat 3: An extensible architecture for building multi-domain

model checkers”,IEEE 22nd International Symposium on Software Reliability Engineering pp190-

199.

[5] Zhang, H, Aoki, T, & Chiba, Y. (2015) “Yes! You can use your model checker to verify OSEK/VDX

applications”, IEEE 8th International Conference on Software Testing, Verification and Validation

(ICST) pp1-10.

[6] Lamsweerde, A. V. (2000) “Formal specification: a roadmap”, Proceedings of the Conference on the

Future of Software Engineering pp147-159. ACM.

[7] Chen, T, Diciolla, M, Kwiatkowska, M, & Mereacre, A. (2012) “Quantitative verification of

implantable cardiac pacemakers”, In Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd pp263-

272

[8] Qadir, J, & Hasan, O. (2015) “Applying Formal Methods to Networking: Theory, Techniques, and

Applications”, IEEE Communications Surveys & Tutorials, Vol. 17. No.1, pp256-291.

[9] Gaudel, M. C. (1994). “Formal specification techniques”, Proceedings of the 16th international

conference on Software engineering. pp 223-227. IEEE Computer Society Press.

[10] Belinfante, A. (2010) “JTorX: A tool for on-line model-driven test derivation and execution”, In

International Conference on Tools and Algorithms for the Construction and Analysis of Systems

pp266-270. Springer Berlin Heidelberg.

[11] Medvidovic, N., & Taylor, R. N. (2000) “A classification and comparison framework for software

architecture description languages”, IEEE Transactions on software engineering, Vol 26. No.1, pp70-

93.

[12] Clements, P. C. (1996) “A survey of architecture description languages”, Proceedings of the 8th

international workshop on software specification and design pp16). IEEE Computer Society.

[13] Hermerschmidt, Lars, et al (2015) "Generating Domain-Specific Transformation Languages for

Component & Connector Architecture Descriptions", 2nd International Workshop on Model-Driven

Engineering for Component-Based Software Systems (ModComp) Workshop Proceedings.

[14] Jiang, Y., Zhang, H., Li, Z., Deng, Y., Song, X., Gu, M., & Sun, J. (2015), “Design and optimization

of multiclocked embedded systems using formal techniques”, IEEE Transactions on Industrial

Electronics, Vol.62 No.2, pp1270-1278.

[15] Havelund, K., & Pressburger, T. (2000) “Model checking java programs using java pathfinder”,

International Journal on Software Tools for Technology Transfer, pp366-381.

50 Computer Science & Information Technology (CS & IT)

[16] Corbett, J. C, Dwyer, M. B, Hatcliff, J, Laubach, S, Pasareanu, C. S., & Zheng, H. (2000), “Bandera:

Extracting finite-state models from Java source code”, Software Engineering, 2000. Proceedings of

the 2000 International Conference on pp439-448. IEEE.

[17] Ammann, P. E, Black, P. E, & Majurski, W (1998), “Using model checking to generate tests from

specifications”, Formal Engineering Methods, 1998. Proceedings. Second International Conference

on pp46-54. IEEE.

[18] Utting, M., & Legeard, B. (2010). “Practical model-based testing: a tools approach”, Morgan

Kaufmann.

[19] Baier, C., Katoen, J. P., & Larsen, K. G. (2008) Principles of model checking. MIT press.

[20] Norman, G & David P (2014) "Quantitative Verification: Formal Guarantees for Timeliness,

Reliability and Performance".

[21] Barnat, J, Brim, L, Ceska, M, & Rockai, P (2010),”Divine: Parallel distributed model checker”,

Parallel and Distributed Methods in Verification, 2010 Ninth International Workshop on, and High

Performance Computational Systems Biology, Second International Workshop on pp4-7. IEEE.

[22] Kwiatkowska, M, Norman, G, & Parker, D. (2011), “PRISM 4.0: Verification of probabilistic real-

time systems”, International Conference on Computer Aided Verification. pp. 585-591. Springer

Berlin Heidelberg.

