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ABSTRACT 

 
The pervasive computing domain is a very challenging one and requires a robust architectural 

model to facilitate the production of its systems. In this paper, we explain a case study using a 

simulation prototype to validate our baseline architecture of a reference architecture for the 

pervasive computing domain. The simulation prototype was very useful in predicting the 

reliability and availability of the system using the baseline architecture during runtime. 
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1. INTRODUCTION 
 
Software Architecture is one of the critical tasks in the software development lifecycle. The 
design decisions that the software architect takes represent the skeleton of the software system. 
Incorrect decisions may lead to a complete failure of the whole system. Moreover, correcting the 
wrong designs could be very expensive for both the development team and the customer. 
 
The software architectural model is either a concrete or a reference one. The concrete software 
architectural model targets a specific problem domain within a specific context. It may not be 
used in other contexts. On the other hand, the software reference architectural (RA) model targets 
a specific problem domain which could be used in different contexts with or without 
modifications in the basic model. 
 
The software development community (SDC) developed some quantitative methods like SAAM, 
ATAM, and ALMA [1] to evaluate the architectural models. These methods depend mainly on 
the human factor. There are other quantitative methods which provide more concrete figures 
about some architectural attributes like cohesion, reusability, and maintainability. 
 
Software architects sometimes need to realize the architecture before implementation since it 
gives them more confidence about the pursued decisions. Accordingly, the SDC improvised some 
traceability and experimental methods. These methods try to link the system requirements with 
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the architectural decisions and hence may instantiate concrete architectures, generate use cases, 
develop prototypes, or even develop complete applications to measure the system architecture 
coverage against the system requirements. 
 
A simulation prototype is an experimental prototype. ‘Simulation’ is an artificial activity that tries 
to imitate an operation in the real world across a period of time [2]. It could be done manually or 
may be automated depending on the complexity of the simulation operation scenario. 
 
Our research work aimed to generate a software reference architecture for pervasive computing 
systems from a software engineering perspective (PervCompRA-SE). The reference architecture 
which was developed contains business and technical sides. The technical part fulfills the needs 
of the business part by introducing reference models for the smart object, smart environment, and 
the pervasive system. The baseline reference architecture in pervasive computing explains the 
basic structure and the behavior of the pervasive system. We used both qualitative and 
quantitative methods to evaluate the reference architecture. Moreover, we implemented a 
simulation prototype to realize the baseline architectural model for pervasive systems [3]. 
 
The paper is organized as follows: Section 2 covers the work related to the evaluation of 
pervasive systems. Section 3 explains our approach to build the case study. Section 4 narrates the 
details of the simulation story. Section 5 explains the conceptual model of the simulation 
prototype and section 6 gives the specification of the prototype which recognizes the story and 
the conceptual model. Section 7 lists the assumptions that we used to make the simulation 
prototype close to reality. Section 8 depicts the different simulation scenarios and Section 9 
shows the prediction of the system behavior at runtime with respect to reliability and availability. 
Finally, section 10 concludes the paper. 

 

2. RELATED WORK 
 

Research efforts to evaluate software architectural models are already being applied. The existing 
methods are qualitative, quantitative, or experimental. 
 
Angelov et al. [4] reported on an evaluation methodology for a reference architecture that they 
developed for a B2B e-contracting solution which aims to improve the contracting process 
between companies. The Researchers adopted the Architecture Trade-off Analysis Method 
(ATAM) [1] method with some variations. The authors concluded that in order to maximize the 
benefit from the ATAM process, then they first need to adapt the step of identifying the 
stakeholders properly based on the maturity level of the reference architecture, whether it is a 
practical or a visionary reference architecture. Second, they recommended to select a number of 
scenarios from different contexts, merge them, then prioritize them in a general format. 
 
Graff et al. [5] proposed a variant from the SAAM [1] to evaluate a RA for an embedded 
software. Their approach is based on real-life projects in one of the leading copier manufacturers. 
One of the main challenges for their research work was that they needed to evaluate their RA 
based on concrete scenarios that can hardly attribute their design decisions to their RA which they 
called RACE. They decided to resolve this issue by asking a simple question while executing 
each scenario “What is the impact on the reference architecture?” 
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From another perspective, the evaluation of system architectures is seen as a straightforward task 
that can be achieved using quantitative figures. Madhusudanan and Prasanna [6] used metrics for 
pervasive systems that cover key-design aspects in pervasive systems and middleware platforms 
in specific. For example, the authors evaluate context-awareness for pervasive systems with 
respect to the number of locations, environment, user activities, time, and physical objects. They 
evaluate scenarios with respect to location according to the number of used locations in the 
selected scenario against the total number of locations in the environment. They do the same 
evaluation for other attributes like no. of devices and activities then build an evaluation graph. 
 
