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ABSTRACT 

 

Distribution network is an integral part of power system and it acts as the interface with 

consumer load points. The network incurs significant amount of losses in the electrical system. 

Loss minimization remains one of the prime objectives in distribution network optimization. This 

paper proposes an application of L-SHADE algorithm to simultaneously size and place both 

distributed generators (DGs) and shunt capacitors (SCs) in distribution network to reduce 

system real power loss. SHADE is the success history based parameter adaptation technique of 

differential evolution (DE). L-SHADE improves the performance of SHADE by linearly 

reducing the population size in successive generations. The algorithm is applied to minimize 

loss in standard IEEE 33-bus radial distribution network (RDN) and the simulation results are 

compared with some recent studies on the topic. 
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1. INTRODUCTION 

 
Mitigating ever increasing load demand is one of the major challenges faced by utility companies. 

It may not always be feasible to boost capacity of transmission network. Locally installed 

distributed generators (DG) and added shunt capacitor (SC) banks in the system can augment the 

capacity, reduce losses, improve voltage profile and power quality of the network. Distributed 

generators can be a diesel generator, a wind turbine, solar photovoltaics (PV), fuel cells etc. 

Optimal sizing and siting of both distributed generators and shunt capacitors are of significance in 

improving system performance. Several literatures [1-3] focused on optimal sizing and placement 

of DGs only in pursuit of real power loss minimization. A network comprising both DG and SC 

has been studied in few literatures. Naik et al. [4] took analytical approach to optimally size and 

locate both the components. In most recent papers, heuristic methods such as hybrid harmony 

search algorithm (HSA) and particle artificial bee colony (PABC) [5], intersect mutation 

differential evolution (IMDE) [6] and back-tracking search algorithm (BSA) [7] have been 

applied for optimal design of capacity and placement of both distributed generators and shunt 
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capacitors. Ref. [8] optimizes size and location of both DG and SC in various networks with 

simultaneous minimization of both real and reactive power losses using decomposition based 

multi-objective evolutionary algorithm (MOEA/D). 

 

The current study implements L-SHADE [9] algorithm to optimally locate and size both DG and 

SC in radial distribution network. SHADE [10]is a success history based parameter adaptation 

technique of DE optimization process for a constrained, multimodal non-linear problem. The 

convergence of the algorithm to global optima is fast and it potentially outperforms most other 

DE variants on CEC benchmark problems [9]. SHADE exhibited good performance in optimal 

power flow solutions [11]. In recent times L-SHADE has successfully been applied and has 

shown very competitive performance in windfarm layout optimization [12], in total harmonic 

distortion minimization of multilevel inverters [13], in hybrid active power filter parameter 

optimization [14] etc. Motivated by the growing application and noteworthy performance of L-

SHADE in power domain, we apply the algorithm on the problem of radial distribution network 

(RDN). The distribution network is to be reinforced with optimally sized and appropriately placed 

DGs and SCs so that network real power loss is minimized. As an obvious fact, the problem is 

about simultaneous optimization of discrete variables i.e. locations (bus nos.) of all the 

components and continuous variables i.e. ratings of all the components. Further, the problem is 

non-linear due to the requirement of power flow calculation that involves numerous system 

components.  

 

The organization of rest of the paper is done following way. Section 2 includes the mathematical 

formulation of power flow in distribution network. Section 3 describes the algorithm and its 

application. Section 4 discusses the case studies and simulation results. The paper ends with 

conclusion and possible future work in section 5. 

 

2. MATHEMATICAL MODEL 

The mathematical formula pertaining to power flow in the network are presented in this section 

with the aid of a simple feeder configuration. 

