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ABSTRACT 

 
A method to resolve cyclic ambiguities and increase the accuracy and the resolution in the 

direction-of-arrival (DOA) estimation using the Estimation of Signal Parameters via Rotational 

Invariance Technique (ESPRIT)algorithm is proposed. It is based on rotating the array and 

sampling the received signal at multiple positions. Using this approach, the gain in accuracy 

and resolution is addressed as function of the mean and variance of the DOA.  Simulations 

results are provided as a means of verifying this analysis. 
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1. INTRODUCTION 
 

Because of the widespread use of sensor arrays, and the continuing development of their 

capabilities, sensor arrays have experienced an increased range of applications.  One of these 

applications that has been given special attention is the high resolution direction-of-arrival (DOA) 

estimation.  This estimation is mainly based on the processing of the received signal to extract the 

desired parameters of DOA of plane waves upon which the sensor outputs depend. The 

estimation of Signal Parameters by Rotational Invariance Techniques (ESPRIT) is one of the 

many approaches that have been used for implementing the DOA functions[1].In essence, and for 

the narrowband direction-of-arrival case, ESPRIT algorithm estimates a unitary diagonal matrix 

Φ with diagonal elements, given by die ij
i ,...1; == − µϕ , where d is the number of sources 

impinging on the array from distinct locations dθθθ ,...,, 21 , as shown in Figure 1, and where the 

parameters dii ,...,1; =µ , denote the phase shifts to be estimated.  For a uniform linear array 

(ULA), it is well known that the phase shift µ is related to the angle of arrival θ  by 
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λθπµ /sin2 D=       (1) 

where λ is the wavelength of the narrow-band signal and D is the displacement vector between 

two sub-arrays.   

Various algorithms were proposed successively to improve the ESPRIT performance. However, 

much of the studies show that the performance of these algorithms depends only on the number of 

snapshots(n), the number of array sensors(m), and the signal-to-noise (SNR) of the received array 

signals [2 ]-[5]. 

 

Further in [6]-[8], it was shown that the performance is improved by using multi-scale method, 

where the short )2/( λ≤D and long baselines )2/( λ>D are, respectively, utilized to derive the 

coarse unambiguous and fine ambiguous estimates for each signal. The final DOA estimate in 

this case is determined by using the coarse estimate to disambiguate the fine estimate. 

 

This work shows that the performance of the ESPRIT algorithm is also constrained by the angle 

of arrivals of incidence with which the sources are impinging the array, and that the ESPRIT 

algorithm produces ambiguities in the estimated DOAs when the antenna element spacing on the 

linear array has a measurement error [9]-[10], or when the sources are impinging on the array 

with an angle of incidence along-side the ULA, especially for low SNR and limited number of 

snapshots. 

 

The purpose of this work is to show that by rotating the array and sampling the received signal at 

multiple positions, ambiguities in the DOA estimates are resolved and also more accurate DOA 

estimates are obtained. Using this approach, the gain in accuracy and resolution are addressed as 

function of the mean and variance of the angle of arrival errors of the sources.   An analysis of 

simulation results is provided to verify the method described. 

 

2. PROBLEM FORMULATION 

 
This section formulates the DOA estimation problem when using the ESPRIT algorithm and 

shows that its performance depends on the angle-of-arrival (incidence) with which the source is 

impinging the array. Also it describes the ambiguities produced in the estimated DOA results, 

when the antenna element spacing on a linear array is more than half a wavelength because of 

measurement errors, or when the sources are impinging on the array at an angle of incidence 

along-side the ULA. 

