

Jan Zizka et al. (Eds) : CCSEIT, AIAP, DMDB, MoWiN, CoSIT, CRIS, SIGL, ICBB, CNSA-2016

pp. 91–99, 2016. © CS & IT-CSCP 2016 DOI : 10.5121/csit.2016.60608

CORROSION DETECTION USING A.I. : A

COMPARISON OF STANDARD COMPUTER

VISION TECHNIQUES AND DEEP

LEARNING MODEL

Luca Petricca
*1

, Tomas Moss
2
, Gonzalo Figueroa

2
and Stian Broen

1

1
Broentech Solutions A.S., Horten, Norway

*lucap@broentech.no
2
Orbiton A.S. Horten, Norway,

info@orbiton.no

ABSTRACT

In this paper we present a comparison between standard computer vision techniques and Deep

Learning approach for automatic metal corrosion (rust) detection. For the classic approach, a

classification based on the number of pixels containing specific red components has been

utilized. The code written in Python used OpenCV libraries to compute and categorize the

images. For the Deep Learning approach, we chose Caffe, a powerful framework developed at

“Berkeley Vision and Learning Center” (BVLC). The test has been performed by classifying

images and calculating the total accuracy for the two different approaches.

KEYWORDS

Deep Learning; Artificial Intelligence; Computer Vision; Caffe Framework; Rust Detection.

1. INTRODUCTION

Bridge inspection is one important operation that must be performed periodically by public road

administrations or similar entities. Inspections are often carried out manually, sometimes in

hazardous conditions. Furthermore, such a process may be very expensive and time consuming.

Researchers [1, 2] have put a lot of effort into trying to optimize such costly processes by using

robots capable of carrying out automatic bridge maintenance, reducing the need for human

operators. However such a solution is still very expensive to develop and carry out.

Recently companies such as Orbiton AS have started providing bridge inspection services using

drones (multicopters) with high resolution cameras. These are able to perform and inspect bridges

in many adverse conditions, such as with a bridge collapse[3], and/or inspection of the underside

of elevated bridges. The videos and images acquired with this method are first stored and then

subsequently reviewed manually by bridge administration engineers, who decide which actions

are needed. Even though this sort of automation provides clear advantages, it is still very time

consuming, since a physical person must sit and watch hours and hours of acquired video and

images. Moreover, the problem with this approach is twofold. Not only are man-hours an issue

92 Computer Science & Information Technology (CS & IT)

for infrastructure asset managers, so is human subjectivity. Infrastructure operators are nowadays

requesting methods to analyse pixel-based datasets without the need for human intervention and

interpretation. The end result desired is to objectively conclude if their assets present a fault or

not. Currently, this conclusion varies according to the person doing the image interpretation and

analysis. Results are therefore inconsistent, since the existence of a fault or not is interpreted

differently depending on the individual. Where one individual sees a fault, another may not.

Developing an objective fault recognition system would add value to existing datasets by

providing a reliable baseline for infrastructure asset managers. One of the key indicators most

asset managers look for during inspections is the presence of corrosion. Therefore, this

feasibility study has focused on automatic rust detection. This project created an autonomous

classifier that enabled detection of rust present in pictures or frames. The challenge associated

with this approach was the fact that the rust has no defined shape and colour. Also, the changing

landscape and the presence of misleading object (red coloured leaves, houses, road signs, etc)

may lead to miss-classification of the images. Furthermore, the classification process should still

be relatively fast in order to be able to process large amount of videos in a reasonable time.

2. APPROACH USED

Some authors tried to solve similar problems using “watershed segmentation” [4] for coated

materials, supervised classification schemes [5-6] for cracks and corrosion in sewer pipes and

metal, or Artificial Neural Networks [7] for corrosion in vessels. We decided to implement one

version of classic computer vision (based on red component) and one deep learning model and

perform a comparison test between the two different approaches. Many different frameworks and

libraries are available for both the classic computer vision techniques and the Deep Learning

approach.

