

Natarajan Meghanathan et al. (Eds) : ICAITA, Signal, SAI - 2017
pp. 01– 13, 2017. © CS & IT-CSCP 2017 DOI: 10.5121/csit.2017.71301

ACCELERATED BAYESIAN OPTIMIZATION

FOR DEEP LEARNING

Ayahiko Niimi1 and Kousuke Sakamoto2

1Faculty of Systems Information Science, Future University Hakodate,
2-116 Kamedanakano, Hakodate, Hokkaido 041-8655, Japan

2School of Systems Information Science, Future University Hakodate,
2-116 Kamedanakano, Hakodate, Hokkaido 041-8655, Japan

ABSTRACT

Bayesian optimization for deep learning has extensive execution time because it involves several

calculations and parameters. To solve this problem, this study aims at accelerating the

execution time by focusing on the output of the activation function that is strongly related to

accuracy. We developed a technique to accelerate the execution time by stopping the learning

model so that the activation function of the first and second layers would become zero. Two

experiments were conducted to confirm the effectiveness of the proposed method. First, we

implemented the proposed technique and compared its execution time with that of Bayesian

optimization. We successfully accelerated the execution time of Bayesian optimization for deep

learning. Second, we attempted to apply the proposed method for credit card transaction data.

From these experiments, it was confirmed that the purpose of our study was achieved. In

particular, we concluded that the proposed method can accelerate the execution time when deep

learning is applied to an extremely large amount of data.

KEYWORDS

Deep Learning, Bayesian Optimization, Activation Function, Real Dataset

1. INTRODUCTION

In this paper, we propose a deep-learning automatic parameter-tuning method using an improved
Bayesian optimization.

Deep learning is a new approach, which has recently attracted considerable attention in the field
of machine learning. It considerably improves the accuracy of abstract representations by
reconstructing deep structures, such as the neural circuitry of the human brain. Moreover, deep
learning algorithms have been honored in various competitions, such as the International
Conference on Representation Learning.

However, a problem with deep learning is that its performance cannot be optimized unless
multiple parameters are appropriately tuned. Manual tuning of the parameters is performed based
on the experience and intuition of experts. To address this problem, many studies have
investigated automatic parameter tuning. Furthermore, it has been proposed that the learning
algorithm’s parameters can be determined by automatic parameter tuning. However, this requires
the original machine-learning algorithm to be repeated multiple times. If applied to a heavy
learning model, such as deep learning, this process becomes time-consuming.

2 Computer Science & Information Technology (CS & IT)

Therefore, in this study, we propose a deep-learning automatic parameter tuning method using an
improved Bayesian optimization, which is one of the methods used in automatic parameter-tuning
algorithms. The proposed method aims at accelerating the execution time of Bayesian
optimization for deep learning. This method focuses on the relation between output values and the
accuracy of each neuron. The output value of each neuron is obtained by substituting the total
input into the activation function (Relu). If this value is 0, then the feature value is also 0,
indicating that the neuron could not successfully extract the feature. In other words, the
probability that learning does not proceed increases as the number of 0’s in the output value of
each neuron increases. From this fact, when learning is performed using this method, the number
of 0s in the output value of each neuron excessively increases and learning stops. By performing
learning using the following parameters, the execution time of Bayesian optimization is
increased.

The novelty of this research is that Bayesian optimization is applied to deep learning. Bayesian
optimization has been applied to light learning models, but there have been no studies applied to
heavy learning models like deep learning. In this research, we explore the possibility of deep
learning using Bayesian optimization through experiments with actual credit card data.

This study is summarized as follows: first, in section 2 and 3, we describe deep learning and
Bayesian optimization. In section 4, we propose the improved Bayesian optimization for deep
learning. In section 5 and 6, we describe the experiment and results of the study, respectively.
Finally, in section 7, we discuss our conclusions and future work.

2. DEEP LEARNING

Deep learning is a new approach, which has recently attracted considerable attention in the field
of machine learning.

