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ABSTRACT 

In the past, Ad-hoc networks were used in limited areas which require secure group 

communication without Internet access, such as the army or emergencies. However, Ad-hoc 

networks currently are widely used in variety applications like group chat, smart applications, 

research testbed etc. Ad-hoc network is basically group based network in the absence of access 

point so it is prevalent to provide group key approach to prevent information leakage. When we 

use group key approach, we need to consider which group key management method is the most 

suitable for the architecture because the cost and frequency of the rekeying operation remain as 

an unresolved issue. In this paper, we present analysis about existing group key management 

solutions for Ad-hoc network and suggest a new approach to reduce frequency of the rekeying 

operation. 
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1. INTRODUCTION 

There exist many group key management (GKM) methods to provide secure group 

communication. In general, two essential keys are used in the methods: a traffic encryption key 

(TEK) and a key encryption key (KEK). As illustrated in Fig. 1, all the group members share the 

same TEK, while each of them has a private KEK that is only shared with the group controller 

(GC) or key server (KS). When a group member wants to send a message M to the entire group, it 

broadcasts M encrypted with TEK, denoted by {M}TEK.  

Whenever a member leaves or joins the group, a new TEK must be generated and securely 

distributed to all the group members. Such process to update the TEK is commonly referred to as 

rekeying. A simple approach to rekeying is that the GC/KS unicasts each member the new TEK 

encrypted with the member’s KEK so that the member can retrieve the new TEK by decrypting 

the received message with its KEK. However, this approach requires O(n) cost in terms of the 

number of messages, where n denotes the number of group members, and it is well known that 

this incurs “broadcast storm” problem; A broadcast storm occurs when a network system is 

overwhelmed by continuous multicast or broadcast traffic so it causes the whole network to melt 

down and lead to the failure of network communication. In addition, frequent rekeying in highly 

dynamic groups can also incur the broadcast storm problem. 

Extensive research has been done to reduce the overhead of rekeying in two major research 

directions. The first category of research focuses on reducing the cost of each re-keying operation 

[1, 3, 5, 7, 9, 13, 14]. Especially, the local key hierarchy (LKH) method [1] reduces the cost into 

O(log n) by utilizing a binary key tree. However, in these approaches, the authors considered only 

the cost of rekeying without care about the frequency of rekeying would make their solution 
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incomplete so the solution cannot cope with dynamic and scalable groups. In ad-hoc network, 

very frequent rekeying operation will eventually cause a broadcast storm. 

 

Figure 1. Ad-hoc Group Key Management 

 

The second category of research focuses on reducing the frequency of re-keying [2, 4]. 

Especially, Kronos and Iolus adopt a time-driven method, which performs the rekeying operation 

periodically instead of performing it whenever member changes occur [2, 4]. The authors 

demonstrated that the time-driven method could considerably reduce the overhead of re-keying 

even though such limitations as no guarantee of forward secrecy and delays in adding new 

members. However, for highly dynamic groups, the cost of the time-driven re-keying could be 

O(n) as well [2]. In ad-hoc networks, O(n) cost usually causes “broadcast storm” situation due to 

centralized architecture (i.e., a GC/KS should generate n messages in worst-case). For these 

reasons, we cannot apply this method directly to GKM in ad-hoc networks. 

 

In this paper, we suggest a composition of the time-driven method and GKMPAN method [3], 

which is one of the main GKM approaches for ad-hoc networks, to eliminate O(n) problem in the 

time-driven method. GKMPAN is novel method of distributed GKM in ad-hoc network so it can 

remove bottleneck and O(n) problems of the time-driven method. We modify the rekeying 

process of GKMPAN to facilitate the installation of the time-driven model in ad-hoc environment 

and to solve key exhaustion problem of GKMPAN. With this approach, we can achieve following 

works:  

• Reduce the frequency and the cost of rekeying operation with reliable security 

strength 

• Conduct rekeying operation without “broadcast storm” with distributed architecture 

• Solve key exhaustion problem of GKMPAN 

The organization of the remainder of this paper is as follows. In Section 2, we explain basic Local 

Key Hierarchy (LKH) [1], GKMPAN [3] and the cost analysis of the time-driven LKH method. 