[23] Andrews, T, Qadeer, S, Rajamani, S. K, Rehof, J, & Xie, Y. (2004), “Zing: Exploiting program

structure for model checking concurrent software”, International Conference on Concurrency Theory.

pp. 1-15. Springer Berlin Heidelberg.

[24] Petri, C. A. (1986)”Concurrency theory”, Advanced Course on Petri Nets”, pp4-24, Springer Berlin

Heidelberg.

[25] Markov Reward Model Checker. www.mrmc-tool.org, October 2016

[26] CADP Home page. www.inrialpes.fr/vasy/cadp/, October 2016.

[27] Phan, Q. S., & Malacaria, P. (2015) “All-Solution Satisfiability Modulo Theories: applications,

algorithms and benchmarks’ Availability, Reliability and Security (ARES), 2015 10th International

Conference on pp100-109. IEEE.

[28] Jard, C., & Jeron, T. (1989). “On-line model-checking for finite linear temporal logic specifications”,

International Conference on Computer Aided Verification, pp189-196).Springer Berlin Heidelberg.

[29] Shaw, M, & Garlan, D. (1996), Software architecture: perspectives on an emerging discipline,

Prentice Hall.

[30] Weiqiang, K. O. N. G., Shiraishi, T., Katahira, N., Watanabe, M., Katayama, T., & Fukuda, A.

(2011). An smt-based approach to bounded model checking of designs in state transition matrix.

IEICE transactions on information and systems, Vol.94 No.5, pp946-957.

[31] Barnat, J., Brim, L., Havel, V., Havlíček, J., Kriho, J., Lenčo, M., ... & Weiser, J. (2013). “DiVinE

3.0–an explicit-state model checker for multithreaded C & C++ programs”, International Conference

on Computer Aided Verification pp. 863-868. Springer Berlin Heidelberg.

[32] The M¨obius Tool. www.mobius.illinois.edu, accessed on October 2016.

[33] PAT Web site http://pat.comp.nus.edu.sg/ accessed on October 2016

Computer Science & Information Technology (CS & IT) 51

[34] Ardakani, H. H, Gharehbaghi, A. M, & Hessabi, S(2007), “A performance and functional assertion-

based verification methodology at transaction-level”, 2007 Internatonal Conference on

Microelectronics pp133-136. IEEE.

[35] Fehnker, A, & Gao, P(2006), “Formal verification and simulation for performance analysis for

probabilistic broadcast protocols”, International Conference on Ad-Hoc Networks and Wireless pp28-

141. Springer Berlin Heidelberg.

[36] Heidarian, F, Schmaltz, J, & Vaandrager, F. (2012), “Analysis of a clock synchronization protocol for

wireless sensor networks”, Theoretical Computer Science, Vol. 413 No.1, pp87-105.

[37] Chen, T, Diciolla, M, Kwiatkowska, M, & Mereacre, A. (2012) “Quantitative verification of

implantable cardiac pacemakers”, Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd pp 263-

272. IEEE.

[38] Yunchuan, G, Lihua, Y, & Chao, L.(2014) “Automatically verifying STRAC policy”, Computer

Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on pp141-142. IEEE.

AUTHORS

Shubha Raj K B She is an Assistant Professor at PESIT-BSC, Bengaluru, Karnataka,

India in the Department of Computer Science and Engineering. Currently she is

pursuing PhD at VTU Belagavi in Formal Methods. She obtained her MTech degree

from RVCE, Bengaluru. Her research interests are in the field of Formal Verification,

Model checking, Software Architecture and Architecture Description Languages.

Suryaprasad J He is Director/Principal at PESIT-BSC, Bengaluru, Karnataka, India.

He obtained his PhD from Florida Atlantic University, Boca Raton. His research

interests are in the field of System level design methodologies, Hardware Software

Co-design Embedded System Design, Power Optimal Design, Verification

Methodologies and Advanced Programming Metodologies.

