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ABSTRACT 

 

Researchers are actively investigating wireless sensor networks (WSNs) with respect to node 

design, architecture, networking protocols, and processing algorithms. However, few 

researchers consider the impact of deployments on the performance of a system. As a result, an 

appropriate deployment simulator that estimates the performance of WSNs concerning several 

deployment variables is needed. This paper presents a holistic deployment framework that 

assists decision makers in making optimum WSN deployment choices by considering the terrain 

of their region of interest and type of deployment. This framework employs empirical 

propagation models to predict the performance of the deployment in terms of connectivity, 

coverage, lifetime, and throughput for stochastic and deterministic deployments in dense tree, 

tall grass, and short grass environments. The outlined framework can serve as a useful 

prototype for creating deployment simulators that optimize WSN deployments by considering 

terrain factors and type of deployment.  

 

KEYWORDS 

 

Wireless Sensor Networks, Stochastic Deployment, Deterministic Deployment & Terrain  

 

 

1. INTRODUCTION 
 

A wireless sensor network (WSN) is an information retrieval and processing platform with vast 

potential. The development of WSNs is a challenging field due to their many requirements and 

properties. Microsensors and related micromechanical processor systems embedded in each other 

have propelled recent advances in WSN development. These advances have precipitated the 

production of small, low-cost, distributed sensor devices for possessing, sensing, and signal 

processing in wireless communication. A WSN can be fitted with digital hardware devices that 

enable the creation of media content, such as cameras, microphones and other sensors. With the 

accompanying equipment, sensors can capture videos, images, audio, and scalar sensor data and 

then deliver the content through the network. 

 

A WSN consists of several nodes that have sensing and self-networking capabilities. These nodes 

are connected in the WSN’s wireless range to share information and transmit data to the base 

station. Collected data can assume numerous forms, such as, temperature, humidity, infrared 

radiation, images, audio, and videos. The base station obtains and receives data from sensors and 

processes the data for decision-making. Due to the diverse sensing capabilities of WSNs, they can 

be employed in military, industrial, healthcare, environmental applications[1]. For specialized 
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applications, unique categories of WSNs exist, such as wireless multimedia sensor networks 

(WMSNs), underwater wireless sensor networks, and wireless body sensor networks. 

 

A WSN’s deployment model is responsible for determining a node’s position, size, cost, and 

layout over a region of interest (RoI). Deployment parameters have a direct influence on the 

WSN’s performance and require optimization to achieve the application goal. Deploying WSN 

nodes is performed by one of two types of methods: stochastic methods or deterministic methods. 

Stochastic deployment is a practical deployment for large-scale networks, in which the nodes are 

randomly deployed. This approach is suitable for areas where access is difficult and placement of 

the nodes cannot be controlled. Nodes are usually dropped from an airplane or other airborne 

mechanism, which produces a uniform distribution of nodes. The second choice is to 

deterministically deploy sensor nodes, which can be the best choice for achieving the system 

goals. In deterministic deployment, sensor node positions are predetermined, and an accessible 

region of interest exists to place sensor nodes[2]. 

 

WSN performance analysis currently assumes flat environments and provides unrealistic 

results[3]. In real-life situations, sensor nodes are deployed in environments that contain various 

obstacles, such as trees, grass, and concrete. Due to variations in application requirements, nodes 

can be placed at different heights, which may cause changes in propagation paths that differ from 

those in the traditional free space propagation model. Using empirical propagation models, this 

research aims to study the effects of the deployment environment on WSN performance. 

Empirical propagation models of tall grass, short grass, and dense trees are used to estimate 

deployment coverage, connectivity, network lifetime and throughput[4]. 

This paper presents a realistic decision-making methodology for stochastic and deterministic 

deployments of WSN. The remainder of the paper is organized as follows: In Section 2, a 

literature review is presented. A modeling and simulation approach using empirical radio models 

and stochastic and deterministic deployments is presented in Section 3. Section 4 shows the 

simulation results for theoretical and realistic scenarios. Section 5 presents the study’s 

conclusions and a discussion of future research.  

