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ABSTRACT 

 
Machine learning techniques have demonstrated their versatility and have been successfully 

applied to a wide variety of problems. However, one of their major limitations is the treatment 

of sequential information. In general the input and output for these methods is expressed as 

fixed-dimension vectors, but in many problem domains, as in natural language processing, the 

information is represented by variable-length sequences. In most cases, it is possible to use 

some methods that transform these variable length sequences into fixed dimension vectors, but 

each of these methods has its own disadvantages. In this paper we propose an alternative to 

obtain vector representations of fixed dimension from sequences of symbols of variable length 

and their potential applications for natural language processing.. 
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1. INTRODUCTION 
 

One of the main topics of interest in the area of machine learning is natural language processing, 

but despite the excellent results that have been obtained there is still a barrier that is difficult to 

overcome [1]. Most machine learning techniques are designed to work with instantaneous 

information represented in the form of vectors; natural language, however, is always presented as 

sequential information. Whether we consider words as sequences of letters, sentences as 

sequences of words, or documents as sequences of sentences, in all these cases we may think that 

information is presented as a sequence of symbols, and in order to effectively use these machine 

learning techniques we need, in some way, to transform this sequential information into a vector 

representation. But what kind of such representation we want to obtain? [2]  

 

For example, it is desirable that the vector representation be directly related to the symbols 

forming the sequence, not only indicating which symbols are present, or their quantity, but also in 

their order [3]. Ideally the vector representation will have enough information about the sequence 

so as to make it possible its reconstruction. 

 

It is also desirable that the vector representation obtained have the smallest possible dimension 

[4]. Some degree of redundancy may be acceptable for error correction, but given the nature and 

possible applications of this method every extra dimension in the representation can carry a 

computational load in later stages. 



28 Computer Science & Information Technology (CS & IT) 

 

An important point for the vector representation is to be consistent across all valid sequences. For 

example, similar sequences should have similar vector representations, so that the vector distance 

between two different representations could be used to measure the similarity of the sequences to 

which they correspond.  

 

Ideally the representations could be so consistent as to end up supporting vector operations with 

constraints but responding to a certain degree of compositionality [5]. For example, it might be 

useful if arithmetic operations could be performed on the vector representations to obtain a 

representation close to the result of doing the same operations on the original sequences.  

 

And finally it is desirable that the method be effective, i.e., that it be possible to encode any valid 

sequence easily. This means that it is possible to accept restrictions on what is considered a valid 

sequence, for example, in the set of possible symbols or in the maximum length, but once these 

restrictions are accepted the codification should be possible without consuming many 

computational resources. Furthermore the method has to be efficient [6]. This means that the 

training should be performed relatively quickly even for large datasets, and ideally must have an 

acceptable degree of generalization for any valid sequence. 

 

2. BACKGROUND AND MOTIVATION 
 

Currently, there are several methods that offer similar solutions. We will consider next some of 

the most commonly used to evaluate how they behave in relation to all the properties described 

above. 

 

One of the most used is known as Bag of Words [7]. With this method, each sentence or 

document is represented by a vector with as many dimensions as words contain a dictionary. Each 

position in this vector corresponds to the number of times that a specific word of the dictionary 

appears in the sequence. This type of vectors have the advantage of being easily generated with 

great consistency between sequences. But they present the problem of discarding a large amount 

of information and the result is usually of such a large dimension that it is rarely used directly 

without going through a later stage of dimensionality reduction. 

 

Another of the first models to consider vector representations for sequence processing were the 

Simple Recurrent Neural Networks [8]. In this case, the previous state of the hidden layer of a 

neural network is used as part of the input during training to try to predict the next item in the 

sequence. This method can effectively generate vector representations in the hidden layer, even 

with a low dimension, and the result is completely consistent for any valid sequence. However, 

the same recurring nature of the architecture generates problems with the back-propagation 

training, making the method only able to be effectively used for small datasets. 

 

An alternative to try to deal with this problem are the so-called Long-Short Term Memory 

networks [9]. They use a type of unit with several internal connections to be able to decide which 

information is propagated at any time. This allows them to use multiple hidden layers to work 

with much larger data sets. But the same use of this type of units not only makes the training 

more complex, but also makes it impossible to obtain a single vector representation with all the 

corresponding information for each sequence. 