 

2.1. Data Model 

 
Consider an array consisting of two sub-arrays as shown inFigure1. Each sub-array consists of m 

elements.  The two sub-arrays are assumed to be overlapping, and separated by a displacement 

vector D(where Dis a fixed distance equal or smaller than half a wavelength).  Assume that 

md < narrow-band sources impinge on the array from distinct locations dθθθ ,...,, 21 .For 

simplicity, it is assumed that the sources are narrow-band, no-coherent, coplanar, and that they 

are in the far field of the array.  This assumption allows modeling the propagation delays between 

sensor elements as simple phase shifts, and thus the only parameters that characterize the sources 
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locations are their DOAs. In this case, the output at any sensor of the array is the superposition of 

the individual emitter’s signals- )(,...),(),( 21 tststs d , weighted by the sensor response. 

 

Figure 1. Array Configuration 

The received signal at the th
k sensor can be written as  
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where )( ik θτ  is the propagation delay between a reference point and the th
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waveform impinging on the array from direction iθ , )( ika θ  is the corresponding sensor element 

complex response (gain and phase) at frequency 0ω , and )(tnk  is the additive noise at the th
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θτωθτωθτω θθθθ −−−=  to be the data model 

representing the outputs of the m sensors of the first (reference) sub-array, then the data model 

representing the outputs of the m sensors is given by 
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Now by letting













= )(...,),(),()( 21 daaaA θθθθ , ( )Td tstststS )(....,),(),()( 21= , and 

( )Tm tntntntN )(....,),(),()( 002010 = , )(0 tX  can be rewritten as: 

    )()()()( 00 tNtSAtX += θ     (4) 

where )(θA is called the direction matrix.  The columns of )(θA are elements of a set, termed the 

array manifold, composed of all array response vectors obtained as θ ranges over the entire space.  
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Likewise, the data model representing the outputs of the m sensors of the second sub-array is 

given by 

 

)()()()( 11 tNtSAtX +Φ= θ     (5) 

where 
T

m tntntntN ))(....,),(),(()( 112111 = , and where Φ is the previously defined unitary 

diagonal matrices with diagonal elements iϕ  given by { }λθπϕ /sin2exp ii Dj−= ,  and where λ  

is the wavelength of the narrow-band signal. )(0 tN and )(1 tN  represent the uncorrelated noise 

present at each antenna element of the first and second sub-arrays, respectively. 

In order to estimate the DOA, ESPRIT exploits the shift structure inherent in the relevant signal 

subspace that contains the output )(tZ  given by:  
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where 








Φ
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θ
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The DOA’s estimation is achieved by separating the 2m-dimensional complex vector space m
C

2

of output snapshots into orthogonal subspaces, namely the signal subspace and the noise 

subspace.  This is achieved by performing the eigen decomposition of the covariance matrix  

IARAtZtZER ssZZ
2** ))()(( σ+==    (7) 

where (.)E  denotes expectation, zzR is the covariance matrix of measurements, ssR is the 

positive definite of the stationary (zero-mean) of the signals, and I
2σ  is the spatial correlation 

matrix of the uncorrelated noise vector 
T

tNtNtN ))(),(()( 10= .  In practice, the covariance 

matrix is obtained by first collecting n snapshots, )(....,),(),( 21 NtZtZtZ of the output, and then 

computing the sample covariance matrix as:  
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The eigen decomposition of the positive definite and hermetian sample covariance matrix zzR
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given by 
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where sΛ is a diagonal matrix with
mdd 2121 ...... λλλλλ ==>≥≥≥ +

 
[ ]ds eeeE ...,,, 21=  is the matrix composed of the eigenvectors corresponding to the d largest 

eigen values that define the signal subspace, and [ ]mddn eeeE 221 ...,,, ++=  is the matrix of the 

eigenvectors that span the complement orthogonal noisesubspace.  Since the matrices 













=

1

0

E

E
Es

and 








Φ
=

A

A
A have the same range space, then the intent of the ESPRIT algorithm is to find a 

nonsingular matrix T of rank d such that  
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By eliminating A in (10), the following expression is obtained: 

Ψ=Φ= −
0

1
01 ETTEE      (11) 

where TT Φ=Ψ −1
.  In general, there is no matrix Ψ  that satisfies (11) exactly because 0E and 

1E  are equally noisy and their estimates do not span the same column subspace. 