In Section 3, we propose the expanded GKMPAN.  Section 4 evaluates expanded GKMPAN and 

Section 5 present related works. Finally, Section 6 presents our conclusions and future works. 

2. BACKGROUND 

2.1. Local Key Hierarchy (LKH) 

In the LKH method [1], a GC/KS constructs and manages a binary key tree T illustrated in Fig. 2. 

The root of T corresponds to the TEK. All the remaining nodes hold KEKs (= Kn) and a leaf node 

is associated with a group member (= Ui). A member Ui holds the TEK and all the KEKs 

associated with the nodes from Ki to the root. For instance, U8 holds K8, K78, K5678, and TEK. 
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Figure 2. LKH Leaving Example 

 

If U8 leaves the group, then K8, K78, K5678, and TEK should be changed to ensure forward secrecy. 

We call the nodes whose key must be changed as “affected nodes.” To change these keys, the 

GC/KS only needs to send three different types of rekeying messages to the groups; {TEK}K1234 

for the members (U1, U2, U3 and U4), {TEK}K56 for the members (U5 and U6), and {TEK}K7 for 

the member (U7).  

 

If U8 joins the group, then K8, K78, K5678, and new TEK should be generated to ensure backward 

secrecy. The GC constructs and sends rekey messages to the users. A rekey message contains one 

or more encrypted new key(s), and a user needs to decrypt it with appropriate keys in order to get 

the new keys. 

 

By using the binary key tree, the LKH scheme effectively reduces the cost of rekeying from O(n) 

to O(log (n)). We have applied cost-effective LKH scheme to effectively apply time-driven to ad-

hoc networks and evaluated the cost. 

 

2.1.1. Cost Evaluation of Time-Driven LKH 

In Fig. 2, we count K1234, K56, and K7 to calculate the cost of rekeying process because each group 

member can securely obtain a new group key by encrypting/decrypting message with the key of 

the root nodes of sub-trees composed of non-affected nodes; K1234, K56, and K7. Similarly, we can 

calculate rekeying cost of time-driven method with LKH by counting the root nodes of sub-trees 

composed of non-affected nodes with breadth-first search (BFS). These root nodes are referred to 

as root of subtree (RS). Considering the time-driven case, we denote the number of members 

whose state changed within a period as m and the size of the group as n. For the simplicity, we 

assume that leaving and entering events are occurred in the same frequency, besides m and n are 

in the form of the power of two: 2, 8, and 64. 

The Fig. 3 shows how to calculate the maximum number of rekeying messages in time-driven 

method. In time-driven method, there are many leaving and entering events during a cycle, so the 

tree has multiple affected branches. If a member Ui leaves the group, (log n) nodes are affected, 

because a member Ui has all the keys along the path from its leaf to the root. To get the maximum 

cost of rekeying, we treat the case that leaving nodes do not overlap, as is possible in the tree. In 

this situation, the rows up to a height of log m from the root have fewer nodes than m in that 

rows; therefore, they do not have any unaffected nodes, because m nodes leave the group and a 
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leaving node follows one path from the leaf to the root in the tree T. In other words, all the nodes 

in the rows below a height of log m are affected by leaving or entering events. 

 

Figure 3. Maximum number of rekeying messages in the time-driven approach 

Now, it is possible to find the RS nodes in each row by subtracting both the affected nodes and 

those already covered by the elements from parent RS nodes.  

RS = Erow – Eaffected – Ecovered_list (E: node Element) 

Once the RS nodes in a row have been found, the child nodes of them are inserted into the 

covered list, which is used to find the RS nodes of the next row. This sequence of operations is 

described right-below edge in the Fig. 3. For entering events, additional m messages are needed 

because each newbie should respectively receive its secure KEK. Hence, the total number of 

rekeying messages is 

Cost = (log n – log m) × m + m. 

With this formula, if n = 1024 and m = 16, the number of rekeying messages exceeds 100 during 

a cycle, which means that a change of only 2% will cause a “broadcast storm” due to centralized 

model. The general equation for any form of m, which is not exactly a power of 2, is 

Cost = (log n – floor (log m)) * m + m + 2 * (2
floor (log m)

 – m). 