  

There is also another not-so-known model called Recursive Auto-Associative Memory (RAAM) 

[10] which is, in a way, a generalization of Elman's simple recurrent network model [8]. A 

RAAM network is composed of an auto-encoder capable of compressing a pair of patterns to only 

one of smaller dimension. This new compressed patterns can be recursively fed back into the 

network, allowing it to learn to encode and decode complex data structures such as lists and trees. 
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This would make it ideal for working on language problems where information is defined by 

grammars with an inherently recursive structure. 

 

However, this same mechanism also has some disadvantages [11]. When a single network is used 

to contain all the information for encoding and decoding a set of trees the model capacity is 

severely limited, and becomes less robust and more difficult to train. 

 

3. MODEL AND METHODOLOGY 
 

Trying to avoid the disadvantages described and maintaining the desirable properties already 

mentioned, it is proposed the use of a model inspired by the RAAM networks but consisting of a 

series of auto-encoders organized in successive stages, with each stage responsible of learning 

only the patterns corresponding to their level. 

 

 
 

Figure 1. Diagram of the model. 

 

The patterns encoded at one level, instead of being fed back to the same stage, are passed through 

a copy connection to an upper layer. In the same way, the decoded patterns in one stage are not 

fed to the same network but are passed to the lower stage. To construct the pairs of patterns 
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corresponding to each stage a type of delayed connection is used which is responsible for the 

coordination. 

 

In this way, each stage should only learn the regularities corresponding to its level, that is, the 

first level learns about regularities between pairs of letters, the next about regularities between 

pairs of pairs of letters and so on [12]. This increases the capacity of the model since the network 

at each stage should only learn a part of the set of patterns that previously had to learn a single 

network, making it also less prone to failures.  

 

Figure 1 shows a diagram of the model. The stages are separated by dotted lines. Each stage has 

an auto-encoder similar to the one on a RAAM network, where the input is formed by layers A 

and B, the hidden part by layer C, and the output by the layers a and b. In all these layers the 

position within the sequence is indicated by the subscript i and the corresponding stage with a 

superscript (n).  

 

The input sequence will be defined by I = [ I0, I1, … IL ] wherein each Ii is a vector representing a 

symbol.  At the bottom, layer Ii indicates the pattern at position i in the input sequence.  

At each stage j the encoding and decoding corresponding to the position i within the sequence are 

described by: 

 

[ Ai
(j), Bi

(j) ] → [ Ci
(j) ] → [ ai

(j), bi
(j) ] 

 

In turn, each stage j will produce a sequence C(j) = [ C0
(j), C1

(j), … CM
(j) ] in which each Ci

(j) is also 

a vector [13]. One of the objectives of this architecture is that each stage encodes a sequence of 

less or equal length, that is to say, to produce sequences that comply with |C
(j)

| >= |C
(j+1)

| until 

finally |C(N)|=1, where N is the number of stages. 

 

Trainable, copy, delayed and target connections are indicated with different types of lines in the 

same figure. The copy and delay connections work together to define the pairs of patterns that 

each stage must learn. For the first stage the input patterns to the network are defined by: 

 

[ Ai
(0), Bi

(0) ] = [ Ii, Ii+1 ] 

 

For the successive stages it is possible to choose between two ways of selecting the pattern pairs 

depending on the level of redundancy that is desired. For example it is possible to switch between 

two different methods defined by: 

 

[ Ai
(j)

, Bi
(j) 

] = [ C2i
(j-1)

, C2i+1
(j-1) 

] if j is even 

 

[ Ai
(j)

, Bi
(j) 

] = [ Ci
(j-1)

, Ci+1
(j-1) 

] if j is odd 

 

Note that this makes |C(j)| = 2|C(j+1)| if j is even and |C(j)| = |C(j+1)|+1 if j is odd, fulfilling the 

required |C
(j)

| >= |C
(j+1)

| condition. Also note that in cases where j is odd is met Ai+1
(j) 

= Bi
(j)

, this 

introduces the level of redundancy in the patterns at the time of decoding that makes the model 

more robust [14]. In each case the targets for [ ai
(j), bi

(j) ] are equal to the values of [ Ai
(j), Bi

(j) ] 

previously determined. 