The conventional ESPRIT estimates Ψ  using the Least Square (LS) criterion, and thus mayyield 

in overall inferior results as the LS solution is known to be biased [11]. To circumvent the 

conventional ESPRIT algorithm drawback to some extent, the Total Least Square (TLS)-ESPRIT 

[11] is used instead to provide asymptotically unbiased and efficient estimates of the DOAs.  The 

TLS estimates have been shown to be strongly consistent (convergeswith probability one to the 

true values).  Following [11], a total least square (TLS) estimates of Ψ , given 0E  and 1E ,is 

provided by 
1

2212
−−=Ψ EETLS       (12) 

respectively, where 12E   and 22E are implicitly defined by the eigen decomposition of 
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where ( ) dd lllllldiagL >>>= ...,...,.,, 2121 . 
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In practical situations where only a finite number of noisy measurements are available, we have 

only an estimates of TLSΨ  of Ψ .  In this case, the eigenvalues of TLSΨ , denoted by 

dii ,...,1, =φ
)

, give estimates of the DOAs as:   

)2/(sin 1
Dii πµλθ

)) −= , i=1,…,d.   (14) 

where )arg( ii φµ
))

= . 

 

2.2. ESPRIT Performance 

 
As mentioned earlier, the TLS-ESPRIT algorithm[11] leads to unbiased estimates phase shifts 

under the assumption that a very large number of data snapshots are available, a condition 

difficult to satisfy in practical situations. When the collected data snapshots are limited, the 

estimates do not always approach the asymptotic ones, and the realizable results vary as function 

of the estimation error variance of the phase shifts.   

 

In general, if we consider that the estimated phase shifts µ
)

of µ are determined with an 

estimation error µ∆ , and with the assumption that µ∆ is a Gaussian independent process with 

zero mean and with variance 
22 )(
µ

σµ =∆E , then from (1), the estimates of the DOAs θ
)

of θ

are estimated with an error of 

θπ

µλ
θ

cos2

)(

D

∆
=∆      (15) 

Thus, θ∆ is also Gaussian with zero mean and variance 

θπ

σλ
θ

µ

222

22
2

cos4
)(

D
E =∆    (16) 

One can clearly see that, as the absolute value of incidence angleθ  increases, the variance of the 

error θ∆ will also increase. For instance, consider the case of only one source impinging on the 

array with 1θ  corresponding to a phase shift 1µ . If this same source is impinging on the array 

with 2θ , it will correspond to a phase shift 2µ . With the assumption that 12 θθ > , and since 

uu σσσ µ ==
21

, the forms of the Gaussian probability density functions of the estimated phase 

shifts with means 1µ and 2µ  are shown in Figure 2. Likewise the Gaussian probability density 

functions of the corresponding estimated DOAs with mean  1θ , and 2θ , are shown in Figure 3.  If 

we choose the intervals µβ σµ 2/1 z±  and µβ σµ 2/2 z± ,where 2/βz  is the z value that locates an 

area of  )2/1( β− in the upper tail of a normal distribution, then we are certain that these intervals 

will contain estimates of 1µ and 2µ  with a probability equal to )1( β− or a confidence level 

%100)1( β−=ℑ .  However, we point out that while maintaining a constant confidence interval 
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for the estimates of the phase shifts, the confidence interval of the estimates of the DOAs will 

increase with the angle of incidence. This is depicted in Figure 3, where the confidence interval 

for the estimates of 2θ  is clearly wider than the confidence of the estimates of 1θ  since the error 

of the estimates of 2θ has larger sample variance than the error of the estimates of 1θ .  