2.1. Power flow formulation 

P0 ,Q0 P1 ,Q1 Pj-1 ,Qj-1 Pj ,Qj Pj+1 ,Qj+1 Pm ,Qm

0 1 j-1 j j+1 m

PL1 ,QL1 PLj-1 ,QLj-1 PLj ,QLj PLj+1 ,QLj+1 PLm ,QLm

 

Fig. 1. Single line diagram of a radial feeder [8] 
 

Single line diagram of a simple feeder-line configuration is shown in Fig. 1. The computation of 

power flow is performed by following equations [8]: 

 ���� = �� − ����� − ��,���. ��� + ��
�����  (1) 
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��� = � − ���� − ��,���. ��� + ��
�����  (2) 

 ������� = ����� − 2���,���. �� + ��,���. ��
+ ���,���� + ��,�����. ��� + ��

�����  
(3) 

where, real power and reactive power flowing out of bus � are ��  and � respectively; ����� and ����are the real load and reactive load connected at bus � + 1. Line section between buses � and � + 1 has resistance ��,��� and reactance ��,���. ���� is the voltage magnitude of bus	�. The power 

loss in line segment connecting buses � and � + 1 is computed using following equation: 

 

 

�����(�, � + 1) = ��,���. ��� + ��
�����  

            

(4) 

where, real power loss is defined by �����. Total real power loss, the optimization objective in the 

network, is obtained by summing up all the line losses as follows: 

 

 ������ = � �����(�, � + 1)
���

�� 
 (5) 

In this study, we consider DG units supplying real power with unity power factor e.g. photo-

voltaic systems, micro turbines etc. Therefore, if a DG, delivering power output of �!" , is added 

to a bus (say �-th bus), the load in that bus changes from ��� to (��� −�!"). Similarly, if #-th bus 

in the system has inductive load of $, an addition of % unit of capacitor bank alters the reactive 

load to ($ − %). During the search process, the algorithm checks all possible locations with all 

probable ratings of the equipment to decide best combination that results in minimum power loss. 

2.2. Constraints 

Magnitude of any bus voltage must lie within specified limits of maximum and minimum 

voltages. Current in any branch shall not exceed the rated capacity of the branch. Mathematically, 

these can be written as: 

 ��&' ≤ ���� ≤ ��)* (6) 

 �+�,���� ≤ +�,���(,-.) (7) 

where, ��)* and ��&' are the maximum and minimum allowable voltages for any bus in the 

network. The numerical values of these parameters for the systems are considered as 0.90 p.u. and 

1.05 p.u. respectively. �+�,���� is the magnitude of current flowing in the line linking bus � and bus � + 1, while +�,���(,-.) is the maximum permissible current through the same branch considering 

the thermal capability limit of the line. It is worthwhile to mention that current carrying capacities 

of the branches in IEEE bus system are not explicit. Moreover, as installation of DGs and SCs 

improve the voltage profile of the network, the current reduces from the base configuration. 

Hence, verification of this constraint is not necessary. 
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3. L-SHADE ALGORITHM AND APPLICATION 

Differential Evolution (DE) is a stochastic, population based optimization algorithm [15]. 

SHADE [10] is success history based adaptive DE where control parameters scaling factor (F) 

and crossover rate (CR) are automatically adjusted during the evolution process. Algorithm L-

SHADE [9] is an extension of SHADE. In L-SHADE, the population size is dynamic and it 

reduces in successive generations following a linear function. The algorithm alongwith its 

applicationon RDN problem is briefly described in this section. 

3.1. Initialization 

Firstly, DE optimization process creates an initial population of probable solutions by assigning 

random values (within feasible bound) to each decision vector of the population. Initialization of 

j-th component of i-th decision vector is done as [16]: 

 

 /&,�( ) = /�&',� + 0123&�40,16 ∗ (/�)*,� − /�&',�) (8) 

 

where 0123&�40,16 is a random number lying between 0 and 1. The superscript ‘0’ signifies 

initialization of population members. 

3.2. Mutation 

In next step during mutation process, donor/mutant vector 8&(9) is created corresponding to each 

population member or target vector /&(9) in the current generation t. The mutation strategy used 

here is ‘current-to-pbest/1’: 

 8&(9) = /&(9) + :&(9). �/;<=�9(9) − /&(9)� + :&(9). (/>?@(9) − />A@(9)) (9) 

 

The mutually exclusive integers ��&&��&  are randomly chosen from the population range [1, Np]; /;<=�9(9)
 is randomly selected from top 100B%	(B ∊ 40,16) individuals of current generation. The 

positive control parameter :&(9) scales the difference vectors at E-th generation. The mutation 

strategy adopted in L-SHADE helps to exploit the search space efficiently and converge into an 

optimal solution. 

