

David C. Wyld et al. (Eds) : CCSEIT, AIAP, DMDB, ICBB, CNSA - 2017

pp. 09– 14, 2017. © CS & IT-CSCP 2017 DOI : 10.5121/csit.2017.70602

FAULT TOLERANT CONSENSUS

AGREEMENT ALGORITHM

Marius Rafailescu

The Faculty of Automatic Control and Computers,

POLITEHNICA University, Bucharest

ABSTRACT

Recently a new fault tolerant and simple mechanism was designed for solving commit consensus

problem. It is based on replicated validation of messages sent between transaction participants

and a special dispatcher validator manager node. This paper presents a correctness, safety

proofs and performance analysis of this algorithm.

KEYWORDS

consensus agreement, fault tolerance, leader election, distributed systems

1. INTRODUCTION

Consensus algorithms were discussed in the past and several solutions where developed (Two-

phase commit, Three-phase commit or Paxos) [1]. The latter is fault tolerant and with the

introduction of distributed databases it was implemented in many systems, although it is not so

easy to implement [2]. In recent years was defined a new algorithm, Raft, which has been

developed in order to provide a consensus control for replicated state machines, intended to be

easy to understand and implement [3].

One recent work [4] describes a new algorithm which uses a set of validator nodes, including one

dispatcher and also presents algorithm for dispatcher election (equivalent to leader election) made

for the purpose of not rollbacking the transaction when a new dispatcher is chosen. Based on this

new consensus agreement solution, this paper highlights the correctness and safety proofs of the

algorithm.

2. DESCRIPTION

The system is modelled in an asynchronous way (with the corresponding implication of using

timeouts - as a well known result [5]), having the following suppositions:

• Messages can take an arbitrary number of steps from source to destination;

• Messages can be reordered, duplicated or lost by the network, but never corrupted;

• Nodes fail by stopping; later, they can restart and re-enter in the system.

10 Computer Science & Information Technology (CS & IT)

The specification describes a system with an arbitrary number of nodes, which communicate

through messages which are sent in two manners: one-to-one and one-to-many as we can see in

figure 1.

Fig. 1: Consensus messages

3. CORRECTNESS

Correctness is an important key concern when talking about consensus algorithms. The formal

specification for the proposed algorithm was made using TLA+ language [6].

The model verifies defined invariants in order to test that the algorithm is correct and, as a whole,

the specification is intended to serve as the subject of the proof. This also help other people to

implement easily and correctly the algorithm in real systems. There may be many causes for

failures and maybe some of them can not be tested, but the formal tool help us to analyze all the

final states a system can reach in order to identify and resolve potential problems.

3.1. CONSENSUS SPECIFICATION

All the actions a node may take are described below:

• Transaction manager is the node which initiate the transaction and his special role is to

send “Begin” message to all other transaction participants. It is also a participant in

Computer Science & Information Technology (CS & IT) 11

transaction, so all the actions below are applicable, except receiving “Begin” message

step;

• Participant nodes, chronologically are initially in a “working” state. As soon as they

receive the “Begin” message from the transaction manager, they move into “preparing”

state. During this step, the transaction is locally finalized and every such node ensures

that the transaction can be recovered in case of a failure. After all the processings have

been done, every participant sends one “Ready” message to dispatcher manager and

moves to “ready” state. In this state, each node waits for receiving the commit or rollback

decision from the dispatcher node;

• Dispatcher node coordinates all validator nodes which work together in order to ensure

fault tolerance in case of a dispatcher failure. The node receives “Ready” messages from

participants. As soon as such a message is received, it validates locally the message and

sends it to other validators. One message is considered validated when validator nodes

mark it in majority (in other words, this happens when the dispatcher manager have been

received sufficient “Validated” messages). After all the “Ready” messages of a

transaction are validated, this node has to send the “Commit” message to all transaction

participants. In the end, “Committed” message is sent to other validators in order to mark

that the transaction is finished. Of course, the “Rollback” message may be send when not

all the messages are validated;

• Validator nodes receive from the dispatcher node some “Ready” messages which are

first locally validated, then they send “Validated” message back to the dispatcher.

3.2. DISPATCHER ELECTION SPECIFICATION

Validating a message means, at least, saving into local memory that message or only the metadata

needed for dispatcher failover, which is done using an election algorithm:

• Coordinator node: Initially, all validator nodes try to satisfy the launch condition which

consist in generating three consecutive numbers greater than a chosen threshold. When

this happens, the node sends a “Proposal” message alongside with the greatest random

generated number. When the node is voted in majority, it becomes “coordinator” and runs

a roulette wheel selection algorithm using the numbers received from other nodes. The

winner of this selection will be the leader and its status will be announced to all nodes;

• Other nodes: When the “Proposal” message is received, the node votes for sender if it is

the first time in the current round of vote and sends his greatest random generated

number.