 

Figure2. Probability Density Functions of the Phase Shifts 

 

Figure 3. Probability Density Functions for the DOAs 

It is obvious that (16) cannot be made arbitrary small, especially for angles of incidence along-

side the ULA, without putting a constraint on µσ . Maintaining a good accuracy of the estimated 

DOA simplies having a very small µσ . This means a higher SNR and/or an increase of the 

number of snapshots n. For instance, this is clearly shown for the one source case [3], where the 

phase shift estimation error, the SNR, and the number nof snapshots are related by  
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For more than one source, the relationship between µσ  and the SNR and number of snapshots n 

is more complicated [7].  Nevertheless due to the non-linear relationship between the phase shift 

and the DOA given by (1), the basic trend is that higher SNR and/or larger n are required to obtain 

more accurate DOA estimates or to distinguish between two or more close sources as the absolute 

of their angles of incidence increases.  That is, ESPRIT is limited by its ability to resolve two 

closely spaced sources when their angles of incidence are along-side the ULA. In fact, for low 

SNR and limited number of snapshots, ESPRIT algorithm will fail in this case to determine that 

there are actually two sources present. It will indicate that there is only one source present. 

2.3. Cyclic Ambiguities 

Consider the relation, given by (1), where we have tacitly assumed that )(λfD = holds perfectly. 

In practice however, due to measurement errors, this holds only approximately. Let D∆ , 

represent the error on D , this will introduce an error on the phase shift as  

λ

θπ
µ

sin2 D∆
=∆      (18) 

Because the effective angular range of the ULA has a value oo 9090 ≤≤− θ , the phase shift has a 

value in the range πµπ <≤− . Since the inverse of the mapping 
ju

e
−→µ  is aliased outside this 

range, then any error on the phase shift, given by (18), may introduce cyclic ambiguities in 

estimating the DOAs.  For illustration purposes, suppose that )2/(56.0 λλ >=D and a source 

impinging on the array with 
o

85=θ , that correspond to a phase shift of 505.3=µ . This phase 

shift is cyclically equivalent to a phase shift of 777.2−=µ . ESPRIT will misinterpret this value 

and compute the estimated DOA, assuming 2/λ=D ,to be 
o

16.62−=θ which is very different 

from the true DOA at o85 . 

In short, ambiguous errors due to misinterpretation of cyclically ambiguous phase shift occur in 

ESPRIT if 

    || µπµ −>∆ .     (19) 

Similarly, for low SNR and small number of snapshots, cyclic ambiguities may occur in 

estimating the DOAs for sources impinging on the array at an angle of incidence along-side the 

ULA.  For 2/λ=D , consider the phase shift θπµ sin= , resulting for aθ close to o90 , as 

shown in Figure 4 .   

It is noticeable that a small perturbation on the phase shift may lead to a phase shift πµ >1ˆ . 

This phase shift is cyclically equivalent to the phase shift µ̂ . Again, ESPRIT algorithm will 

misinterpret the estimated phase and computes the estimated DOA at a value that is a very 

different from the true DOA. 
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3. PROPOSED METHOD 

 
In this work, a method is proposed to address the ambiguity, resolution and accuracy problems of 

the DOA estimation. 

 

3.1. DOA Estimation 

From Figure 5, showing the phase Shift as function of the Angle of Arrival for 2/λ=D , one can 

notice that if the DOA is kept within the range oo 3030 ≤≤− θ , then the phase shift µ can be 

approximated as 

    
λ

θπ

λ

θπ
µ

180

2sin2
2
DD

≈=    (20) 

where θ  is expressed in degrees. This implies that θ
λ

π
µ ∆≈∆

180

2
2
D

, and thus approximately the 

same SNR and/or the same number of snapshots are needed to maintain the same accuracy of the 

DOAs. 

 
 

Figure 5.Phase Shift as function of the Angle of Arrival for D=λ/2 

 

Thus, the main idea behind the new method is to map any estimate θ
)

of the DOA that iswithin 

the range of oo 3090 −≤≤− θ
)

or oo 9030 ≤≤ θ
)

 into the range of oo 3030 ≤≤− θ
)

.  This calls for 

the exploration of rotating the array in the elevation plane, as shown in Figure 6, and sampling the 

received signals at three different positions. 
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Figure 6. Array Rotation Positions 

In this case, one expects to get three estimates of the DOAs at the different array positions in the 

range of oo 9090
)1( ≤≤− θ

)
, oo 15030

)2( ≤≤− θ
)

, and oo 30150
)3(

≤≤− θ
)

, respectively. 