2.1. Classic Computer Vision Technique

For almost two decades, developers in computer vision have relied on OpenCV[8] libraries to

develop their solutions. With a user community of more than 47 thousand people and estimated

number of downloads exceeding 7 million, this set of >2500 algorithms [8] and useful functions

can be considered standard libraries for image and video applications. The library has two

interfaces, C++ and Python. However, since Python-OpenCV is just a wrapper around C++

functions (which perform the real computation intensive code), the loss in performance by using

Python interface is often negligible. For these reasons we chose to develop our first classifier

using this set of tools. The classifier was relatively basic. Since a corroded area (rust) has no clear

shape, we decided to focus on the colours, and in particular the red component. After basic

filtering, we changed the image colour space from RGB to HSV, in order to reduce the impact of

illumination on the images[6]. After the conversion we extracted the red component from the

HSV image (in OpenCV, Hue range is [0,179], Saturation range is [0,255] and Value range is

[0,255]). Since the red components is spread in a non-contiguous interval (range of red color in

HSV is around 160-180 and 0-20 for the H component) we had to split the image into two

masks, filter it and then re-add them together. Moreover, because not all the red interval was

useful for the rust detection, we tried to empirically narrow down the component in order to find

the best interval that was not result in too many false positives. After extensive testing we found

the best interval in rust detection, to be 0-11 and 175-180. Also we flattened the S and I

component to the range 50-255. This mask was then converted into black and white and the white

pixels were counted. Every image having more than 0.3% of white pixels was finally classified as

Computer Science & Information Technology (CS & IT) 93

“rust”, while having less than 0.3% of white pixels indicated a “non-rust” detection. Below are

some snippets of the classification code:

define range of red color in HSV 160-180 and 0-20

lower_red = np.array([0,50,50])

upper_red = np.array([11,255,255])

lower_red2 = np.array([175,50,50])

upper_red2 = np.array([179,255,255])

Threshold the HSV image to get only red colors

mask1 = cv2.inRange(hsv, lower_red, upper_red)

mask2 = cv2.inRange(hsv, lower_red2, upper_red2)

mask=mask1+mask2

ret,maskbin = cv2.threshold(mask,

 127,255,cv2.THRESH_BINARY)

#calculate the percentage

height, width = maskbin.shape

size=height * width

percentage=cv2.countNonZero(maskbin)/float(size)

if percentage>0.003:

 return True

else:

 return False

2.2. Deep Learning Model

The second approach was based on artificial intelligence, in particular using Deep Learning

methods. This approach is not new. The mathematical model of back-propagation was first

developed in ‘70s and was originally reused by Yann LeCun in [9]. This was one of the first real

applications of Deep Learning. However a major step forward was made in 2012 when Geoff

Hinton won the imageNet competition by using Deep Learning network, outperforming other

more classic algorithms. Among many frameworks available such as torch [10], theano library

for python, or the most recent tensorflow [11] released by google, we chose caffe from “Berkeley

Vision and Learning Center” (BVLC)[12]. This framework is specifically suited for image

processing, offering good speed and great flexibility. It also offers the opportunity to easily use

clusters of GPUs support for model training which could be useful in the case of large networks.

Furthermore, it is released under a BSD 2 license.The first step was to collect a good dataset to be

used to train the network. We were able to collect around 1300 images for the “rust” class and

2200 images for the “non-rust” class. Around 80% of the images were used for the training set,

while the rest was used for the validation set. Since the dataset was relatively small, we decided

to fine tune an existing model called “bvlc_reference_caffenet” which is based on the AlexNet

model and released with license for unrestricted use. In fine tuning, the framework took an

already trained network and adjusted it (resuming the training) using the new data as input. This

technique provides several advantages. First of all, it allows the reuse of previously trained

networks, saving a lot of time. Furthermore, since the “bvlc_reference_caffenet” has been already

pre-trained with 1 Million images, the network has prior “knowledge” of the correct weight

94 Computer Science & Information Technology (CS & IT)

parameters for the initial layers. We could thus reuse that information and avoid over-fitting

problems (excessively complex model and not enough data to constrain it). The last layer of the

model was also modified to reflect the rust requirements. In particular the layer 8 definition was

changed to:

layer {

 name: "fc8_orbiton"

 type: "InnerProduct"

 bottom: "fc7"

 top: "fc8_orbiton"

 param {

 lr_mult: 10

 decay_mult: 1

 }

 param {

 lr_mult: 20

 decay_mult: 0

 }

 inner_product_param {

 num_output: 2

 weight_filler {

 type: "gaussian"

 std: 0.01

 }

Notice that the learning rate (lr) multiplier was set to 10 in order to make the last layer weight

parameters “move” more in respect to the other layers where the learning rate multiplier was set

to 1 (because they were already pre-trained). Also we set up the number of outputs to two to

reflect our two categories “rust”/“non-rust”. The images were resized to 256x256 pixels and the

mean file for the new set of images was recalculated before we trained the model. The training

process was performed with a learning rate of 0.00005 with 100.000 iterations in total, performed

on an Ubuntu 14.04 machine with GPU CUDA support. The hardware included I7 skylake CPU

and Nvidia GTX 980 Ti GPU. The training process took around 2 days.