Deep learning is a generic term for multilayer neural networks that have been studied over several
years [1]-[3]. Multilayer neural networks reduce the overall calculation time by performing
calculations on hidden layers. Therefore, these networks are prone to excessive overtraining
because an intermediate layer is often used to approximate each layer.

Nevertheless, technological advancements have addressed the overtraining problem, while the use
of GPU computing and parallel processing has increased the tractable number of hidden layers.

A sigmoid or tanh function has been commonly used as the activation function (Equations (1) and
(2)). However, recently, the maxout function has also been used (section 2.1) and the dropout
technique has been implemented to prevent overtraining (section 2.2).

 (1)

 (2)

2.1. Maxout

The maxout model is simply a feed-forward architecture such as a multilayer perceptron or deep
convolutional neural network that uses a new type of activation function, the maxout unit [3].

In particular, given an input (may be either or a hidden layer’s state), a maxout
hidden layer implements the function

Computer Science & Information Technology (CS & IT) 3

 (3)

where , and are learned parameters. In a

convolutional network, a maxout feature map can be constructed by taking the maximum across
k affine feature maps (i.e., pool across channels, in addition to spatial locations). When training
with the dropout, in all cases, we perform element-wise multiplication with the dropout mask
immediately prior to multiplication by weights and the inputs not dropped to the max operator. A
single maxout unit can be interpreted as a piecewise linear approximation of an arbitrary convex
function. In addition to learning the relationship between hidden units, maxout networks also
learn the activation function of each hidden unit.

The maxout approach abandons many of the mainstays of traditional activation function design.
Even though the gradient is highly spare, the representation produced by maxout is not sparse at
all, and the dropout will artificially sparsify the effective representation during training. Although
the maxout unit may saturate on one side or another, this is a measure zero event (so it is almost
never bounded from above). Because a significant proportion of the parameter space corresponds
to the function delimited from below, maxout learning is not constrained. Moreover, the maxout
function is locally linear almost everywhere, in contrast to many popular activation functions that
demonstrate significant curvature. Considering all these deviations from thestandard practice, it
may seem surprising for the maxout activation functions to work however, we find that they are
very robust, easy to train with dropout, and achieve excellent performance.

 (4)

 (5)

2.2. Dropout

Dropout is a technique that can be applied to deterministic feedforward architectures that predict

an output given an input vector [3].

In particular, these architectures contain a series of hidden layers .

Dropout trains an ensemble of models comprising a subset of the variables in both and . The

same set of parameters are used to parameterize a family of distributions , where

 is a binary mask determining which variables to include in the model. For each

example, we train a different submodel by following the gradient for a different

randomly sampled . For many parameterizations of (usually for multilayer perceptrons) the

instantiation of the different submodels can be obtained by element-wise

multiplication of and with the mask .

The functional form becomes important when the ensemble makes a prediction by averaging the
submodels' predictions. Previous studies of bagging averages used the arithmetic mean. However,
this is not possible with the exponentially large number of models trained by dropout.
Fortunately, some models can easily yield a geometric mean. When

, the predictive distribution defined by renormalizing the

geometric mean of is simply given by . In other
words, the average exponential prediction for many submodels can be computed simply by
running the full model with the weights divided by two. This result holds exactly in the case of a
single layer softmax model. Previous work on dropout applies the same scheme to deeper

architectures, such as multilayer perceptrons, where the method provides only an

4 Computer Science & Information Technology (CS & IT)

approximation of the geometric mean. While this approximation is not mathematically justified, it
performed well in practice.

3. BAYESIAN OPTIMIZATION

The automatic parameter-tuning method automatically determines the machine-learning
parameters. Parameters are considerably important in machine learning, and the accuracy
significantly varies depending on how the parameters are set. However, a great amount of
knowledge and experience is required to determine appropriate parameters. Automatic parameter
tuning can complement knowledge and experience and make machine learning easier to handle.