2.2. GKMPAN 

In GKMPAN [3], all node obtains a distinct subset of keys out of a large key pool from the Key 

Server (KS) and these keys are used as Key Encryption Keys (KEKs) for delivering group keys 

(TEK). This method has the advantage in that we can ignore the process of securely sharing 

KEKs between a GC and new member because it is already shared in offline mechanism. 

Moreover, this model uses hop-by-hop approach to eliminate bottleneck problem. 

When a leaving event occurs, the GC broadcasts the list of revoked keys possessed by a leaving 

node, so that this revoked keys will not be used anymore in this group. The GC generates and 

sends a new TEK encrypted with Km, the key is possessed by the maximum number of remaining 

nodes, to ensure forward security. With this broadcast message, however, some of the nodes 

cannot decrypt it because they do not contain Km in their private key list. To fully deliver new 

TEK to its child nodes, the GC should resend the new TEK encrypted with other keys which are 

shared between GC and some of the excluded nodes based on a delivery tree. 
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When a node receives new TEK encrypted with Km or other KEKs, then, it continuously sends 

new TEK to its child nodes in a manner like the GC along the delivery tree. Each node only cares 

the child nodes like an independent key server. Then, we can infer that the maximum overhead of 

each node is the number of child nodes of itself on the delivery tree. 

We can apply the time-driven method to this approach because it eliminates the bottleneck 

problem, which could be found in the centralized model [5]; however, there is a problem that the 

number of available keys (KEKs) decreases as the number of removed nodes increases. 

GKMPAN [3] asserts that the problem can be solved using big l and small m. However, for 

performance, we should choose small l and large m, because if a small l and a large m are used, a 

key is shared with many nodes so that the node can share the new TEK with a very small number 

of messages 

The biggest difference between GKMPAN and our method is that GKMAPN uses the pre-

allocated KEKs to share the new TEK and we use the old TEK that was used in the previous 

rekeying stage. The advantage of our approach is that the dependency between performance and 

key exhaustion is eliminated. We excluded the keys held by the revoked nodes only during the 

rekeying stage of one cycle. When node i leaves the group, we can use the remaining keys in the 

rekeying stage, except for the keys that node i had in the key pool. However, in the next rekeying 

stage, the keys that were excluded can also be used. 

 

3. OUR APPROACH (EXTENDED GKMPAN) 

 
Table 1.  Terminology 

GC/KS Group Controller/Key Server 

KEK Key Encryption Key 

TEK Transmission Encryption Key (group key) 

l Size of a key pool 

Km The key is possessed by the maximum number of remaining nodes in network 

m The number of keys in the possession of a group member (= remaining node) 

Kb The key owned by node b 

Lleave List of leaving node at current stage 

Ljoin List of joining node at current stage 

 

To solve the O(n) and bottleneck problem in the time-driven method, we propose a new rekeying 

strategy based on GKMPAN [3], which uses a pre-distributed set of keys. The main idea of our 

approach is to securely pass a new TEK encrypted with the old TEK “hop-by-hop”; {TEK}old_TEK. 

Before we explain details, the Table 1 describes terminologies which are used in last of the paper. 

 

3.1. Model Description (Extended GKMPAN) 

 
As described above, our model uses time-driven enabled GKMPAN approach to complement 

weak point of time-driven method. Our model is also hop-by-hop process so we assume that each 

node can easily acquire the information about the nodes within its one-hop distance. We also 

assume all group members have pre-distributed set of keys from key pool l, which will be used as 

KEKs. With the GKMPAN method, it is possible to know which keys a member possesses with 

only the id of the member. Because of this, a node can figure out which keys the surrounding 

nodes have. Moreover, asymmetric key mechanism is used, so the sender only needs to know the 
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public key of a key of the receiver. In this approach, we do not need to worry about which keys 

overlap between the sender and receiver because the all members have capability to encrypt a 

message with any key in l (i.e., a sender knows all the public keys of all the KEKs). 

 

 

 

            Figure 5. Hop-by-hop Encryption 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Flow Chart of a Rekeying Stage in  

Extended GKMPAN   

 

After completing one cycle of the time-driven method, the GC obtains both a list of revoked 

members and newly joined members list. Then, the rekeying process starts and the GC securely 

sends a new group key (TEK), the revoked list, and the newly joined list to its surrounding nodes. 