2. BACKGROUND WORK  
 
The author in [5] provides a framework and/or detailed process for creating simulators for 

application-specific WSN deployments. This simulator helps decision-makers select alternatives 

for WSN deployments. This framework considers application-specific factors and may be utilized 

in WSN stochastic deployment optimizations. The results indicate that the simulation offers a full 

view of every deployed node. The simulation also shows the influence of various deployment 

parameter levels on the efficiency of a deployment. Although the framework presented by the 

study offers guidance to the processes for building deployment simulators, the researchers note 

the need for improvement in various aspects. First, improvement in deployment distributions is 

needed; this problem is central to any WSN stochastic deployment. Another suggested aspect for 

improvement in the study pertains to RF models. The study indicates that accurate RF 

propagation modeling is a highly important WSN deployment topic. RF models prevent the 

generation of misleading conclusions. Every deployment simulator should require access to these 

models to improve the accuracy of their results.  

 

The author in [6] investigated a deterministic and random node deployment, particularly for 

large-scale wireless sensor networks. This study examined three main performance metrics: 

energy consumption, message transfer delay, and coverage. The research considered three 

competing node deployment schemes: uniform random scheme, square grid scheme, and pattern-

based Tri-Hexagon Tiling (THT) scheme. The study employed a simple energy model that 
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examined energy consumption for every deployment scheme. The researchers concluded that a 

WSN can rely on THT as the best performing node deployment strategy. In terms of future 

research, the study recommends the consideration of other deployments and a more detailed WSN 

energy model. 

 

In another study [7], the researchers performed simulations of random node deployments over a 

square area of varying densities and assumed that their network was composed of simple sensor 

nodes. The research also proposes a model for simulating a random sensor deployment and other 

features to empirically calculate the connectivity probability between a certain number of anchor 

and sensor nodes. The study proposes that future studies should concentrate on implementing an 

accurate RF propagation model to prevent misleading conclusions from simulated results. 

 

The study [8] proposes a systematic methodology for sensor placement using random 

distributions. The quality of a deployment is evaluated based on a proposed set of measures. The 

study thoroughly examines the impact of deployment strategies on WSN performance. The study 

also proposes a novel hybrid deployment scheme using the suggested deployment quality 

measures that attain the best performance. The deployment scheme and measures of deployment 

quality are evaluated using extensive simulations. The results indicate that the hybrid strategy 

outperformed other deployment schemes, including random, exponential, Gaussian, and uniform 

distributions. This strategy outperformed other strategies for grounds of delay, packet delivery 

ratio, network partition time, coverage, and average residual energy. This research aims to derive 

accurate analytical models to compare with simulation results. 

 

A further study [9] emphasizes two important aspects of WSN planning and/or deployment 

platforms. The framework is based on the J-Sim simulator, which details the manner in which a 

platform can be implemented. The platform aims to identify application-specific requirements, 

simulate an entire WSN, and obtain a deployment solution that is optimal in terms of node 

numbers, node type, node placement method, and various protocols. The researchers plan to 

reinforce a WSN planning and deployment performance evaluation and/or optimization in future 

studies. Additional novel models and/or protocols need to be investigated, including route 

protocols, obstacle, radio, and environment models. 

 

The study in [10] includes a research-in-progress that aimed to develop a decision-support system 

that can be used to predict optimal WSN node deployments for a given area. This proposed 

system includes simulation, image-processing, decision-making and prediction capabilities 

without the use of extensive parametric statistical techniques. The proposed system would enable 

rapid, optimized, cost-effective, and reliable sensor deployment on various existing structures 

and/or terrains during natural disasters and extreme scenarios, such as military operations. 

Considering that the system would be designed using open architecture and freely offered to the 

entire research community, it will likely impact future WSN research. This effect would fill 

unmet decision-support system demand and aid in designing and managing complex WSN 

deployments. 