3.3. Parameter adaptation 

At each generation t, each individual has its own :&(9)and F�&(9)parameters that are used to 

generate the trial vector. Adaptation of these two parameters follows as: 

 

 :&(9) = 0123G(μ:I(9), 0.1) (10) 

 

 F�&(9) = 01232(μF�I(9), 0.1) (11) 

 

where	01232(μF�I(9), 0.1) and 0123G(μ:I(9), 0.1) are the sampled values from Normal and 

Cauchy distributions respectively. Normal distribution has a mean of μF�I(9)and a variance of 0.1. 

Location and scale parameters of Cauchy distribution are μ:I(9)and 0.1 respectively. μ:I(9)&μF�I(9) are randomly chosen from successful candidates of past generations saved in a 
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memory. The two values are initialized to 0.5 and subsequently modified by weighted Lehmer 

mean [9,10]. 

3.4. Crossover 

Donor vector 8&(9) enters into the trial/offspring vector J&(9) = (J&,�(9), J&,�(9), … . . , J&,L(9)) by mixing its 

components with target vector /&(9) through crossover. Binomial crossover is most commonly 

employed and it operates on each element based on adapted crossover rate F�&(9). The scheme for 

an element is defined as: 

 J&,�(9) = M8&,�(9)if	� = �I)'Lor0123&,�40,16 ≤ F�&(9),
/&,�(9)otherwise

W (12) 

where �I)'L is a randomly chosen natural number in {1,2,….,d}, and d is the dimension of the 

decision vector. 

3.5. Linear population size reduction 

The success of SHADE algorithm is attributed to the adaptation technique of scale factor : and 

crossover rate F�.It has also been found that dynamic reduction in population size improves 

performance of SHADE. L-SHADE precisely implements the task by introducing a linear 

function for reduction of population size in successive generations. The population size starts 

with XB&'&(initial population size) and reduces closely matching the linear function before finally 

ending with XB�&' (minimum population size).After each generation t, the population size in 

subsequent generation E + 1 is calculated by – 

 XB(E + 1) 	= 	0YJ23 Z[XB�&' − XB&'&X:\�)* ] . X:\ + XB&'&^ (13) 

XB�&' is set to 4 because mutation strategy adopted here requires minimum 4 individuals. X:\�)* is the maximum number of fitness evaluationsandX:\ is the current number of fitness 

evaluations. If XB(E + 1) < XB(E), worst ranking individuals totalling [XB(E) − XB(E + 1)] are 

removed from the population [9]. A summary of steps involved in the optimization process is 

provided herein. 

A. Input and initialization: 

 

1. Input XB&'& = 100, X:\�)* = 20000. 

 

2. Define vector / = 4BY`aEaY2, 01Ea2b6 and range of all these elements. We have 2 DG and 2 

SC to size and allocate. So, a maximum of 4 elements for BY`aEaY2 (bus no.) and 4 elements 

for 01Ea2b will form vector / (maximum, 3 = 8). Elements of position will always be 

rounded off to nearest integer. 

 

3. Create random initial population of 100 such vectors defined as /& as per equation (8), i = 

1,2,…100. 

 

4. Set generation counter t = 0, dynamic population size XB(E) = XB&'&, evaluation counter X:\ = 1 and control parameters μ:I( ) = μF�I( ) = 0.5. 

 

B. Algorithm loop: 
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1. Evaluate e f/&(9)g i.e. ‘������’ in equation (5) for /&(9)where i = 1 to Np. Increase counter 

NFE by Np i.e. NFE = NFE + Np. 