The node receiving the rekeying message becomes the distributor and starts the process 

represented in Fig. 4. The legitimate nodes contain remaining nodes and the members in Ljoin. 

 

As depicted in the Fig. 4, the first step of secure rekeying process is to figure out which keys can 

be used to distribute new group key by excluding the keys held by Lleave. The second step is to 

find Km that the key is possessed by the maximum number of legitimate nodes who did not 

receive new TEK yet within one-hop. After finding Km, the distributer sends a rekeying message e  

ncrypted with both the old TEK and Km to the all nodes within one hop, {Lleave, Ljoin, TEKnew}TEKold 

+ Km. If all the neighboring nodes have received a new TEK, the rekeying stage ends. If not, the 

distributer starts again from the second step by finding Km, which is possessed by the maximum 

number of legitimate nodes who did not receive new TEK yet within one-hop.  
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The role of Km is to hide the new TEK from the nodes that are revoked at current stage (i.e., 

Lleave), because they know the old TEK. Km is selected from the keys possessed by legitimate 

nodes except for the revoked nodes so it can hide new TEK from the revoked nodes.  

 
The reason for encrypting the new TEK with the old TEK is to solve the key exhaustion problem 

of GKMPAN. The nodes without knowledge of the old TEK are unable to retrieve the new TEK; 

thus, it is unnecessary to consider whether previously eliminated nodes have some keys in their 

key pool because they do not have knowledge about the old TEK. So, we only need to care about 

the nodes which are revoked at current cycle (i.e., The KEKs that were excluded from the 

rekeying stage can be used in the next cycle). 

 

For instance, in the rekeying stage, node v uses the old TEK and Kb to share a new group key. Kb 

is owned by node b which was revoked previously. Then, although revoked node b knows the Kb, 

it cannot decrypt the new group key encrypted with both the Kb and the old TEK (i.e., {TEKnew-

}TEKold + Kb) because it does not know the old TEK which is used in current time-driven cycle. From 

this point of view, we do not need to delete the Kb from the key pool even though the node b 

leaved the group. It means that the lifetime of the keys in the key pool is semi-permanent.  

 

This approach has several advantages. First, in the best case each node of a group needs to send 

only one multicast message to propagate the new TEK and in the worst case each node is required 

to send a message to each of the surrounding legitimate nodes (i.e., remaining node + Ljoin). 

Second, this approach enables us to select a large l and small m, because we have already solved 

the problem of key exhaustion. By encrypting the new TEK with the old TEK, the keys owned by 

each group member are simply used to hide the new TEK from the nodes who have left current 

rekeying stage. 

 

The diagram in the Fig. 5 illustrates a simple case. In short, the GC/KS sends a new TEK 

encrypted with the old TEK to surrounding nodes, then they subsequently forward the new TEK 

to their neighbors securely by encrypting it with Km, which is K2 in this example. Here, we do not 

consider other processes, such as key distribution or message verification, because these 

properties can be referenced from GKMPAN [3]. 

 

4. PERFORMANCE EVALUATION 

 
We evaluated our proposed method by calculating the number of messages a node v should send 

to share a new group key in four different cases. In the Fig. 6, n, l, and m, respectively, denote the 

number of surrounding nodes of a node v, the size of the key pool, and the number of keys 

possessed by a node. In evaluation, we assume that there is no collision. Each node evenly has 

random leaving and joining probability (0.1 to 0.9). We count all messages in the group and 

compute average message counts from a node v. Moreover, in our and GKMPAN approach, some 

nodes may not get a new TEK because the all keys possessed by a node could be excluded from 

current rekeying stage due to the revoked nodes. So, we also evaluate failure ratio according to n, 

l and m. 

 

In Fig. 6, The red line shows the failure ratio based on the right-side y axis, and the black line 

shows the number of required messages based on the left-side y axis. As shown in a and b, they 

depict the number of messages and failure ratio when the number of neighbor nodes (n) and the 

size of the key pool (l) are fixed. When m is small, the number of necessary messages decreases 

as the value of m increases. However, as the value of m increases from a specific value, the 

number of required messages increases. In c and d, they depict the number of messages and 

failure ratio when the number of neighbor nodes (n) and the key set size of each node (m) are 
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fixed. The results of c and d are similar to those of a and b. As the value of l increases before the 

specific value, the number of necessary messages decreases, but it increases thereafter.  