The new dispatcher needs to finalize all pending transactions and this may be a problem unless an

additional convention is used. There are some cases which must be analysed:

1) Old dispatcher fails after receiving a certain “Ready” message and sending at least one

validation message for that “Ready” message. One of the validators which received the

validation message will be elected as the new dispatcher. But the problem is that it does

not know anything about other “Ready” messages which might have been sent by other

participants and not sent for validation by the old dispatcher. One simple solution is that

every participant must send all pending “Ready” messages to the new dispatcher when

its announcement is made;

12 Computer Science & Information Technology (CS & IT)

2) Old dispatcher fails before sending to validation the first “Ready” message of a

transaction or before receiving the first “Ready” message of a transaction. Of course, the

new chosen dispatcher will not know anything about that transaction, so the previous

solution could also help in this case.

The conclusion is that there is necessary to add an additional step which consist in sending all

pending “Ready” messages from participants to the new dispatcher, when its announcement is

made. In this way those transactions can be committed. Initially, in [6], was mentioned an

eligibility constraint as only the validator nodes which received the last message sent by the old

dispatcher can be valid candidates for leader position; so, an important aspect which appears in

this context is that the constraint might be dropped.

4. ALGORITHM SAFETY PROOFS

Definition 1. Each node’s current vote round monotonically increases.

This is straightforward from specification.

Definition 2. There is at most one coordinator in dispatcher election step.

Let’s consider there may be two coordinators for the same election round, C1 and C2. This case

can appear, of course, when a split vote is happening.

C1 and C2 received the majority of votes, then let M1 be the set of nodes which gave their votes for

C1 and M2 the set with all the nodes which voted for C2.

Let node V be V = M1 ∩ M2; this means that V voted for both C1 and C2 ⇒ based on specification,

this is impossible because V votes only for the first time in a round of vote, so

C1 = C2.

Definition 3. In the end of dispatcher election, only one new dispatcher is chosen.

This results directly from the previous proof as one coordinator will choose only one node as

dispatcher, from specification.

Definition 4. The algorithm chooses a dispatcher even nodes crash, where N is the

total number of validator nodes.

This results from specifications because the leader is chosen by coordinator node, which is

elected with the majority of votes from other nodes. If nodes crash, there is no

problem as majority can still be reached.

Definition 5. The algorithm commits a transaction even validator nodes crash.

This is similar with the previous proof as from specifications the transaction is committed when

all the “Ready” messages from participants are validated. One message is validated when

validator nodes approve it in majority, so the algorithm works fine even validator

nodes crash because majority can still be reached.

Definition 6. The algorithm commits transactions even the dispatcher fails while processing.

After the current dispatcher fails, a new one is elected and its first task will consist in interpreting

the messages it will receive from participant nodes and the pending transactions will continue the

commit consensus as previously mentioned. Based on the received list of “Ready” messages, the

new leader of validator nodes will know the status of each transaction in order to take all the

Computer Science & Information Technology (CS & IT) 13

necessary decisions (for example, send messages to validation or mark a transaction as

committed).

5. PERFORMANCE

Performance test was made using 5 nodes running on distinct virtual machines and the consensus

for a transaction finished in 235 milliseconds in average, with a minimum of 140 milliseconds

and a maximum of 313 milliseconds. In 90% of cases, consensus was reached in at most 289

milliseconds.

More than 1000 concurrent transactions were taken into account. The histogram is shown in

figure 2.

Fig. 2: Consensus performance

6. CONCLUSION

The new algorithm analysed in this paper is quite simple and easy to understand. It is correct and

safe, proposing a method to solve the consensus agreement problem by using a set of nodes

which validate the messages sent between transaction participants and the leader of the validator

nodes, called dispatcher validator. It can recover in case this dispatcher node crash and has the

capability to continue the pending transactions and commit them eventually.

REFERENCES

[1] J. Gray & L. Lamport, (2006) “Consensum on transaction commit”, ACM Trans. Database Syst., Vol

31, No. 1, pp133-160.

[2] T. Chandra & R. Griesemer & J. Redstone, (2007) “Paxos made live - an engineering perspective”,

ACM Principles of distributed computing, pp398-407.

[3] D. Ongaro & J. Ousterhout, (2014) “In search of an understandable consensus algorithm (extended

version)”, Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference,

pp305-320.

14 Computer Science & Information Technology (CS & IT)

[4] M. Rafailescu & M. S. Petrescu, (2017) “Fault tolerant consensus protocol for distributed database

transactions”, Proceedings of the 2017 International Conference on Management Engineering,

Software Engineering and Service Sciences, ICMSS ’17, pp90–93.

[5] M. J. Fischer & N. A. Lynch & M. S. Paterson, (1985) “Impossibility of distributed consensus with

one faulty process”, Journal of the Association for Computing Machinery, Vol. 32, No. 2, pp398-407.

[6] L. Lamport, (2002) “Specifying Systems: The TLA+ Language and Tools for Hardware and Software

Engineers”, Addison-Wesley Longman Publishing Co., Inc.

AUTHORS

Marius Rafailescu is a Ph.D. candidate at the Department of Computer Science at the “Politehnica”

University from Bucharest. His M.S. and B.S were received also from the “Politehnica” University from

Bucharest. His main research interests are transactional processing in databases and distributed systems