 

Another paper [11] discusses various node deployment schemes, including efficiency enhancing 

parameters. The study proposes a new deployment scheme, in which the area of interest is divided 

into different small circles with nodes that are positioned at the center and diametric ends. This 

particular pattern has two-coverages (similar to hexagonal and square schemes) and has a degree 

of four. Based on the simulation results, the proposed pattern utilizes fewer nodes. The scheme 

offers a better degree and coverage than triangular, squared and hexagonal schemes. The scheme 

efficiently conserves energy with minimum delays compared with other schemes. However, this 

research does not consider the impact of terrains and obstacles. 
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In additional research [12], the author contributed to identifying methods for prolonging the 

network lifetime. To evaluate the lifetime of sensor networks, the best approach for placing 

sensors with the highest efficiency is required. Using MATLAB software for simulation, the 

authors developed a network that consists of nodes that are geometrically distributed in the form 

of stars. Each star deployment had a different number of branches with different existent energy. 

Based on the simulation analysis, these researchers discovered that geometric distributions 

provide a significant increase in WSN lifetimes compared with random distributions. 

 

Researchers have conducted a survey [13] aimed at discovering the most efficient deployment of 

sensor networks, which usually have unbalanced energy consumption. This research evaluated the 

impact of Gaussian deployments on the performance of a wireless sensor network. The authors 

performed simulations on the following elements: random traffic, homogeneous nodes, and 

stationary sinks. This procedure included uniform and Gaussian deployment strategies. These two 

strategies were divided into random and engineered deployments. To ensure a comprehensive 

analysis of the given area, future research should examine the performance of other deployment 

strategies. 

 

The author of [14] focused on evaluating the appropriate number of clusters that can be used in a 

WSN with the goal of maximizing its lifetime. Their research contributed to the evaluation of the 

hierarchical clustering routing protocol. The authors focused on applying this protocol to several 

deterministic deployment schemes, such as uniform, star, hexagonal and circular distribution. The 

analysis of the simulation results revealed a significant relationship between the sink location and 

the number of clusters, which maximizes the WSN lifetime. Thus, a higher number of clusters is 

useful for a sink that is located in the center of a sensor area, whereas a smaller number of 

clusters is useful for a sink that is located far from the sensor area. These distributions reduce the 

energy consumed by the WSN. This research uses theoretical propagation models that do not 

consider the effect of terrains on WSN performance.  

 

The study in [15] calculates the efficiency of different deployment patterns. These patterns were 

compared in terms of two performance measures. The first performance measure is the network 

efficient coverage area ratio; the second performance measure is the total coverage area for 

varying number of nodes. The research in this paper is based on exploring the best approach to 

deploying wireless sensor nodes that ensures the highest efficiency in coverage areas using 

efficient coverage area ratios. Using MATLAB as a simulation tool, they conducted a simulation 

based on the deploying sensor nodes in two patterns: square and triangular. The analysis shows 

that the triangle sensor node deployment pattern is more efficient in minimizing the number of 

nodes, efficiency, and energy consumption. 

 

A thorough review of the literature reveals a lack of studies that evaluate WSN deployment 

performance using practical methods. An extensive range of assessment approaches exist; 

however, the majority of these approaches use conventional linear measurements, which are not 

applicable to WSN. Instead, propagation models are commonly employed to test in-field or 

simulate the performance in different environments and terrains. Propagation models seem to 

expose the most critical gaps in the design and methodology of WSNs, including routing 

protocol, measured performance, and matters related to the continuous use of the technology. 

Assessments performed with this model exhibit drastic differences in WSN performance in 

various environments. Terrain, its density, and other environmental constraints occur to vary the 

effectiveness of a WSN even though the sensor capacity was reviewed as a complex of evolving 

signals. Using empirical propagation models is increasingly becoming a vital factor in simulating 

WSNs to predict the performance of real deployments. Applying free space propagation models is 

considered to be an overly optimistic prediction method that simplifies the difficulty of 

deployment. The Office of Naval Research (ONR) [16] claims that “modeling environments 

capable of optimizing the placement of available sensors within an area of interest to achieve 
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persistent surveillance”. A demand exists to optimize WSN deployment frameworks by including 

empirical propagation model’s deployment choices via the inclusion of several factors, such as 

terrain-driven deployment, connectivity, coverage, lifetime, and throughput in one holistic system 

[17]. 

 

3. REALISTIC WSN SIMULATION 
 
This section presents the components of the WSN deployment framework. Simulation 

experiments are performed on a MATLAB platform to implement the network and compare the 

performance. The framework supports stochastic and deterministic deployments, different 

theoretical and empirical propagation models, variable transmit power, and variable sensing 

ranges. 

