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ABSTRACT 

 

The paper discusses the about the improvement of mandatory code review and pair 

programming practiced in the commercial software development, and also proposes effective 

approaches to customize the code review and pair programming to avoid the pitfalls and keep 

the benefits. 
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1. INTRODUCTION 

 
Code review, a manual inspection of source code by developers other than the author, is a 

common software engineering practice employed in industrial contexts and is recognized as a 

valuable tool for reducing defects and improving quality. The policy of 100 percent code review 

has been implemented / discussed in many commercial software projects.  

 

Classical pair programming is an agile software development technique in which two 

programmers work together at one workstation [1]. Traditionally, one programmer writes code 

while the other reviews each line of code as it is typed in. The two programmers switch roles 

frequently. Some obvious benefits can be achieved with pair programming: 1) fewer bugs, 2) 

lower cost on production maintenance, and 3) knowledge transfer [2, 3]. Another benefit is that 

both developers acquire a good understanding of all the written code; they know what the design 

choices were and how the code works. From many aspects, this reduces the fragmentation of 

knowledge within a team.    

 

Another agile software development technique, pair programming is also becoming increasingly 

popular in the software industry. It is commonly considered that pair programming can get more 

maintainable design with better quality, but in real working environment it often trapped in some 

pitfalls [4,5]: 
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1) Discourages introversion. The coder must “program aloud” while the reviewer listens. 

Some developers will not raise concerns or suggest corner cases, thus turning the pair 

programming into “solitary programming” with automatic code review, which wastes 

resources. 

 

2) Prevents creativity. Contrary to the value of “group brainstorming”, creative work 

sometimes requires independence and autonomy. In pair programming, developers must 

be able to convince a partner of the merits of an idea. This requires talking through the 

implementation  

 

3) Step by step and risking being judged if the idea fails. 

 

4) Tiring practice. A good pair programming session is intense and mentally demanding. 

Programmers have reported significant exhaustion after just a few hours. This is a 

common observation, even from the most experienced practitioners and the advocates of 

pair programming.  

 

5) Demanding balance maintenance. Pair programming can cost more work-hours than 

solitary programming to produce the same feature if the cooperation is not planned 

properly. A balance must be maintained carefully between the quality of code and the 

increased programming cost.  

 
Mandatory code review and pair programming are being practiced in our team recently. Based on 

the actual circumstance of our team, the traditional code review and pair programming are 

tailored to get the advantages and avoid the pitfalls mentioned above. 

 

2. CODE REVIEW 

 
Mandatory code review was introduced in our team in July 2016. Although our main motivation 

for conducting code reviews was finding bugs, we found that reviews brought several additional 

benefits including knowledge transfer, increased team awareness and the creation of more elegant 

solutions. 

 

Many code review guidelines recommend that the original author of a piece of code perform the 

review of any subsequent changes; in our case, that is largely impossible. Team and code 

ownership changes mean that the original author may work in a different team by the time the 

code is reviewed. Instead, we have introduced a simple rota for performing reviews. Every week, 

one developer is “on duty” for reviewing changes from all other developers. 

 

To help improve review consistency, we have agreed on a checklist for both the author and the 

reviewer to follow (Figure 1), and two reviewers are required when new team members join the 

team. This enables us to verify that key code goals such as readability, maintainability, and 

functionality are met. 
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Figure 1 Customized code review checklist  

Since one of the potential issues with code reviews is the lag time that they introduce into the 

development cycle, we added informal requirements that the size of the code to be reviewed be 

kept small and that reviews are completed in under 1 hour. 

 

The overview of the code reviews can be setup in the Team Foundation Server (TFS) dashboard 

(Figure 2). 