 

2. while termination criteria X:\ < X:\�)*do 

 

3. fori = 1 to Np do 

--------------- 

4. Adapt control parameters :&(9) and F�&(9) as per equations (10) & (11). 

 

5. Perform mutation to generate vector 8&(9) as per equation (9).  

 

6. Perform crossover to generate element J&,�(9) as per equation (12). 

 

7. Evaluate e fJ&(9)g i.e. ‘������’ for J&(9). Increase evaluation counter NFE by 1 i.e. NFE = 

NFE+1. 

8. Select best fit individuals for next generation. If, e�u&(9)� ≤ 	e f/&(9)g and constraints in eq. 

(6) & (7) are satisfied, /&(9��) = J&(9). Else /&(9��) = /&(9). 
 

End for loop. 

------------------ 

9. Update population size for next generation XB(E + 1) as per LPSR strategy in equation (13). 

 

10. Increase generation counter t = t+1. Go to step 2 of algorithm loop. 

 

4. CASE STUDY RESULTS AND COMPARISON 

IEEE 33-bus standard radial distribution network (RDN) diagram is provided in Fig. 2. Total load 

of the network is 3.72 MW and 2.3 MVAr. The maximum cumulative capacities of DGs (unity 

power factor) and capacitor banks in the installation are not to exceed 2 MW and 2 MVAr 

respectively. Table 1 summarizes the case description, results and comparison. 3 case studies are 

performed for the RDN. Case-1 deals with addition of only DGs in the network. Case-2 is study 

of the RDN when only SCs are added, while Case-3 considers both DGs and SCs. Average 

runtime in normal PC for most complex Case-3 is about 90 seconds for one complete run of the 

algorithm (i.e. X:\�)* = 20000 function evaluations) on MATLAB platform. As can be seen 

from the tabulated results, increasing number of DG and SC reduces the system loss drastically. 

However, as in [6], we consider maximum 2 nos. of DG and 2 nos. of SCs that can be connected 

to the network. The loss data given by L-SHADE algorithm for all cases are the lowest. In Case-

1, bus location and equipment ratings proposed by L-SHADE, IMDE and BSA are quite similar. 

However, bus-13 for allocation of one DG is preferred to bus-14 for effectiveness in loss 

reduction. In Case-2, cumulative ratings of SCs suggested by both IMDE and L-SHADE are 

almost equal. Again, bus-12 is advantageous location for one SC rather than bus-14. Ratings 

proposed by L-SHADE for SCs are higher in Case-3 when compared with IMDE algorithm. 

However, resulting network loss, the prime objective of optimization, is much reduced with little 

reshuffle in placement of both DG and SC. 
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Fig. 2: Standard IEEE-33 bus test system 

Table 1. Simulation results for IEEE 33-bus radial distribution network 

 

1
Values are recalculated with the proposed ratings of DG and SC [6] 

 

Fig. 3 shows convergence of L-SHADE for Case-3. As observed from the diagram, the algorithm 

converges in less than 8000 fitness evaluations. Linear population size reduction technique is 

demonstrated in Fig. 4 where the population size reduces almost linearly to 4 individuals. Fig. 5 

indicates bus voltage profiles for various case studies performed in this literature. Voltages of all 

buses are within the allowable limits. Further, more uniform voltage profile is obtained when 

multiple components with smaller ratings are distributed throughout the network. 
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Fig. 3: Convergence of L-SHADE algorithm for Case-3 

 

Fig. 4: Linear population size reduction of L-SHADE algorithm for Case-3 
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Fig. 5: Bus voltage profile of 33-bus system for various case studies 

5. CONCLUSION 

The present paper discusses in detail the application and usefulness of L-SHADE optimization 

algorithm for deciding the rating and location of DG and SC simultaneously in the distribution 

network to reduce real (active) power loss. Size and location proposed by the algorithm for the 

equipment lead to lower system real power loss than the loss achieved by other equivalent 

algorithms. Reduction of loss by any amount is of technical and commercial advantage. Further 

the algorithm converges to the optimal solution very fast. The effectiveness of the algorithm in 

reducing loss in the networks with large number of buses remains the topic for future study. 
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