 

3.1. Empirical Propagation Model 

 
A propagation model is used to test in-field or simulate the performance of a WSN in different 

environments and terrains. Propagation models seem to expose the most critical gaps in the 

design and methodology of WSNs, including routing protocol, measured performance, and 

matters related to the continuous use of the technology. To obtain a realistic performance analysis 

of the deployment, empirical propagation models are utilized to calculate several performance 

metrics. In this framework, six different propagation models that cover various types of terrains 

are employed. Each terrain propagation model was measured with different heights[4]. This 

research investigates three types of terrains: short grass, tall grass, and dense trees with different 

heights. Table 1 shows the propagation models. 

 
Table 1.  Empirical Propagation Model. 

Terrains Cases Models 

Short Grass Nodes at zero height 70.62+34.01 log
10
d

 
Nodes at 17 cm 53.29+39.00 log

10
d

 
Tall Grass Nodes at 3 cm 53.29+31.31 log

10
d

 
Nodes at 50 cm 37.02+35.33 log

10
d

 
Dense Tree Nodes at zero height 52.23+28.11 log

10
d

 
Nodes at 50 cm 35.0+32.74 log

10
d

 
 

3.2. Network Deployment 
 
The framework supports stochastic and deterministic deployment[2]. For stochastic deployments, 

the positions of the nodes are randomly determined over the defined area. In addition, the 

framework supports three deterministic deployments: triangular, hexagonal and square 

deployments as shown in Fig. 1. For these deployments, the position of each node is defined 

based on the type of deployment, the area size and the distance between two nodes. 

 

Figure 1.  Deterministic deployments: triangular, square and hexagonal. 
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3.3. Empirical Energy Models  

 
The energy dissipation of a WSN can be estimated by calculating the cost of the routing 

communication activity. The LEACH protocol [18], which focuses on fairly distributing the 

energy node between two WSN nodes, is employed to maximize the network lifetime and the 

energy dissipation on each node. The main idea of the LEACH is clustering, in which the network 

is divided into clusters that have a cluster head and members. The number of single hop 

communications that directly connect to the base station is lessened by only enabling the cluster 

heads to communicate. The cluster head aggregates the data from the cluster member and directly 

sends it to the base station. To measure the performance of the LEACH, the radio energy model 

[19] [20] is used to estimate the energy dissipation for transmitting and receiving data, as shown 

in Fig.2. The transmitter consumes energy due to power amplification and radio electronics, 

whereas the receiver loses energy due to radio electronics. To calculate the power attenuation 

between the sender and the receiver, the distance between them is employed. The propagation 

loss for each type of terrain is inversely proportional, as shown in Table I. 

 

Transmit 

Electronics

Eelec *l

Tx Amplifier

Eamp *l*dn

Receive 

Electronics

Eelec *l

L-bit message L-bit message 

d

 

Figure 2.  Energy model in wireless sensor network. 

The radio energy dissipation to transmit a message that has l-bit over a distance d will be: 

ETx(l,d)=ETx-elec(l)+ETx-amp(l,d)                         (1) 

 

Empirical models follow a first-order log-distance polynomial model, and the equations that 

express the relationship among the path loss, transmitted power and received power is: 

Lp=Pt[dBm]-Pr[dBm]+Gt[dB]+Gr[dB]                        (2) 

 

Where: 

Lp: the path loss in dB; Pt: the transmitted power; Pr: the received power; Gt: the transmitter 

gain; Gr: the receiver gain. 