However because the estimated phase shifts outside the range of πµπ <≤−
)

 are aliased, any 

angle 
)2(θ

)
in the range oo 15090

)2(
≤≤ θ

)
will appear in the range oo 9030

)2(
≤≤ θ

)
, and any 

angle 
)3(θ

)
in the range oo 30150

)3( −≤≤− θ
)

will appear in the range oo 3090
)3(

−≤≤− θ
)

, as 

depicted in Figure 7.Thus, by considering only the estimates of DOAs in the range of 

oo 3030 ≤≤− θ
)

at each array position, we have the following cases: 

a) If 
)1(

iθ
)

is within the range oo 3030
)1( ≤≤− θ

)
, the actual DOA estimate is iθ

)
=

)1(
iθ

)
.  

b) If
)2(

iθ
)

is within oo 3030
)2( ≤≤− θ

)
, the actual DOA estimate is iθ

)
= o

i 60
)2(

−θ
)

.  

c) If 
)3(

iθ
)

is within oo 3030
)3( ≤≤− θ

)
, the actual DOA estimate is iθ

)
= o

i 60
)3(

+θ
)

.   

 

(a) 
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(b) 

 
(c) 

Figure 7. Computed DOAs as Function of the True DOAs at the Different Array Positions 

To be more specific the estimation of the DOAs is performed as follows: 

 Step 1: Using (8), get estimates of the covariance matrices
1zzR

)
, 

2zzR
)

, and
3zzR

)
, obtained from 

the data collected at array positions1, 2and3, respectively. 

 

 Step 2: Compute the generalized eigen decompositions of { }nZZ IR ,
1

)
, { }nZZ IR ,

2

)
, and

{ }nZZ IR ,
3

)
,  where nI is the identity matrix. 

 

 Step 3: Using Akaike’s information criterion (AIC) or the minimum description length 

(MDL)[12], estimate the number of sources 1d , 2d and 3d at each array position. Note 

that ESPRIT may be limited by its ability to resolve two closely spaced sources when 

their angles of incidence are along-side the ULA, the estimation of the number of sources 

may vary at the different array positions. 

 

 Step 4: Use(9)-(11) to obtain the signal spaces estimates, composed of the eigenvectors 

corresponding to the 1d , 2d , and 3d largest eigenvalues of 
1ZZR

)
, 

2zzR
)

, and
3zzR

)
, 

respectively. 
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 Step 5: Using (12), obtain the corresponding three mapping matrices TLS1Ψ , TLS2Ψ  and TLS3Ψ

. 

 Step 6: Estimate the DOA’s  )2/(sin
)(1)(

D
j

i
j

i πλµθ
)) −= , where .3,2,1;,...1;

)( == jdi j
j

iµ
)

 are the 

phases shifts obtained from the eigen decomposition of  TLS1Ψ , TLS2Ψ  and TLS3Ψ , 

respectively. 

 

 Step 7: By considering only the estimates of DOAs in the range of oo 3030 ≤≤− θ
)

, classify 

them according the three cases specified above. 

The above algorithm also resolves ambiguities in estimating the DOAs.  

