

David C. Wyld et al. (Eds) : CCSEIT, AIAP, DMDB, ICBB, CNSA - 2017

pp. 01– 07, 2017. © CS & IT-CSCP 2017 DOI : 10.5121/csit.2017.70601

A FEW THOUGHTS ON CODE REVIEW AND

COOPERATIVE PAIR PROGRAMMING :

EXPECTATIONS, OUTCOMES AND

CHALLENGES

Qiang Fu, Francis Grady, Bjoern Flemming Broberg, Andrew Roberts,

Geir Gil Martens, Kjetil Vatland Johansen, Pieyre Le Loher

Schlumberger Information Solutions AS, Stavanger, Norway

ABSTRACT

The paper discusses the about the improvement of mandatory code review and pair

programming practiced in the commercial software development, and also proposes effective

approaches to customize the code review and pair programming to avoid the pitfalls and keep

the benefits.

KEYWORDS

Code review, pair programming

1. INTRODUCTION

Code review, a manual inspection of source code by developers other than the author, is a

common software engineering practice employed in industrial contexts and is recognized as a

valuable tool for reducing defects and improving quality. The policy of 100 percent code review

has been implemented / discussed in many commercial software projects.

Classical pair programming is an agile software development technique in which two

programmers work together at one workstation [1]. Traditionally, one programmer writes code

while the other reviews each line of code as it is typed in. The two programmers switch roles

frequently. Some obvious benefits can be achieved with pair programming: 1) fewer bugs, 2)

lower cost on production maintenance, and 3) knowledge transfer [2, 3]. Another benefit is that

both developers acquire a good understanding of all the written code; they know what the design

choices were and how the code works. From many aspects, this reduces the fragmentation of

knowledge within a team.

Another agile software development technique, pair programming is also becoming increasingly

popular in the software industry. It is commonly considered that pair programming can get more

maintainable design with better quality, but in real working environment it often trapped in some

pitfalls [4,5]:

2 Computer Science & Information Technology (CS & IT)

1) Discourages introversion. The coder must “program aloud” while the reviewer listens.

Some developers will not raise concerns or suggest corner cases, thus turning the pair

programming into “solitary programming” with automatic code review, which wastes

resources.

2) Prevents creativity. Contrary to the value of “group brainstorming”, creative work

sometimes requires independence and autonomy. In pair programming, developers must

be able to convince a partner of the merits of an idea. This requires talking through the

implementation

3) Step by step and risking being judged if the idea fails.

4) Tiring practice. A good pair programming session is intense and mentally demanding.

Programmers have reported significant exhaustion after just a few hours. This is a

common observation, even from the most experienced practitioners and the advocates of

pair programming.

5) Demanding balance maintenance. Pair programming can cost more work-hours than

solitary programming to produce the same feature if the cooperation is not planned

properly. A balance must be maintained carefully between the quality of code and the

increased programming cost.

Mandatory code review and pair programming are being practiced in our team recently. Based on

the actual circumstance of our team, the traditional code review and pair programming are

tailored to get the advantages and avoid the pitfalls mentioned above.

2. CODE REVIEW

Mandatory code review was introduced in our team in July 2016. Although our main motivation

for conducting code reviews was finding bugs, we found that reviews brought several additional

benefits including knowledge transfer, increased team awareness and the creation of more elegant

solutions.

Many code review guidelines recommend that the original author of a piece of code perform the

review of any subsequent changes; in our case, that is largely impossible. Team and code

ownership changes mean that the original author may work in a different team by the time the

code is reviewed. Instead, we have introduced a simple rota for performing reviews. Every week,

one developer is “on duty” for reviewing changes from all other developers.

To help improve review consistency, we have agreed on a checklist for both the author and the

reviewer to follow (Figure 1), and two reviewers are required when new team members join the

team. This enables us to verify that key code goals such as readability, maintainability, and

functionality are met.

Computer Science & Information Technology (CS & IT) 3

Figure 1 Customized code review checklist

Since one of the potential issues with code reviews is the lag time that they introduce into the

development cycle, we added informal requirements that the size of the code to be reviewed be

kept small and that reviews are completed in under 1 hour.

The overview of the code reviews can be setup in the Team Foundation Server (TFS) dashboard

(Figure 2).

3. COOPERATIVE PAIR PROGRAMMING

The project on which we tried cooperative pair programming was the creation of a new public

API. The requirements and acceptance criteria were relatively clear, so the implementation,

proper tests, and sample codes were the main work. Two developers worked on the project

together, and both had adequate understanding on the work, which reduced the amount of

discussion needed. Therefore, instead of having two people working on the same computer all

day and swapping roles frequently, we tailored our usage as follows:

1. As with classical pair programming, we sit together and agree on the API details such as

the names, parameters, constants, etc.

2. After the API details are decided, the developerswork at separate computers. One person

works on the API implementation, and the other works on the tests for the designed API.

3. At the end of each day, regardless of whether the implementation or tests were finished,

the developers swap roles. The person who was working on the API implementation

reviews the test code and continues the test implementation, and vice-versa.

4. Steps 2 and 3 are then repeated until the work is complete.

4 Computer Science & Information Technology (CS & IT)

By following this cooperative pair programming model, we gained several advantages:

1. We performed detailed and in-depth code reviews, which led to fewer bugs. Unlike

common code reviews, we developed a stronger understanding of the code and the

frequent communication that was required made it easier to find some of the more

obscure bugs.

2. We observed a clear improvement in the quality of the code, including better readability

and less unnecessary and unused code.

3. By switching the roles, API implementation code and its test code received a more

thorough review.