The transmit power can be adjusted depending on the design and needs of a WSN. To obtain the 

transmit power, each terrain path loss model and equation (2) are combined: 

P
r_short_grass_node_at_0m

=
Pt Gt Gr

11.534532 ×106 × d3.401

                                 (3) 

P
r_short_grass_node_at_17cm

=
Pt Gt Gr

0.00685488 ×106 × d3.9

             (4) 

P
r _ tall _ grass_ node_ at _ 3cm

=
Pt Gt Gr

0.2133×10
6 × d

3.131
             (5) 

P
r_tall_grass_node_at_50cm

=
Pt Gt Gr

0.005035×106 × d3.533

            (6) 
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P
r_dense_tree_node_at_0m

=
Pt Gt Gr

0.167 ×106 × d2.811
            (7) 

P
r_dense_tree_node_at_0m

=
Pt Gt Gr

3.162 ×106 × d3.274
            (8) 

The amplifying energy on the transmitter side depends on two factors: receiver sensitivity and 

noise figure. To obtain the minimum transmitted power, a backward process is performed starting 

from the power threshold to ensure that the received power must be higher than the threshold. 

Multiplying the bit rate by the transmit energy per bit will generate transmit power and by 

inputting the value of amplifying energy for each type of terrain: 

Pt =

E
short_grass_0_amp

R
b
d

3.401

E
short_grass_17_amp

R
b
d

3.9

E
tall_grass_3_amp

R
b
d

3.131

E
tall_grass_50_amp

R
b
d

3.53

E
dense_tree_0_amp

R
b
d

2.81

E
dense_tree_50_amp

R
b
d

3.274

















         (9) 

The received power can be obtained using the empirical channel propagation models from the 

previous section: 

Pr =

E
short_grass_0_amp

R
b
G

t
G

r

11.535×10
6

E
short_grass_17_amp

R
b
G

t
G

r

0.0069 ×106

E
tall_grass_3_amp

R
b
G

t
G

r

0.2133×106

E
tall_grass_50_amp

R
b
G

t
G

r

0.005×106

E
dense_tree_0_amp

R
b
G

t
G

r

0.167 ×106

E
dense_tree_50_amp

R
b
G

t
G

r

3.162 ×106

























                       (10) 

The received power can be obtained using the empirical channel propagation models from the 

previous section: 

E
short_grass_0_amp

=
P

r−thresh
×11.535×106

R
b

× G
t
× G

r

           (11) 

E
short_grass_17_amp

=
P

r−thresh
× 0.0069 ×106

R
b

× G
t
× G

r

           (12) 

E
tall_grass_3_amp

=
P

r−thresh
× 0.2133×10

6

R
b

× G
t
× G

r

           (13) 

E
tall_grass_50_amp

=
P

r−thresh
× 0.005×106

R
b

× G
t
× G

r

           (14) 
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E
dense_tree_0_amp

=
P

r−thresh
× 0.167 ×10

6

R
b

× G
t
× G

r

           (15) 

E
dense_tree_50_amp

=
P

r−thresh
× 3.162 ×106

R
b

× G
t
× G

r

           (16) 

The following formula is used to calculate the receiver threshold: 

Pr-thresh[dBm]= 10log(KTB)+ F[dB]+ C/N[dB]        (17) 

where:  

K: Boltzmann's constant; T: Absolute temperature in Kelvins; KT≈ 4*10-18 mW/Hz; B: 

Bandwidth of the signal in Hz; F: Noise figure of the receiver; C/N: Signal-to-noise ratio.  

To successfully receive a packet, the received power must be higher than -94 dBm. The dissipated 

energy for each bit in the transceiver electronics is set to 50 nJ/bit. By adding the values in this 

experiment (Gt=Gr=1.86 dB, ht=hr=5 cm, Rb=1 Mbps), the amplifying energy for each type of 

terrain would be: 

Eshort_grass_0_amp = 1.949pJ/bit/ m
3.401             

(18)
 

Eshort_grass_17_amp = 1.158pJ/bit/ m
3.9            

(19)
 

Etall_grass_3_amp = 0.036pJ/bit/ m
3.131            

(20)
 

Etall_grass_50_amp= 0.851fJ/bit/ m
3.533            

(21)
 

Edense_tree_0_amp= 0.0282pJ/bit/ m
2.811            

(22)
 

Edense_tree_50_amp= 0.5344pJ/bit/ m
3.27            

(23) 

A comparison with well-known theoretical propagation models was performed to show the effect 

of real environment terrains on a WSN. The impact of free space and two-ray propagation models 

on WSN performance are compared with the performance of all empirical models. This effect 

drives the energy models, and using the parameters in this experiment, the energy models would 

be: 