Grid search is one of the automatic parameter-tuning techniques. In this technique, multiple
parameter combinations are made to determine the parameter with the best accuracy. However,
the problem with grid search is that there is a possibility that some parameter combinations which
were not tested may actually be the best parameters. However, if the number of combinations of
the tested parameters is increased, the execution time will be prolonged.

Another automatic parameter-tuning technique is Bayesian optimization. In this technique,
several parameters are tested and the parameter combinations are determined by predicting the
accuracy of parameter combinations that have not been tested. This method determines the
parameters by predicting a combination of multiple parameters and a parameter having a high
probability of being the most accurate one based on multiple parameters and their precision.

1) Predict the prior distribution of parameter accuracy in the Gaussian process.

2) Predict the posterior distribution from prior distribution by Bayesian estimation.

3) Search the combinations of parameters with the highest accuracy from posterior distribution

using the Markov chain Monte Carlo (MCMC) method.

4) Repeat steps 1)–3) to select the most accurate parameter.

In the Gaussian process, the prior distribution was assumed to be a normal distribution. From the
obtained data, the probability that data is obtained under certain parameters was defined as
likelihood. The Gaussian process uses the fact that the likelihood approaches the posterior
distribution. To find parameters with high probability of high accuracy from the accuracy of
multiple models, there are many methods. In this paper, we use Metropolis-Hastings (MH)
method.

In such a procedure, it is possible to predict a combination of parameters with the highest
accuracy and high probability. The problem in Bayesian optimization is that the combination of
the predicted parameters may not be the best parameter.

This method is a method for predicting accuracy and parameter prior distribution. The method is
performed in the following procedure. This method predicts the accuracy and parameter prior
distribution. It has the following procedure:

1) Find the accuracy of multiple parameters.

2) Assume that the accuracy of the obtained parameters follows the normal distribution and

predict the prior distribution.

Computer Science & Information Technology (CS & IT) 5

By implementing this procedure, prior distribution can be predicted.

Bayesian estimation is one of the methods used for Bayesian optimization. This method predicts
the accuracy and posterior distribution of parameters. In this method, the posterior distribution is
obtained using the Bayes’ theorem from the accuracy of the prior distribution, which is obtained
using the Gaussian process and multiple parameter combinations. Using Bayesian estimation, the
posterior distribution can be predicted.

The MCMC method is one of the methods used for Bayesian optimization [4]. This method
searches a parameter combination with the highest accuracy in the posterior distribution. This
method is a combination of the Markov chain and Monte Carlo method, each of which is
explained as follows:

• Markov chain: The next state is determined by the previous state; however, it is not
affected by the previous state.

• Monte Carlo method: This method generates random numbers from various probability
distributions.

The MCMC method involves the use of various methods, such as the Guinness sampling and
Metropolis–Hastings (MH) method. The MH method is generally used in this study and has the
following procedure:

1) Determine the transition destination of the point where multiple parameters obtained by the

Gaussian process are combined.

2) If the transition destination point has a higher probability of higher accuracy than the
transition point before the transition, the transition is rejected with a certain probability
when the probability of high accuracy is low. The reason for rejection is that it can enter a
different mountain by transitioning to a point with lower precision and can get off the
mountain of the local solution.

By repeating such a procedure, it is possible to search parameter combinations with a high
probability of high accuracy in the posterior distribution.

The difference between grid search and Bayesian optimization is whether or not to consider
parameters that have not been tested. In grid search, parameters are tested at regular intervals;
however, because there are parameters that are not tested, it is possible that parameters with the
best accuracy exist among these parameters. Bayesian optimization compensates for the defects
of grid search in order to estimate the parameters with the highest accuracy among all the
parameters from the accuracy of multiple and select parameters. However, as the estimated
parameter accuracy is not necessarily the highest, there is a possibility of choosing a wrong
parameter if the trial count is small.