 

4. RESULTS 
 

In order to demonstrate its properties a model consisting of 7 stages capable of coding letter 

sequences was used, where the letters are represented by bipolar patterns of dimension 8. The 

number of units used in each stage was chosen depending on the amount of combinations of pairs 
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of patterns produced by the previous stage. Finally the vector produced by the final stage has a 

size of 128 bipolar values. These vectors are represented in the figures with black and white 

squares corresponding to the positive and negative values. 

 

The model was trained with a set of 1000 random words from the English language. In order to 

demonstrate some of the desired properties, it was necessary to ensure that 9 of the words were 

related to “every” and “sing” as shown in the examples below.  It is important to note that vector 

representations do not have, neither are intended to have, any information about the meaning of 

the words. It is a purely syntactic, non-semantic representation. 

  

The first results consist of some pairs of words whose vectors have the smallest mutual distances 

of the whole set. In this case the values of the distances between the pairs of vectors are not being 

included because the vector representations are sufficiently similar between them (Figure 2). 
 

 
Figure 2. Words from the dataset with the similar vector representations. 

 

In particular, it is interesting to show how similar words obtain similar vector representations, and 

how these representations can be used to identify words belonging to a group or family [5,13]. 

Also, comparing three words with different root but same syntactic category, it can be seen how it 

would be possible to use this type of representation to identify to which category a new word 

belongs. 

 

Another interesting aspect to note is the ability to detect typographical errors [15]. As part of the 

training set, the words "every", "ever" and "fever" were included as all valid and similar to each 

other, and compared to three types of errors (replacement, omission and addition of one letter) 

with respect to "every" (Figure 3). 

 

 
Figure 3.  Vector representations from words similar to “every”. 

 

In this case we compare the distances between the representations of some valid words similar to 

"every" and other vector representations obtained from variations with typographical errors. 

 

dist(every,ever) = 13.227 dist(every,ebery) = 12.867 

dist(ever,fever) = 13.239 dist(every,evry) = 12.982 

dist(every,fever) = 13.631 dist(every,everyy) = 13.695 

 

A potential application of the information obtained with this method is the possibility to identify 

an unknown word either as a poorly written word or as a new word. If it is a known word but 
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poorly written, its vector representation should be sufficiently similar to the original word (ie, low 

vector distance between them). 

 

 
Figure 4.  Vector representations from words similar to “singing”. 

 

In the next test (Figure 4) it is shown how it would be possible to infer information of an 

unknown word from known words [16]. In this case the model was trained with some words as 

"sing", "sings", "song" and some gerunds as "sinking", "ringing" and "swinging", and it was  

analyzed what type of representation would be obtained for an unknown word, but associated to 

these two groups, like "singing". 

 

dist(sing,sings) = 14.344  dist(sinking,singing) = 12.912 

 

dist(sing,song) = 14.152  dist(ringing,singing) = 13.536 

 

dist(sings,song) = 15.059 dist(swinging,singing) = 15.301 

 

In this case it can be seen that the distance between two similar but known words is usually 

greater than the distance with a new word which is associated with known words. However, the 

real measure is to see how adequate the representation of the new word is in relation to the known 

groups of words [5,11]. 

 

dist( sinking-sink+sing, singing) = 10.781 

 

dist( ringing-ring+sing, singing) = 10.269 

 

dist( swinging-swing+sing, singing) = 11.723 

 

These representations obtained by performing arithmetic operations on the vectors were not only 

very similar to the representation of the new word, but also very similar to each other, showing 

that the representations generated by this method are consistent for different sequences. 
 

5. CONCLUSIONS AND FUTURE WORK 
 

In this paper we explored the possibilities of the proposed method applied to sequences of letters, 

that is to say, words; but it is clear that this same principle can be applied to sequences of words, 

and even sequences of sentences. The case of word coding is simple enough to easily show the 

properties of the model and can also be used as a first step in more complex coding.  However 

working exclusively with a natural language is not enough to show its true flexibility. 

 

A good demonstration of the capability of the model would be to test it against randomly 

generated sequences from regular and context-free grammars and measuring its properties against 

different levels of entropy. 

 

Another aspect to consider is the memory capacity of the model, specifically what is the 

minimum number of units needed at each stage for it to be able to reconstruct all known 
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sequences without errors, and the number of stages needed with the proper methods of pattern 

pairing in order to have an adequate level of redundancy. 
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