Efree_space_amp= 1.10fJ/bit/ m
2             

(24)
 

Etwo-ray_amp= 0.0013pJ/bit/ m
4         

   (25)
 

3.4. Node Connectivity 

The connectivity of a network measures how well the nodes in a network are connected within 

the deployed area. The connection between two wireless nodes comprise either a direct link or an 

indirect link. To define a communication link between two nodes n1(x1,y1) and n2 (x2,y2), the 

Euclidean distance d between them is calculated.   

d(n
1
,n

2
) = (x

1
− x

2
)2 + ( y

2
− y

1
)2            (26) 
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If the Euclidean distance between the two nodes is less than the communication range, it is 

defined as a directly connected node. For these nodes, the maximum transmission range 

determined by the empirical RF propagation model of a specific environment will determine the 

connectivity between these nodes. 

d
short _ grass_ node_ at _0m

= (
P

t
G

t
G

r

11.534532 ×106 × P
r−thresh

)
1

3.401
          (27) 

d
short _ grass_ node_ at _17cm

= (
P

t
G

t
G

r

0.00685488 ×106 × P
r−thresh

)
1

3.9
          (28) 

d
tall _ grass_ node_ at _3cm

= (
P

t
G

t
G

r

0.2133×106 × P
r −thresh

)
1

3.131          (29) 

d
tall _ grass_ node_ at _50cm

= (
P

t
G

t
G

r

0.005035×106 × P
r−thresh

)
1

3.533
          (30) 

d
dense _ tree _ node_ at _ 0m

= (
P

t
G

t
G

r

0.167 ×106 × P
r−thresh

)
1

2.811           (31) 

d
dense_ tree_ node_ at _50cm

= (
P

t
G

t
G

r

11.534532 ×106 × P
r−thresh

)
1

3.274
          (32) 

The connectivity matrix is used to evaluate an entire network’s connectivity. The matrix has the 

size of n * n, where n is the number of nodes in the network. Based on the radio range and the 

distance between the nodes, the matrix element will have a value of 1 if they are connected and a 

value of 0 if they are not connected. The indirect links between the nodes are calculated by 

scanning all nodes to identify indirect nodes between the previous two nodes. The connectivity 

percentage is calculated when the connectivity matrix is ready. The framework checks the 

connectivity among all nodes on each LEACH round and shows the variation in the connectivity 

for the surviving nodes.  

 

3.5. Region of Interest Coverage 

 
Coverage is one of the most important metrics that measures the deployment effectiveness and 

the quality of service of a WSN. Coverage indicates the number of points in the deployment area 

that are covered by the deployed sensors. The binary disc sensing model is adapted to compute 

the average. The sensing area is the circle that surrounds a sensor with the radius r, which is equal 

to the sensing range of the sensor. Each point that does not fall within this radius is considered to 

be an uncovered point. The sensing range is assumed to be the same for each sensor and can be 

determined as an input. 

 

C
xy

S
i( ) =

1: if d S
i
, P( ) ≤ r

0 : otherwise







            (33) 

where Si is the sensor node position, P is the position of any node in the area, and r is the sensing 

range. The distance between the node and the point is calculated using the Euclidean distance 

equation. The percentage of coverage is given by: 

 

Coverage =
c

p∈P
1∑

×100             (34) 
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The framework checks the change in coverage on each round due to the change in the remaining 

number of nodes. 

 

4. DEPLOYMENT ANALYSIS 

 
In this section, the holistic performance of stochastic and deterministic deployment is analyzed 

for all terrains. The provided results support decision-making processes by studying the impact of 

several factors that influence the WSN performance. MATLAB is used to implement and analyze 

the deployment. The following section shows the analysis of the simulation output, where the 

deployment area is a rectangle with a size of 200 m X 200 m. The base station is located at 100 m 

X 205 m. Four common deployments tested with the same variables were applied to all 

environments to estimate the coverage, connectivity, lifetime, and throughput. The data packet 

has 6400 bits, and the control packets have 200 bits. The number of cluster heads for each round 

is 5% of the total number of remaining nodes. The initial energy is the same for all nodes, which 

is 2 joules. The holistic performance of the network was tested with a variable number of nodes 

and sensing ranges. 