This study deals with one of the methods used to accelerate Bayesian optimization by aiming to
speed up the MCMC method by locally creating an approximate posterior distribution [5]. The
MCMC method creates a posterior distribution from multiple parameters and precision values,
determines the next transition destination, and obtains the accuracy of the transition destination
parameter through the model; however, this operation is time-consuming. Therefore, speeding it
up will also speed up the operation of the MCMC method.

6 Computer Science & Information Technology (CS & IT)

4. PROPOSED METHOD FOR ACCELERATING THE MCMC METHOD

In this research, the proposed method aims to accelerate the execution time of Bayesian
optimization for deep learning. It focuses on the relation between output values and the accuracy
of each neuron. The output value of each neuron is obtained by substituting the total input into the
activation function (Relu). If this value is 0, the feature value is also 0, indicating that the neuron
was not successful in extracting the feature. In other words, the probability that learning does not
proceed increases as the number of 0s in the output value of each neuron increases. Consequently,
when learning is performed, the number of 0’s in the output value of each neuron excessively
increases and learning is stopped. By performing learning with the following parameters, the
execution time of Bayesian optimization is increased.

The feature of the proposed method is to assess when learning becomes excessive and then stop
it. Normal Bayesian optimization follows the procedure summarized below:

1) Find the accuracy of the deep-learning model with randomly determined parameters.

2) Find parameters with high probability of high accuracy from the accuracy of multiple

models.

3) Calculate the accuracy of the deep-learning model with the obtained parameters.

4) Accurately compute parameters with high accuracy by adding the obtained parameters and
accuracy.

5) Repeat steps 3) and 4) multiple times.

6) Select the parameter with the highest accuracy.

In this method, low-accuracy learning is performed for a number of learning times, which is time-
consuming. The proposed method solved this problem and follows the procedure summarized
below:

1) Find the accuracy of the deep-learning model with randomly determined parameters

.
2) Find parameters with high probability of high accuracy from the accuracy of multiple

models.

3) Calculate the accuracy of the deep-learning model with the obtained parameters. At this
time, the output of the first and second layers of the model is obtained; learning which has
not advanced is stopped.

4) Accurately compute parameters with high accuracy by adding the obtained parameters and
accuracy.

5) Repeat steps 3) and 4) multiple times.

6) Select the parameter with the highest accuracy.
At the point where step 3) is different from normal Bayesian optimization, by stopping learning
that has not advanced by performing this procedure, the proposed method can increase the
execution time.

Computer Science & Information Technology (CS & IT) 7

We used Python as the implementation language. The reason for using Python is because it can
use TensorFlow and because it contains libraries that allow fast calculation of NumPy arrays.

In addition, a program for deep-learning modeling called TensorFlow was used because it allows
calculating only the necessary parts when obtaining the output value of the neuron necessary for
implementing the proposed method. This is because the speed can be increased.

Implementation was performed according to the following procedure.

1) Create a program to develop deep-learning models for deep learning.

2) Prepare a program to calculate the number of neuron output value 0 from the deep-learning

model.

3) Create a program that can stop the model to learn from the number of neuron’s 0 output
values.

4) Create a Bayesian optimization program.

5) Combine a program that can stop the model to learn from the number of neuron’s 0 output
values and a program of Bayesian optimization.

Development was conducted in the following environment:

Table 1. The Development Environment

OS Memory # of CPU Python TensorFlow

Amazon Linux 1GB 1 Anaconda
3-4.2.0

0.11.0

TensorFlow is an open-source software library for numerical calculation using a data flow graph.
As it was developed for machine-learning applications and deep-learning research, it comes with
many functions essential for deep learning. TensorFlow was utilized due to its suitability to the
intended purpose of this study [6].

TensorFlow can speed up calculation time by performing only the necessary calculations. We will
explain the procedure when we want to obtain the output y(x) of the intermediate layer of the
three-layer neural network, as shown in Fig.1. Calculations are made according to the following
procedure.