Malik et al. [7] proposed an evaluation framework that differentiates between quantifiable and 
non-quantifiable characteristics of pervasive systems. Their approach considers different factors 
from the system, users, context, and environment. Maintainability, security and privacy, 
infrastructure, and integration Design factors are considered crucial evaluation factors. However, 
according to their evaluation, a pervasive system will not be successful if it does not meet user 
needs and considers user-related factors such as demographics, health, and comfort. 
 
Bueno [8] presented a software reference architecture for component-based self-adaptive software 
systems. She adopted a more concrete approach to evaluate her RA by instantiating a concrete 
architecture and implementing a software based on it. She ran some test cases with an assumption 
that the quality of the application at run-time was an indicator of the quality of the architecture 
which was instantiated from the reference architecture. 
 
Bogado et al. [9] introduced an evaluation framework for software architecture runtime quality 
attributes. The authors worked on building a discrete-event simulation model that evaluates 
quality attributes for a software architecture. They built a specification model using Discrete 
Event System Specification (DEVS) to formalize their model which was then fed into a 
simulator. The authors claimed that this method was useful in evaluating an architecture in the 
early stages of the software development lifecycle. 
 
They described a conceptual model for evaluation. This model captures the generic behaviour of 
the architecture elements. It has a high level element called Architecural Element which is 
specialized into a Connection Mechanism and Component. The Component is further specialized 
into Simple Component and Composite Component. The component is the one that carries 
responsibilities and has a representation at runtime. The Composite Component is composed of 
Simple Component and Composite Component elements and its behaviour is determined by the 
simple components. Quality attribute values (QualityAttributeValue) are identified for 
responsibilities and measurements (Measure) are taken for them. 
 
Almost every project chose a single evaluation approach to work with. We can rarely find a 
research project that combined different methods to evaluate a concrete architecture or an RA; 
although the combined view can provide useful insights for the quality of the RA. The RA 
represents the model with modules that could be evaluated quantifiably while its documentations 
could be evaluated subjectively. Moreover, very few reference models adopt the simulation 
prototype as a method to study the impact of the architecture on the behaviour of the system. 
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Figure 1. Simulation Experiment (High Level) 

 

3. THE APPROACH 
 
There are several methods to evaluate the structure and the behaviour of a software architecture 
prior to implementation. These are lead measures which reveal some issues before turning the 
architecture into implementation. However, some of the issues remain to be discovered after 
implementation. Accordingly, we need to have a lag measure in order to understand more about 
the system behaviour at runtime. 
 
Hence, we assessed the reliability and availability of the architecture during runtime by running 
the simulation experiments. We built a conceptual model and captured state details similar to the 
ones mentioned in [9]. The results of the simulation were studied to propose enhancements for the 
baseline architecture, whenever required. 
 
Compared to regular prototype implementations, the simulation prototype does not introduce 
external variables to the prototype like the hardware, programming language and network. 
Including these variables would have definitely impacted the final results of the experiment and is 
time-consuming as well. The simulation model can however clarify the requirements of the user 
in a virtual space which considers all constraints and quality requirements [10]. The regular 
prototype implementation may be more suitable for a concrete architecture. In contrast, the 
simulation approach is better within our scope of research, and at the same time experiments were 
executed in a more controlled environment. Moreover, pervasive systems are considered quite 
complex and they cannot follow the traditional development cycle. They need to be tested first 
using simulation approaches as recommended by Brink [11]. 
 
We adopted a discrete-event simulation (DES) approach which can have different states across 
discrete points in time. Compared to continuous event simulation, a DES simulation approach 
best fits operations whose states change continuously over time as per Martensson and Jonsson 
[12]. 
 
The real challenge for running simulation experiments to predict the behaviour of a pervasive 
system, or even a software system in general, is that there is insufficient historical data about 
similar systems in order to build a robust simulation model [9]. Usually, developers will go for 
assumptions and opinions from domain experts. Researchers like Roshandel et al. [13] introduced 
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a software reliability prediction model before implementation based on the reliability of the 
architecture components. However, their approach requires deep knowledge about the 
components’ design during the design phase. In our approach we ran the experiments based on 
the technical specifications of the sensors and also on statistics gathered and produced by earlier 
researchers as well as our scientific calculations for the complexity of the modules as explained in 
[3]. We executed different scenarios in order to provide a prediction model with a high degree of 
confidence (Fig. 1). 
 
We developed the simulation prototype using the DEVS-Suite tool [14]. It was fairly easy to 
customize and even introduce more features to the application by introducing a simple database 
and building the modules using the Java language. 
 