 

4.1. Lifetime 

 
Using the presented framework, the lifetime is computed and simulated, and the results are 

presented in Figures 3-6. 
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Figure 3.  Lifetime of random deployment in rounds for all terrains. 
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Figure 4.  Lifetime of triangular deployment in rounds for all terrains. 
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Figure 5.  Lifetime of square deployment in rounds for all terrains. 
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Figure 6.  Lifetime of hexagonal deployment in rounds for all terrains. 

The results of simulating the propagation models of different environments with different 

deployments show a significant difference between the theoretical propagation model and the 

empirical propagation model. Placing nodes on the ground in a dense tree environment yields the 

longest network lifetime, whereas setting the nodes over the ground (height of seventeen cm) in a 

short grass environment yields the lowest lifetime. The first node dies in the dense tree 

environment at 3519 rounds with 62025 total packets sent to the base station. This finding is 

lower than the results received from the free space model. For short grass with the nodes spaced 

at a height of 17 cm, the first node dies in the third round with only 31 packets sent to the base 

station from the entire network. The significant variations in the lifetime of the network are 

caused by the path loss exponent of each terrain. The dense tree environment has a path loss 

exponent of 2.81, which is the lowest path loss exponent among all terrains, whereas the short 

grass environment has the highest path loss exponent of 3.9. The lifetime is stable for all terrains, 

even if the number of nodes is increased; however, it gradually decreases with the random 

deployment. Stochastic and deterministic deployments have the highest lifetime with 50 to 100 

nodes. Placing the nodes on the ground among a dense tree environment ensures the longest 

network lifetime, whereas setting the nodes over the ground in a short grass environment 

produces the lowest lifetime. The number of dead nodes becomes stable with 60 to 80 nodes for 

most terrains for all deployments. The lifetime is the highest with random deployments compared 

to other deployment options. All deterministic deployment nodes have a lower lifetime due to the 
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required distance between two nodes to cover all regions of interest. This arbitrary distance 

causes the data transmission cost to exceed the random deployment.   

 

4.2. Connectivity 

 
The results obtained from the framework are presented in the following figures.  
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Figure 7.  Connectivity of random deployment for all terrains. 
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Figure 8.  Connectivity of triangular deployment for all terrains. 
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Figure 9.  Connectivity of square deployment for all terrains. 
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Figure 10.  Connectivity of hexagonal deployment for all terrains. 

Figures 7-10 represent the connectivity over all terrains with stochastic and deterministic 

deployments. The theoretical free space model, model of dense tree terrain at 50 cm, and model 

of tall grass terrain at 50 cm have the highest connectivity, whereas all other terrains have low 

connectivity for the majority of deployment choices. This finding is attributed to the low median 

path loss at the reference distance. The dense tree model with a height of zero meters has a high 

connectivity with square and triangular deployments due to the distance between two nodes, 

which is enables a high connectivity. For all terrains, the connectivity percentage decreases after 

few rounds due to the high number of nodes that have died. Square and hexagonal deployments 

attain a high connectivity level with 50 to 100 nodes. To optimize the connectivity of random 

deployments, nearly 150 to 200 nodes are needed. The triangular deployment has the lowest cost 

due to the small number of nodes that are required to obtain a high level of connectivity.  

 

4.3. Coverage 
 
The following figures illustrate the amount of coverage that is provided by each deployment and 

the change in the coverage percentage over the network lifetime for each terrain. 
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Figure 11.  Change in coverage for all terrains with random deployment. 
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Figure 12.  Change in coverage for all terrains with triangular deployment. 
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Figure 13.  Change in coverage for all terrains with square deployment. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Round

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

ve
ra

g
e

 (
%

)

Network Coverage 

Free Space Model

Two-Ray Model

Dense Tree Model at 50cm

Dense Tree Model at 0m

Short Grass Model at 0m

Short Grass Model at 17cm

Tall Grass Model at 3cm

Tall Grass Model at 50cm

 
Figure 14.  Change in coverage for all terrains with hexagonal deployment. 