1) First, define the number of neurons in each layer, weight (w), bias (b), weight adjustment

method (e.g., gradient descent method), activation function, and calculation formulae.

2) Assign training data and real values, such as weight w, to the definition.

3) We used weight (w), bias (b), and input (x) from the output y(x) calculation formula.

4) Construct the minimum necessary model from the judged contents. In other words, create a
model with layers other than the output layer.

By design, TensorFlow makes it possible to assess which calculations are essential and perform
those calculations only.

8 Computer Science & Information Technology (CS & IT)

Figure 1. Auto Encoder

5. EXPERIMENT 1: IRIS DATASETS

To verify the effectiveness of the proposed method, we used the Iris dataset to conduct an
experiment [7]. The dataset contained 3 classes of 50 instances each, where each class referred to
a type of an iris plant. (Table 2)

Table 2. The Iris Dataset

of data # of training # of test # of attributes # of classes

150 120 30 4 3

Bayesian optimization and the proposed method were performed 5 times. The parameters
determined by Bayesian optimization are the Neuron number (1 - 30), the learning coefficient of
the gradient descent method (0.1, 0.2, and 0.3), and the number of learning (2 - 1001). The
experimental results are summarized in Tables 3 and 5.

Table 3. The Result of Bayes Oprimization (Iris)

of learning # of neurons Accuracy Calculation time(s)

28206 772 0.9833 153.7447

27202 782 0.9833 154.5802

27248 797 0.9833 153.6453

26004 796 0.9833 151.6539

27259 805 0.9833 154.4179

Computer Science & Information Technology (CS & IT) 9

Table 4. Result of the Proposed Method (Iris)

 # of

learning

(Original)

 # of

learning

(Actual)

 # of learning

(Reduction)
of Models

(Low

Accuracy)

of total

nurons
Accuracy Calculation

time(s)

 27316 16256 11060 17 831 0.9916 145.9402

 27212 16195 11017 21 795 0.9833 145.6388

 29067 23083 5984 10 760 0.9833 150.9196

 27035 19124 7911 13 820 0.9916 145.0893

 26590 18446 8144 13 822 0.9833 146.4700

Based on the results, a speed increase of approximately 9s without loss in precision was observed.
However, because the dataset and the decrease in the time needed were small, we considered
testing our method using a larger dataset; therefore, we conducted experiments with credit card
transaction data.

6. EXPERIMENT 2: CREDIT CARD TRANSACTION DATASET

The datasets for credit card transactions are as follows:

1) Credit approval dataset

2) Card transaction dataset

6.1. Credit approval dataset

For each user submitting a credit card application, a record of the decision to issue the card or
reject the application is maintained. This is based on user attributes in accordance with general
usage trend models.

However, to reach this decision, it is necessary to combine multiple models, each referring to a
different clustered group of users.

6.2. Credit card transaction data

In actual credit card transactions, the data is complex, constantly changing, and continuously
arriving online as follows:

i. Data of approximately one million transactions arrive daily.
ii. Each transaction takes less than 1 s to complete.

iii. Approximately 100 transactions are done per second during peak time.
iv. Transaction data arrive continuously.

Therefore, it is accurate to consider credit card transaction data as a stream. However, even if we
use data mining for such data, an operator can only monitor approximately 2,000 transactions per
day. Thus, suspicious transaction data should be effectively detected by analyzing less than
0.02% of the total number of transactions. In addition, fraud detection from the analysis of
massive amounts of transaction data is extremely low because real fraud occurs at an extremely
low rate, i.e., within a range of 0.02% - 0.05% of the amount of all analyzed transaction data.

10 Computer Science & Information Technology (CS & IT)

In a previous study, the transaction data in CSV format were described as being attributed to a
time order [8]. Credit card transaction data have 124 attributes, of which 84 are transactional data,
including an attribute used to indicate fraudulent activity. The remaining data are behavioral data
and are relevant to credit card usage. The inflow file size is approximately 700 MB per month.