 

For a large m and small l, the failure ratio is small, and for a small m and large l, the failure ratio 

is large. In addition, a high probability of failure ratio means that legitimated nodes are less likely 

to have the same keys, and this result can be seen in the above experiment. 

 

The efficiency of the algorithm depends on how many legitimate nodes have the same keys. If m 

is sufficiently small compared to l, we can see that the number of keys needed is reduced because 

the number of keys that overlap each other increases. If m is large enough for l, the number of 

keys that a node has is large, so there are more keys to be excluded for revoked nodes in the key 

pool. This reduces the probability that the legitimated nodes will have the same key, which makes 

the efficiency worse. 

 

In the same simulation environment, when the population is 100, it is shown that a central node of 

the time-driven LKH sends an average of 72 ~ 75 messages, and in case of 200, it sends close to 

150 messages. It means (n * 3/4) messages are required to share a TEK in time-driven LKH in 

normal cases. LKH is affected by the total number of nodes, but our approach is much more 

effective than LKH because it is only affected by the number of neighbor nodes, not the whole. 
 

5. RELATED WORKS 

 
In Ad-hoc networks, we can categorize the GKMs into three sub groups; Centralized approach, 

Decentralized approach, and Distributed approach. In Centralized approach, there is only one 

GC/KS. This server is responsible for the generation, the distribution and the renewal of the group 

key (TEK). Centralized approach is suffered from the O(n) problem and bottleneck problem. 

GKMPAN [3], CKDS [12], Kaya et al. solution [13] belong this group. In Decentralized 

approach, it divides the group into several sub groups to relieve O(n) problem and bottleneck 

problem. However, this approach requires several decryption and re-encryption operations of 

multicast message, when it passes from a sub-group to another. ILOUS [4], AKMP [9], and 

BLADE [5] belong to this group.  

 

The one of Decentralized approaches is BLADE [5]. Its basic idea is to divide the multicast group 

dynamically into clusters. Each cluster is managed by a local controller which shares with its 

local members a local cluster key. The multicast flow is encrypted by the source with the traffic 

encryption key TEK and sent in multicast to all the group members. The source of the group and 

the local controllers from a multicast GLC (Group of Local Controllers) share beforehand a 

session key called KEKCCL. Each new local controller has to join this group and receive the 

session key KEKCCL from the source of the group, encrypted with its public key. It could support 

mobility and insure energy efficiency. 

 

In Distributed approach, all group members cooperate and generate TEK, to establish secure 

communications between them. This approach eliminates the bottleneck problem, but generally it 

suffered from O(n) problem. Our approach is also included in this category without O(n) problem 

with time-driven method. Several papers propose the solution for this category [9, 10, 14, 15, 16]. 

Chiang et al. [16] proposes a GKM protocol for MANETs based on GPS measures and on the 

GDH (Group Diffie Hellman) [11]. In this protocol, during protocol initialization, each node in 

the ad hoc network, floods its GPS information and its public key to all the others nodes, although 

the authors assume that the protocol does not rely on any certification authority. Using the GPS 

information received from others nodes, each group member can build the network topology. 

When a source wants to multicast the data flow to the group members, it computes the minimum 

multicast tree, based on the Prűfer algorithm and then sends message with GDH keys. 
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6. CONCLUSIONS 

 
The Ubiquitous Network Society suggests a world in which many ad-hoc environments can be 

applied. Moreover, the number of applications, such as Vehicular ad hoc networks (VANETs) or 

Smartphone ad hoc networks (SPANs), relying on the ad-hoc multicast technique is increasing. 

However, no efficient GKM method has been suggested yet so, in this paper, we propose an 

improved GKM scheme with the aim of enhancing the efficiency GKM in Ad-hoc network. The 

dominant factor of our scheme is reduced frequency of rekeying operation, whereas other 

schemes were more concerned with the cost. Considering the feasibility of GKM, we believe our 

method is more practical than others. In the future, we devise modified version of extended 

GKMPAN to apply this to wired networks as distributed GKM. 
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