 

3. COOPERATIVE PAIR PROGRAMMING 

 
The project on which we tried cooperative pair programming was the creation of a new public 

API. The requirements and acceptance criteria were relatively clear, so the implementation, 

proper tests, and sample codes were the main work. Two developers worked on the project 

together, and both had adequate understanding on the work, which reduced the amount of 

discussion needed. Therefore, instead of having two people working on the same computer all 

day and swapping roles frequently, we tailored our usage as follows: 

 

1. As with classical pair programming, we sit together and agree on the API details such as 

the names, parameters, constants, etc. 

 

2. After the API details are decided, the developerswork at separate computers. One person 

works on the API implementation, and the other works on the tests for the designed API. 

3. At the end of each day, regardless of whether the implementation or tests were finished, 

the developers swap roles. The person who was working on the API implementation 

reviews the test code and continues the test implementation, and vice-versa. 

 

4. Steps 2 and 3 are then repeated until the work is complete. 
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By following this cooperative pair programming model, we gained several advantages: 

 

1. We performed detailed and in-depth code reviews, which led to fewer bugs. Unlike 

common code reviews, we developed a stronger understanding of the code and the 

frequent communication that was required made it easier to find some of the more 

obscure bugs. 

 

2. We observed a clear improvement in the quality of the code, including better readability 

and less unnecessary and unused code. 

 

3. By switching the roles, API implementation code and its test code received a more 

thorough review. 

 

4. We perceived increased knowledge sharing because it was necessary to understand the 

code thoroughly to continue the work. Because the code was fresh in the one developer’s 

mind, it was easier to explain the intent to the other developer in the pair. 

 

5. Both developers retained autonomy and the ability to exercise creativity. Both were free 

to try an approach before having to convince the other developer. 

 

6. We obtained 100%code coverage. Both developers spent the same amount of time 

writing the unit/acceptance tests as writing the API implementation. 

 

 

Figure 2 Code review in TFS dashboard 
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4. EXPECTATIONS AND OUTCOMES 

 
After 4 months of mandatory code review, we have discovered that finding defects is not the only 

benefit of code review. Reinforced by a strong team culture around the reviews, we see several 

benefits: 

 

Code quality improvements: A clear improvement on the code quality can be observed because of 

the mandatory review. Improvements include better unit testing, fewer unnecessary changes and 

improved readability. 

 

Defect finding: The detailed checklist and improved code quality enable us to discoverobvious 

bugs such as exception handling, raw pointer misuser, typos and formatting mistakes. There was 

a gap between our expectations and reality in terms of the types of defects found. However, we 

still derive a benefit from catchingthe more obvious bugs earlier than in conventional 

programming. 

 

Knowledge transfer: The team works on multiple separate projects. Code reviews help facilitate 

knowledge transfer between team members, not only helping to expose reviewers to a wider 

range of code, but also directing authors to other resources for learning how to solve some 

problems. 

 

Team awareness and transparency: By performing mandatory code reviews, we not only keep the 

team generally aware of changes in the code, we also prevent anyone from adding low quality 

“Band-Aid” fixes to the code in secret. 

 

From our cooperative pair programming experiment, we have discovered some conditions that 

effect the success of pair programming: 

 

1) The maturity of the design 

 

2) The comparative skill levels of the developers involved 

 

3) The scale of the work, with the best scale being a task totalling at least two person-

months estimated work. 
 

5. RECOMMENDATIONS  

 
From our experience with code reviews and pair programming, we can offer several observations 

and recommendations: 

 

Customized checklist: Each team should have tailored checklist according to its programming 

environment and team culture, and this checklist should be updated as the team and its projects 

change. 

 

Quality assurance: Code reviews rarely result in identifying subtle bugs, so standard QA 

practices such as automated unit testing and acceptance tests should be maintained. 
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Beyond defects: Code reviews provide benefits beyond finding defects. They can be used to help 

standardize style, find alternative solutions and increase learning. These goals should guide code 

review policies. 

 

Customized pair programming: Cooperative pair programming is just one of many possible 

customizations of pair programming. Depending on the circumstances, different variants of pair 

programming could be tried to provide an optimal balance between quality and cost. 
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