4. We perceived increased knowledge sharing because it was necessary to understand the

code thoroughly to continue the work. Because the code was fresh in the one developer’s

mind, it was easier to explain the intent to the other developer in the pair.

5. Both developers retained autonomy and the ability to exercise creativity. Both were free

to try an approach before having to convince the other developer.

6. We obtained 100%code coverage. Both developers spent the same amount of time

writing the unit/acceptance tests as writing the API implementation.

Figure 2 Code review in TFS dashboard

Computer Science & Information Technology (CS & IT) 5

4. EXPECTATIONS AND OUTCOMES

After 4 months of mandatory code review, we have discovered that finding defects is not the only

benefit of code review. Reinforced by a strong team culture around the reviews, we see several

benefits:

Code quality improvements: A clear improvement on the code quality can be observed because of

the mandatory review. Improvements include better unit testing, fewer unnecessary changes and

improved readability.

Defect finding: The detailed checklist and improved code quality enable us to discoverobvious

bugs such as exception handling, raw pointer misuser, typos and formatting mistakes. There was

a gap between our expectations and reality in terms of the types of defects found. However, we

still derive a benefit from catchingthe more obvious bugs earlier than in conventional

programming.

Knowledge transfer: The team works on multiple separate projects. Code reviews help facilitate

knowledge transfer between team members, not only helping to expose reviewers to a wider

range of code, but also directing authors to other resources for learning how to solve some

problems.

Team awareness and transparency: By performing mandatory code reviews, we not only keep the

team generally aware of changes in the code, we also prevent anyone from adding low quality

“Band-Aid” fixes to the code in secret.

From our cooperative pair programming experiment, we have discovered some conditions that

effect the success of pair programming:

1) The maturity of the design

2) The comparative skill levels of the developers involved

3) The scale of the work, with the best scale being a task totalling at least two person-

months estimated work.

5. RECOMMENDATIONS

From our experience with code reviews and pair programming, we can offer several observations

and recommendations:

Customized checklist: Each team should have tailored checklist according to its programming

environment and team culture, and this checklist should be updated as the team and its projects

change.

Quality assurance: Code reviews rarely result in identifying subtle bugs, so standard QA

practices such as automated unit testing and acceptance tests should be maintained.

6 Computer Science & Information Technology (CS & IT)

Beyond defects: Code reviews provide benefits beyond finding defects. They can be used to help

standardize style, find alternative solutions and increase learning. These goals should guide code

review policies.

Customized pair programming: Cooperative pair programming is just one of many possible

customizations of pair programming. Depending on the circumstances, different variants of pair

programming could be tried to provide an optimal balance between quality and cost.

REFERENCES

[1] Fagan, M.E., (1976) Design and Code inspections to reduce errors in program development, IBM

Systems Journal, Vol. 15, No 3, pp. 182-211

[2] Shore, James, (2007) The art of agile development, O’Reilly Media, Inc.

[3] Cockburn, Alistair, (2002) Agile software development. Vol. 2006. Boston: Addison-Wesley.

[4] http://www.bennorthrop.com/Essays/2013/pair-programming-my-personal-nightmare.php

[5] https://techcrunch.com/2012/03/03/pair-programming-considered-harmful/

[6] Holzmann, G.J., (2006) The Power of Ten: Rules for developing safety critical code, IEEE Computer.

[7] Russell, G. W. (1991) Experience with Inspection in Ultralarge-Scale Developments, IEEE , pp. 25-

31.

[8] Beller, M; Bacchelli, A; Zaidman, A; Juergens, E (2014), Modern code reviews in open-source

projects: which problems do they fix?, Proceedings of the 11th Working Conference on Mining

Software Repositories

[9] Bisant, David B, (1989) A Two-Person Inspection Method to Improve Programming Productivity,

IEEE Transactions on Software Engineering. 15 (10), pp.1294–1304.

AUTHORS

Qiang Fu was born in China in 1977. He received the Ph.D degree from Imperial

College London in 2010. He joined Schlumberger Information Solution AS in 2011 as

senior software developer in Petrel Geophysics team. His main areas of research

interest are software processing, developing, geophysics and geology.

Francis Grady received his Master’s degree in Computer Science from the University

of Oxford in 2006. Since then he has been with Schlumberger, where he is currently a

Senior Software Engineer. His interests include machine learning, high performance

computing and code quality.

Computer Science & Information Technology (CS & IT) 7

Bjoern Flemming Broberg joined Schlumberger in 2013 working as a Senior

Software Engineer developing software. He has a master in industrial mathematics

from Trondheim in Norway, and has more than 20 years of experience as an IT

professional working as business analyst, IT architect, developer and IT project

manager.

Andrew Roberts has worked for six years at Sclumberger as a Software Engineer, in

development, build and configuration management, and testing roles. Prior to

Sclumberger he was Software Consultant for over a decade in the mobile devices

market working with such companies as Motorola, Nokia, Panasonic, etc.

Geir Gil Martens was born in Bergen, Norway, 1960. After acquiring an

undergraduate degree in computer science at Rogaland Distriktshøgskule, Norway. He

joined Geophysical Company of Norway – GECO AS in 1985 to develop the Charisma

II Seismic Interpretation Station. Over the years he have been involved with most

aspects of software development and a multitude of more or less formalized

development processes. He is currently working at Schlumberger SNTC as a senior

software engineer on the Petrel system.

Kjetil Vatland Johansen has a M.Sc. degree in Technical Cybernetics from

Norwegian University of Science and Technology. He has combined background from

cybernetics with a passion for software development throughout the professional career.

He was a developer in an C++/.Net environment for 15 years and then moved to project

management.