For 2/λ=D , if we denote by 
)1(θ , 

)2(θ , and 
)3(θ the angle of incidence at the different 

positions of a source impinging on the reference array with θ , and by 
)1(µ , 

)2(µ , and 
)3(µ their 

corresponding phases shifts, then we will have the following three cases detailed in Table.1 

Table 1. DOAs and Corresponding Phase Shift at the Different Array Positions 

 DOA Phase Shift 

Case 1:

oo 3090 −≤≤− θ  

oo
3030

)2( ≤≤− θ
oo

3090
)1( −≤≤− θ

oo
3090

)3( −≤≤− θ  

2/2/ )2( πµπ ≤≤−

2/)1( πµπ −≤≤−

2/)3( πµπ −≤≤−  

Case 2:

3030 ≤≤− θ  

oo
9030

)2( ≤≤θ
oo

3030
)1( ≤≤− θ

oo
3090

)3( −≤≤− θ  

πµπ ≤≤ )2(2/

2/2/ )1( πµπ ≤≤−

2/)3( πµπ −≤≤−  

Case 3:

9030 ≤≤ θ  

oo
9030

)2( ≤≤θ
oo

9030
)1( ≤≤θ

oo
3030

)3( ≤≤− θ  

πµπ ≤≤ )2(2/

πµπ ≤≤ )1(2/

2/2/ )3( πµπ ≤≤−  

 

By considering the phase shifts in the complex plane as shown in Figure 8 for the different cases, 

only the phase shifts that are in quadrant 1 or quadrant 4 should be considered to estimate the 

DOAs. All others should be rejected.  However, one can notice that ambiguities only occur if the 

estimated phase shifts that are intended to be in quadrant 2 or quadrant 3are misclassified to be 

in quadrant 1 or quadrant 4. However, for this to happen, it will require a perturbation on the 

phase shift, given by:  

 

2/|| πµµ −>∆      (22) 
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For illustration purposes, suppose that o85=θ .  Using the conventional case, this corresponds to 

a phase of 1296.3=µ . From (19), any estimate of the phase shift that has a deviation of 

012.0>∆µ from the true (noiseless) phase shift will introduce ambiguities. 

 
Figure 8. Error Effect on the Eigen value Estimation when the three arrays are used. 

Now, using the new algorithm, a o85=θ will correspond to 
o

85
)1( =θ ( 1296.3)1( =µ ), 

o
145

)2( =θ ( 8019.1)2( =µ ), and 
o

25
)3( =θ ( 3277.1)3( =µ ). Note that  )2(µ  also corresponds to 

the aliased value )35()2(' o=θ of 
)2(θ . 

It is clear that estimates of 
)3(θ that are in quadrant 1, offset by o60 , will be considered to be the 

estimates of the actual DOAs. However, since 
)2(µ is close to 2/π , ambiguities may still occurif 

any of its estimates that are intended to be in quadrant 2are misclassified to be in quadrant 1.  In 

this case, the new ESPRIT algorithm will compute the estimated DOA with an offset of o60−

instead of an offset of o60 , which leads to a value that is a very different from the true DOA.But 

for this to occur, and using (22), it will require a deviation of 231.0>∆µ  from the noiseless 

phase shift, as compared to 012.0>∆µ using the conventional algorithm.  To completethis 

discussion, the performances of the two cases are compared. The criterion used for this 

comparison is the probability Pa that ambiguities will occur.  For the conventional case,and using 

(19), the probability of ambiguities can be easily shown to be given by the complementary error 

function 








 −
=

u
a erfcP

σ

µπ

2

||

2

1)1(
     (23) 

Now considering the new method, the probability of ambiguities is given by: 
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Using the same example for one source impinging on the array with o85=θ and 2/λ=D , 
)1(

aP  

and 
)2(

aP  are plotted in Figure 9 for various values of  the SNR, where uσ is computed from 

(17)with m=8 and n=64. The plot indicates that using the new algorithm eliminates ambiguities 

in this case even for low SNR. 

 

Figure 9. Probability of ambiguities 

4. SIMULATION RESULTS 

In order to demonstrate the performance of the proposed method, the following simulations were 

performed. First to show the ambiguities in estimating the DOAs, n(=64) snapshots were 

generated at the different 2m sensors  with a SNR=0dB for one source impinging on the reference 

array with DOA of 085 . The result is brought out by presenting in Figure 10, estimates of the 

phase shifts resulting from 10 experiments. One observation may be made at this point.When 

using the conventional method, out of the 10 estimates of the phase shifts, 3 of the estimates are 

in quadrant 3, resulting in an ambiguous estimation of the DOAs. 