Mining the credit card transaction data stream involves difficulties as it requires performing
efficient calculations on an unlimited data stream with limited computing resources; therefore,
many stream-mining methods seek an approximate or probabilistic solution instead of an exact
one. However, as actual unauthorized credit card use is very less, these imprecise solutions do not
appropriately detect frauds.

We are currently researching how to apply credit card data to ordinary deep learning [9], [10].

We apply the method proposed in this paper to credit card transaction data. As experiments
cannot be conducted at universities due to security issues, we collaborate with non-academic
researchers.

6.3. Credit card transaction data (Random Dataset)

In this study, the proposed method was also validated using a large credit card transaction dataset.
We constructed this dataset from the actual credit card transaction dataset, which contained 129
attributes with random values within the same range specified for each attribute. The dataset
contained approximately 32,000 transactions, including approximately 218 instances of illegal
usage. While pre-processing deleted attributes, including null value and character string
attributes, the number of attributes changed from 129 to 64 attributes. Because this dataset
contained random values, it cannot be used to evaluate accuracy. Instead, experiments were
conducted to confirm whether the calculation time could be reduced using the proposed method.

The percentage of fraudulent transactions in the dataset was considerably low. In the experiment,
we used all illegal activity occurrences (218 instances) and a sample of normal usage activity
(218 instances). The results of the experiments are summarized in Tables 5 and 6.

Table 5. Result of Bayes Oprimization (Credit Card)

of learning # of neurons Accuracy Calculation time(s)

14942 1526 0.5481 208.9575

Table 6. Result of the Proposed Method (Credit Card)

 # of

learning

(Original)

 # of

learning

(Actual)

 # of

learning

(Reduction)

of Models

(Low

Accuracy)

of

total

nurons

Accuracy Calculation

time(s)

 16174 11657 4517 7 1568 0.5298 188.7191

Based on the experimental results, our method could speed up the execution time by
approximately 20s while maintaining the same precision. This result showed that it is highly
probable that the proposed method can speed up the execution time if the amount of data is large.

6.4. Credit card transaction data (Real Dataset)

In this paper, we apply the proposed method for real transaction dataset from real system.

Computer Science & Information Technology (CS & IT) 11

Because all the data is enormous, sampled data was used. The use samplinged dataset as follow
(see in Table 7)

Table 7. Credit Transaction Dataset

Number of Instances: 120,000

Number of Attributes 125

Number of Instance for Training: 20,000

Class Distribution for Training: illegal : 382 (1.91%), legal : otherwise.

Number of Instance for Test: 100,000

Class Distribution for Test: illegal : 1148 (1.148%), legal : otherwise.

Verification was conducted while changing the number of sampling.

In the experiment, we use the following environment.

i. OS Linux (VM on Windows7 64bit)
ii. CPU Intel i303229 3.30 GHz

iii. Memory 4GB
iv. Disk 500GB

We used the following indexes for evaluation.

i. Correct answer rate: Among the transactions deemed to be illegal, the ratio of
transactions that were illegal

ii. Detection rate: The ratio of transactions judged to be invalid among all illegal
transactions

Table 8 shows the experimental results.

As for the tuning (sampling 1), since there was a date to distinguish all test data as illegal, the
result rate was low. For tuning (sampling 2), the detection rate was lower than Deep Learning
alone, but the accuracy rate slightly improved. Since the number of trials is small, it is necessary
to repeatedly verify in order to obtain a general-purpose result.

Table 8. Result of the Proposed Method (Real Credit Card)

 Deep

Learning

(10 times

learning)

Deep

Learning

(20 times

learning)

Auto-Tuing

(sampling 1)
Auto-Tuning

(sampling 2)

of Illegal Judgment 2986 1862 21887 1473

of True Illegal in Judgement 567 574 608 466

Correct Answer Rate 18.99% 30.83% 2.78% 31.63%

Detection Rate 49.39% 50.00% 52.96% 40.59%

12 Computer Science & Information Technology (CS & IT)

7. CONCLUSIONS

In this paper, we proposed a deep-learning automatic parameter-tuning method with improved
Bayesian optimization.