3. TESTS

Test and comparison of the trained model was performed by writing a small classification script

in Python and using it for classifying a new image set. This new set of images was different from

the one used in the Deep Learning training and validation steps and consisted of 100 images,

divided into two groups of 37 images of “rust” and 63 images of “non-rust”. Images were chosen

as a mix of real case image (picture of bridges, metal sheets, etc) and other added just to trick the

algorithm such as images from desert landscape or images of red apple trees. In Figure 1 shows

some example of the images used.

Computer Science & Information Technology (CS & IT) 95

Figure 1: Example of test images

4. RESULTS

Results of the test were divided into two groups:

1. False Positive: The images of “non-rust” which were wrongly classified as “rust”

2. False Negative: The images of “rust” which were wrongly classified as “non-rust”

For each algorithm developed, we counted the number of false positives and false negatives

occurrences. The partial accuracy for the classification in each class was also calculated based on

the total images of that class. For example OpenCV had 4 false negative images on 37 “rust”

image. This implies that 33 images over 37 were correctly classified as “rust” giving a total

accuracy of for the “rust class” of:

Similarly, for the “non-rust” class the partial accuracy is given by the correctly classified images

of “non-rust” (36) over the total “non-rust” images (63), giving an partial accuracy for the “non-

rust” class of 57%. We also included a total accuracy for the total number of correctly classified

images over the total. In this case OpenCV classified correctly 69 images out of 100 (69%).

We repeated the same calculation for the Deep Learning model and the results are reported in the

column two of Table 1.

The Deep Learning classifier also provides a probability associated with each prediction. This

number reflects how confident the model is that the prediction is correct. Among the 100 images,

15 of those had a probability below 80%. We discarded those images and recalculated the

accuracy values (third column). This also means that for the 15% of the image, the Deep

Learning model was “undecided” on how to classify it. A complete summary of the results is

reported in Table 1.

96 Computer Science & Information Technology (CS & IT)

Table 1. Models comparison: resume table

 OpenCV
Deep

Learning

Deep Learning

Probability >0.8

False Positive 27/ 63 14/63 5/51

Partial Accuracy for “non-

rust”
57% 78% 90%

Number False Negative 4/ 37 8/37 7/34

Partial Accuracy for “rust” 89% 78% 79.4%

Total Accuracy (correctly

classified/total of images)
69% 78% 88%

5. DISCUSSION

The results show a few interesting facts about the two approaches. The OpenCV based model

showed a total accuracy (in all the images) of 69%. According to our expectations, it presented a

reduced accuracy (57%) for the “non-rust” classification, while it had great accuracy for the

“rust” classification (almost 90%). The reason for this is pretty clear: all the “rusty” images had

red components, so it was easy for the algorithm to detect it. However, for the “non-rust” class,

the presence of red pixels does not necessary imply the presence of rust. So when we pass a red

apple picture, the model just detected red component and misclassified it as “rust”, reducing the

“non-rust” accuracy. All the four pictures in Figure 1 for example, have been classified by the

OpenCV algorithm as “rust”, while only two of them are actually correct. The few false negatives

involved (where there was rust but it was not correctly detected), seemed were due mainly to the

bad illumination of the image, problems associated with colour (we also provided few out of

focus test images), or the rust spot was too small (less than 0.3% of the image).

For the Deep Learning Algorithm, things get more interesting. Indeed, we noticed a more

uniform accuracy (78% in total) between the “rust” detection and the “non-rust” detection (78%

in both the cases). In this case the model is also more difficult to “trick”: For example all the

images in Figure 1 were correctly classified from the model, despite the fact that we never used

any apple or desert image during the training process. So we analysed the most common pictures

where it failed, to get some useful information from it. In Figure 2 are reported a few examples of

“non rust” picture, wrongly classified as “rust” from the Deep Learning model. It is important to

mention that all the pictures in Figure 2 were also misclassified by the OpenCV algorithm. We

believe that in the first and last image, the presence of red leaves led the algorithm to believe that

it was rust. In the second image, the rust on the concrete section was wrongly classified as “rust”

in metal. The third image was more difficult to explain, however a reasonable explanation may be

the presence of the mesh pattern in the metal and a little reddish drift of the colours.

In Figure 3 are shown some examples of pictures classified as “non-rust”, while there was

actually rust. It seems that they have something in common, so the reason for the

misclassification may be that the system has “never seen” something similar. The two images on

the top were correctly categorized from the OpenCV, while the two bottom ones were not.