However, when considering the estimates derived from the data collected at the different 

positions of the array, one can notice that all the estimates of 
)3(µ are included in quadrant 1. 

These estimates will be used to estimate the actual DOAs. One also can notice that no ambiguities 

are occurring as all the estimates of phase shifts 
)1(µ and 

)2(µ are either within quadrant 2, 

orquadrant3. This is an encouraging result in when compared to the result wherethe conventional 

algorithm is used. 
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Figure 10. Estimated phase shifts obtained from data collected at the three different arrays positions 

To show that for a low SNR and limited number of snapshots, ESPRIT algorithm fails to 

distinguish between two or more close sources when the angles of their incidence is along-side 

the ULA, two sources with DOAs of o70  and o75  were considered to be impinging on the array. 

We notice that when the conventional ESPRIT algorithm is used, it fails to distinguish between 

the two sources for low SNR, as shown in Figure 11(a).  However, the new algorithm always 

distinguishes between the two sources even for low SNR as shown in Figure 11(b). 

 

(a) 

 

(b) 

Figure 11. DOA Estimates Using the Conventional and the New Algorithms 
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Now, in order to demonstrate further advantages of the performance of the proposed method, the 

same two sources with DOAs of 70
0
 and 75

0
 were considered to be impinging on the array. 

n(=1000) snapshots were collected at each array position. The performance of new approach is 

brought out by examining the results illustrated in Figure 12, and Figure 13, where the bias and 

standard deviation are plotted respectively. The estimated DOAs were averaged over 100 

experiments. To make the figure less crowded, only the results of DOA of 70
0
are shown. By 

rejecting any estimate outside the range of oo 3030 ≤≤− θ
)

, only the estimates of 
)2(θ  were 

considered, and these estimates were offset by o60  to get the actual estimates.  To show the gain 

in accuracy, the estimates were compared with the ones obtained in the conventional way which 

corresponds in this case to the estimates of 
)1(θ . As expected, the new algorithm performed far 

better, especially for low SNR. It should be noted that below a dbSNR 8= , the conventional 

ESPRIT failed to distinguish between the two sources or introduced ambiguities, and thus its 

estimates were excluded in this range 

 

Figure 12. DOA Bias for  the Conventional and the New Algorithms 

 

Figure 13. DOA Standard Deviation for the Conventional and the New Algorithms 
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5. CONCLUSION 

 
The primary goal of this study has been to develop a procedure to resolve the cyclic ambiguities 

of the DOA estimates, and increase their resolution and accuracy. Although the new approach 

calls for the exploration of rotating the array and sampling the received data of signals at multiple 

positions, this disadvantage is overcome by the gain in accuracy and resolution in the DOA 

estimation, and the considerable improvement in reducing the ambiguities that are more likely to 

occur when the angle of incidence is along-side the ULA, especially for low SNR and small 

number of snapshots. Note that one can first only use the reference array (conventional method) 

in estimating the DOAs. If any estimates are found to be in the range oo 3090 −≤≤− θ
)

or 
oo 9030 ≤≤ θ

)
, then these estimates are considered to be coarse estimates, and the array will be 

rotated by o60 and o60−  to obtain estimates at a finer scale. 

 

REFERENCES 
 
[1] E. Tuncer and B. Friedlander, (2009) Classical and Modern Direction-of-Arrival Estimation, Ed. 

Elsevier, USA. 

 

[2] F. F. Gao and A. B. Gershman, (2005) “A generalized ESPRIT approach to direction-of-arrival 

estimation,” IEEE Signal Processing Letters, vol. 12, no. 3, pp. 254-257. 