Deep learning is a new approach, which recently attracted considerable attention in the field of
machine learning. However, a problem with deep learning is that it cannot demonstrate
satisfactory performance unless multiple parameters are appropriately tuned. Bayesian
optimization for deep learning is time-consuming because it involves several calculations and
parameters. To solve this problem, this study aimed to accelerate the execution time by focusing
on the activation function’s output that is strongly related to accuracy. In this study, we developed
a technique to accelerate the execution time by stopping the learning model so that the activation
function of the first and second layers would become zero. Two experiments were conducted in
order to confirm the effectiveness of the proposed method. We first used the Iris dataset,
implemented the proposed method, and compared its execution time with the execution time of
Bayesian optimization. Based on the experimental results, the proposed method could accelerate
the execution time by approximately 9s while maintaining the same precision. Therefore, we were
successful in accelerating the execution time of Bayesian optimization for deep learning. Second,
we applied our proposed method to analyze the credit card transaction data. Based on the
experimental results, our method could accelerate the execution time by approximately 20s while
maintaining the same precision. The results of the experiments demonstrate that the purpose of
this study was achieved. In particular, we concluded that the proposed method can achieve a
faster acceleration when deep learning is applied to an extremely large amount of data.

In the future, we will apply the proposed method to analyze the actual credit card transaction data
and verify the acceleration effect with real large-scale data. We will also consider improving the
Bayesian estimation algorithm.

ACKNOWLEDGEMENTS

The authors would like to thank Intelligent Wave Inc. for their comments on credit card
transaction datasets.

This work was supported by JSPS KAKENHI Grant Number JP17K00310.

REFERENCES

[1] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends in Machine Learning, vol.

2, no. 1, pp. 1–127, Jan. 2009. [Online]. Available: http://dx.doi.org/10.1561/2200000006

[2] Q. Le, “Building high-level features using large scale unsupervised learning,” in Acoustics, peech

and Signal Processing (ICASSP), 2013 IEEE International Conference on, May 2013, pp. 8595–8598.

[3] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Maxout Networks,”

ArXiv e-prints, Feb. 2013.

[4] S. Chib, “Markov chain monte carlo methods: computation and inference,” Handbook of

econometrics, vol. 5, pp. 3569–3649, 2001.

[5] P. R. Conrad, Y. M. Marzouk, N. S. Pillai, and A. Smith, “Accelerating Asymptotically Exact MCMC

for Computationally Intensive Models via Local Approximations,” ArXiv e-prints, Feb. 2014.

Computer Science & Information Technology (CS & IT) 13

[6] Tensorflow. (Access Date: 6 April, 2017). [Online]. Available: https://www.tensorflow.org/

[7] M. Lichman, “UCI machine learning repository,” 2013, (Access Date: 6 April, 2017). [Online].

Available: http://archive.ics.uci.edu/ml

[8] T. Minegishi and A. Niimi, “Proposal of credit card fraudulent use detection by online-type decision

tree construction and verification of generality,” International Journal for Information Security
Research (IJISR), vol. 1, pp. 229–235, 2013.

[9] A. Niimi, “Deep learning for credit card data analysis,” in World Congress on Internet Security

(WorldCIS-2015), Dublin, Ireland, Oct. 2015, pp. 73–77.

[10] A. Niimi, “Deep learning with large scale dataset for credit card data analysis,” in Fuzzy Systems and

Data Mining II, Proceedings of FSDM 2016, ISO Press, Macau, China, Dec. 2016, pp. 149–158.

AUTHORS

Ayahiko Niimi is Associate Professor of Future University Hakodate, and Kousuke
Sakamoto is master student of its University.