A few considerations about the confidence level of the Deep Learning model are also interesting.

We noticed that for most of the images the model gave us a “confident rate” above 80%. In 15%

of the images, this confidence was less than 80%. If we analyse this 15% in detail, we discovered

that actually 9 of those were wrongly classified, while only 6 were correct. By discarding these

Computer Science & Information Technology (CS & IT) 97

images we were able to increase the total accuracy from 78%to 88%. So the model already

provides us with a useful and reliable parameter that can be directly used to improve the overall

accuracy.

Figure 2: Example of picture wrongly classified as Rust from the Deep Learning model

Figure 3: Examples of pictures wrongly classified as No-Rust from the Deep Learning model

Even more interesting are the results from a possible combination of the two algorithms. In 77

images both the algorithms agree on the result. Of these 77 images, only 12 (3+9) were wrong.

This would have given us a partial accuracy of 92% for the “rust” and 78% for the “non-rust”.

Another interesting solution would be to use the OpenCV to filter out the “non-rust” image, and

then pass the possible rust image to the Deep Learning model. In this case we could potentially

98 Computer Science & Information Technology (CS & IT)

create a system much more accurate with an accuracy of 90% of “rust” and 81% for the “non-

rust”. More complex solutions are also possible, for example by discarding from the “possible

rust”, where the Deep Learning model has a confidence level less than 80%.

6. CONCLUSIONS

In this paper we presented a comparison between two different models for rust detection: one

based on red component detection using OpenCV library, while the second one using Deep

Learning models. We trained the model with more than 3500 images and tested with a new set of

100 images, finding out that the Deep Learning model performs better in a real case scenario.

However for a real application, it may be beneficial to include both the systems, with the

OpenCV model used just for removing the false positives before they are passed to the Deep

Learning method. Also, the OpenCV based algorithm may also be useful for the classification of

images where the Deep Learning algorithm has low confidence. In future work we will seek to

refine the model and train it with a new and larger dataset of images, which we believe would

improve the accuracy of the Deep Learning model. Subsequently, we will do some field testing

using real time video from real bridge inspections.

ACKNOWLEDGEMENTS

We would like to thank Innovation Norway and Norwegian Centres of Expertise Micro- and

Nanotechnology (NCE-MNT) for funding this project and Statens vegvesen and Aas-Jakobsen

for providing image datasets. Some of the pictures used were also downloaded from pixabay.com

REFERENCES

[1] A.Leibbrandt et all. “Climbing robot for corrosion monitoring of reinforced concrete structures” DOI:

10.1109/CARPI.2012.6473365 2nd International Conference on Applied Robotics for the Power

Industry (CARPI), 2012

[2] Jong Seh Lee, Inho Hwang, Don-Hee Choi Sang-Hyun Hong, “Advanced Robot System for

Automated Bridge Inspection and Monitoring”, IABSE Symposium Report 12/2008; DOI:

10.2749/222137809796205557.

[3] “Bridge blown up, to be built anew”, newsinenglish.no,

http://www.newsinenglish.no/2015/02/23/bridge-blown-up-to-be-built-anew/

[4] Gang Ji, Yehua Zhu, Yongzhi Zhang, “The Corroded Defect Rating System of Coating Material

Based on Computer Vision” Transactions on Edutainment VIII Springer Volume 7220 pp 210-220

[5] F Bonnín-Pascual, A Ortiz, “Detection of Cracks and Corrosion for Automated Vessels Visual

Inspection”, A.I. Research and Development: Proceedings of the 13th conference.

[6] N. Hwang, H. Son, C. Kim, and C. Kim, “Rust Surface Area Determination Of Steel Bridge

Component For Robotic Grit-Blast Machine”, isarc2013Paper305.

[7] Moselhi, O. and Shehab-Eldeen, T. (2000). "Classification of Defects in Sewer Pipes Using Neural

Networks." J. Infrastruct. Syst., 10.1061/(ASCE)1076-0342(2000)6:3(97), 97-104.

[8] Open CV, Computer Vision Libraries: OpenCV.org

Computer Science & Information Technology (CS & IT) 99

[9] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. D. Jackel:

“Backpropagation Applied to Handwritten Zip Code Recognition, Neural Computation”, 1(4):541-

551, Winter 1989.

[10] Torch, Scientific Computing Framework http://torch.ch/

[11] Tensor Flow, an open source software library for numerical computation,

https://www.tensorflow.org/

[12] Caffe Deep Learning Framework, Berkeley Vision and Learning Center (BVLC),

http://caffe.berkeleyvision.org/.