 

[3] N. P. Waweru, D. B. O. Konditi, P. K. Langat, (2014) “Performance Analysis of MUSIC, Root-

MUSIC and ESPRIT DOA Estimation Algorithm,” International Journal of Electrical, Computer, 

Energetic, Electronic and Communication Engineering, Vol. 8, No:1, pp. 209-216. 

 

[4] M. H. Bhede, D. G. Ganage, S. A. Wagh, (2015) “Performance Analysis of MUSIC and Smooth 

MUSIC Algorithm for DOA Estimation,” International Journal on Recent and Innovation Trends in 

Computing and Communication, Vol. 3, Issue. 7, pp. 4397-4402. 

 

[5] C. L. Srinidh, S. A. Hariprasad, (2012) “Comparative Study on Performance Analysis ofHigh 

Resolution Direction of Arrival Estimation Algorithms,” International Journal of Advanced Research 

in Computer Engineering & Technology, Volume 1, Issue 4, June 2012, pp. 67-79. 

 

[6] K.T. Wong, M. D. Zoltowski,(1998) “Direction finding with sparse rectangular dual-size spatial 

invariance array”, IEEE Trans. Aerosp. Electron. Syst., 34, (4), pp. 1320– 1327. 

 

[7] A. N. Lemma, A. J. van der Veen, and E. F. Deprettere, (1999) “ Multiresolution ESPRIT 

Algorithm,” IEEE Transactions on Signal Processing, Vol. 47, No. 6, June 1999, pp. 1722-1726. 

 

[8] V. I. Vasylyshyn,(2005) “Unitary ESPRIT-based DOA estimation using sparse linear dual size spatial 

invariance array”. Proc. European Radar Conf., Paris, France, pp. 157– 160. 

 

[9] Tan, C. M., et al, (2002) “Ambiguity in MUSIC and ESPRIT for direction of arrival estimation,” 

Electronics Letters, vol.38, no. 24, pp. 1598- 1600. 

 

[10] K. Yang, Z. Zhao, X. Zhu, and Q. H. Liu, (2013) “Resolving ambiguities in DOA estimation by 

optimizing the element orientations,” in Proc. IEEE Antennas Propag. Soc. Int. Symp. (APSURSI), 

Jul. 2013, pp. 1326–1327. 



138 Computer Science & Information Technology (CS & IT) 

 

[11] R. Roy and T. Kailath, (1989) “ESPRIT-Estimation of Signal Parameters Via Rotational Invariance 

Techniques,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37. No. 7, July 

1989, pp. 984-995. 

 

[12] D. B. Williams, (1999) “Detection: Determining the number of sources,” in Digital Signal Processing 

Handbook, V. K. Madisetti and D. B. Williams, Eds. Boca Raton, FL: CRC. 

 

AUTHORS 
 

Abdelhamid Djouadi received the B.S. degree in electrical engineering from the 

University of Sciences and Technologies, Oran, Algeria, in 1980, and the M.S. 

and Ph.D. degree in electrical engineering from The Ohio State University, 

Columbus, OH, USA, in 1983 and 1987, respectively. After a successful academic 

career, since 1997, he has been with Nokia (former Alcatel-Lucent Technologies) 

as a technical lead driving improvement in 4G and 3G products.  His research 

interests include wireless telecommunication, pattern recognition, sensor array, 

and signal processing. 

 

Nebojsa I. Jaksic received the Dipl. Ing. degree in electrical engineering from 

Belgrade University in 1984, the M.S. in electrical engineering in 1988, the M.S. 

in industrial engineering in 1992, and the Ph.D. in industrial engineering in 2000 

from The Ohio State University, Columbus, OH, USA. He is currently Professor at 

Colorado State University-Pueblo. Dr. Jaksic has published over 60 papers and 

holds two patents. He is a registered Professional Engineer with the State of 

Colorado. Dr. Jaksic is a senior member of IEEE and SME, and a member of 

ASEE. His research interests include robotics, automation, and nanotechnology. 

 

 