 

Figures 11 to 14 illustrate the coverage in the region of interest, which is defined by at least 35 

nodes for hexagonal deployment, 52 nodes for triangular deployment, 50 nodes for random 

deployment, and 56 nodes for square deployment, respectively. They deploy with a variable 

sensing range for each of the deployments starting from 5 m to 30 m. With a 10- to 15-meter 

sensing range, the triangular deployment achieves almost full coverage in the region of interest. 

Square deployment can provide similar coverage with a few additional nodes. For each 

deployment choice, the region of interest can be covered with a high sensing range: 30 m for 

random deployment, 25 m for triangular and square deployment, and more than 30 m for 

hexagonal deployment. Hexagonal deployment utilizes the highest number of nodes, followed by 

square, triangular, and random deployments. However, random deployment seems inefficient due 

to its defined number of nodes that are randomly stationed. An analysis of the applied techniques 

applied shows that the hexagonal technique has the largest number of nodes. However, triangular 

deployment is the best pattern regarding efficiency within the same region. 
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4.4. Throughput 

 
The following figures show the final throughput for each type of deployment and terrain and the 

impact of deployment and terrain variations on the final throughput of the deployed network.   

 

 

Figure 15.  Number of received packets by the base station for each terrain with stochastic and 

deterministic deployments. 

 

Figure 16.  Random deployment throughput with a variable number of nodes for each terrain. 

 

 

Figure 17.  Triangular deployment throughput with a variable number of nodes for each terrain. 
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Figure 18.  Square deployment throughput with a variable number of nodes for each terrain. 
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Figure 19.  Hexagonal deployment throughput with a variable number of nodes for each terrain. 

 

Figures 15-19 represent the network throughput after ten thousand rounds, which shows the 

number of packets that has been successfully received by the base station. As illustrated in the 

figures, the random deployment has the highest throughput compared with other deployments. 

For all deterministic deployments, the throughput increases by adding nodes and decreases in the 

random deployment for more than 100 nodes. Most of the terrains produce a throughput that is 

similar to the throughput of the theoretical two-ray model. However, they have a low throughput 

compared with the dense tree model with the nodes on the ground, which is similar to the free 

space model. With the exception of the dense tree model with the node on the ground, the impact 

of the deployments, either random or deterministic, among these choices is similar. 

 

5. CONCLUSIONS AND FUTURE WORK 
 
This paper presents a realistic deployment framework that investigates WSN performance for 

several stochastic and deterministic deployments. The study shows that deterministic deployment 

is not the optimum solution when considering a holistic viewpoint, as shown in the literature 

review. A trade-off exists among selecting the optimum coverage, connectivity, lifetime, and 

throughput. This study investigates the impact of empirical propagation models on WSN 

performance. Table 3 summarizes the deployment options and shows the best choice of 

deployment option for each number of nodes from 50 nodes to 200 nodes. The empirical 

propagation model was utilized for dense trees, tall grass, and short grass with different heights to 

devise an accurate performance analysis that considers the surrounding environment. The 

findings of this study indicate that theoretical propagation models are not precise in determining 

WSN performance and the evaluation of WSN performance should include empirical propagation 

models. The findings of this research will support deployment decision makers due to its focus on 

the impact of real environments and the deployment choices that can be applied in the pre-

deployment stage to predict and optimize the deployment efficiency. Future research will focus 
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on optimizing the simulation framework by incorporating artificial intelligence and prediction 

methods. Determining the optimum number of nodes to be deployed for each terrain and their 

locations is an open issue to further investigation. Additional stochastic deployments need to be 

included and analyzed. In addition, the impact of deployment and terrain needs to be explored 

with additional routing protocols. The scope of future research should be expanded to determine 

the performance of multi-terrain environments. 

 
Table 1.  Holistic Performance Summary for Stochastic and Deterministic Deployments.   

Performance Number of nodes Random Square Hexagonal Triangular 

Throughput 

50 √    

100 √    

150 √   √ 

200    √ 

Lifetime 

50 √    

100 √    

150 √   √ 

200    √ 

Coverage 

50    √ 

100    √ 

150    √ 

200  √  √ 

Connectivity 

50 √    

100 √    

150  √   

200    √ 
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