4. THE SIMULATION EXAMPLE 
 
The simulation scenario that we investigated is a system that studies the quality of the sensors in a 
bus. There is a bus starting its trip from point A towards point B for a complete 20-hour trip. 
There is a location and a speed sensor installed on the bus to help the control room detect if the 
bus has a problem during its trip or not. The system will device its intelligence to make sense of 
the received data and transform them into meaningful contexts, then interpretations, then 
decisions, and finally actions. The bus driver will carry out different manoeuvres to stimulate the 
sensors. For example, he will drive normally then stop suddenly. He can drive normally then slow 
down suddenly. In other words, he will drive at different speeds with no alarm on when he speeds 
up or slows down while moving from point A to point B. 
 

 
 

Figure 2. Bus Trip Emergency Study Simulation Example 
 

The data generated from the sensors are classified into specific events: 
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• Location Event: is categorized based on the proximity of the bus from point A and B (At 
point A, Far away from point B, Midway to point B, Very close from point B, At point 
B). 

 

• Speed Event: is categorized from an accident status point of view (Normal speed, 
Slowing down, Moving very slowly, Slowed down suddenly, stopped suddenly). 

 

• Time Event: is categorized as (early morning, midday, and night). 
 
The different combinations of these events generate a 3-tuple context which derives a specific 
interpretation. The interpretation drives a decision, which leads into some actions through the 
system actuators (Digital screens and SMS Gateway). 
 
On the other hand, the system receives visitors who request services. The entities of the system 
may fail to achieve their duties at some time, but the autonomous error recovery of the system 
will work on fixing them. Moreover, the system optimization service will monitor the lifetime of 
the sensors to prolong their lifetime and the rest of the entities to reduce their failure rates. The 
whole system will be running at different modes in which there are some policies that will be 
applied (Fig. 2). 
 

5. CONCEPTUAL MODEL 
 
The conceptual model is an important step towards the complete implementation of the 
simulation prototype. It is derived from the structure of the baseline architecture model as 
introduced in the original research work [3]. The model is composed of Entities classified as part 
objects, resident objects, and visitor objects. The part objects are those modules that define the 
baseline architecture. The sensors and actuators are resident objects that the part modules interact 
with to receive data and output data. The smart objects are visitors that request services from the 
system on regular basis (Fig. 3). 
 

 
 

Figure 3. Simulation Conceptual Model 
 

Entities interact with each other through their input and output ports. Every simulation module 
has two basic attributes (phase and tick). Phase represents the status of the entity and tick is the 
logical time at which the entity can accept inputs and generate outputs. All the entities are 
working on a tick = 10, which is equivalent to one minute, and all the entities have 4 basic phases 
as shown in Fig. 4: 
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Figure 4. Simulation Module Phases 

 

The whole simulation model can be working in one of the following modes: 
 
1) Runtime: It is the normal execution scenario without changes in the settings of the entities. 

 
2) Assertion: It is a normal execution scenario but with additional logging activities from these 

entities. They send data to the Logger to log a specific event. 
 

3) Security Threat: In this mode, the whole system is threatened and needs to take some 
measures to protect itself. It rejects visits from new smart objects recognized as visitors and 
accepts visits from the trusted smart objects only. It disables the Synthesizers so that no data 
can be collected from the sensors. 
 

4) Out of Service: During this mode the system will not be processing sensor signals, will not 
accept visits, and will not fetch user profiles from the Repository Manager. The system will 
still keep recording sensor data and when the system returns to one of the other three modes, 
then it can fetch the data and work on it. 

 
The state of an entity at any point of time is defined using the 6-tuple (P, AI, AO, L, F, M): 
 
1) Phase (P): it is the phase of the entity where P is one of the phases in the set {Active, 

Inactive, Failed, Resumed}.  
 

2) Accumulated Inputs (AI): it is the number of received input requests for all the input ports  

 
 

3) Accumulated Outputs (AO): it is the number of submitted outputs for all the output ports  

 
 

4) Lifetime (L): is the lifetime indicator of the entity which takes a value from 0-100. 100 
indicates that it is healthy and fully powered, and 0 indicates that it is dead. It is an optional 
state attribute for part objects  
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5) Failures (F): it is the counter of the failures. It is ceiled by a maximum threshold. The 
counter will reset to 0 after reaching the threshold. It is an optional state attribute for 
active objects.  

 
6) Mode (M): It is the mode of the system where M is one of the modes in the set {Runtime, 

Assertion, Out of Service, Security Threat}.  
 

6. MODEL SPECIFICATION 

 
The main building modules of the simulation project are derived from the baseline architecture as 
specified in [3]. In addition, we added more modules to make the prototype more controllable and 
fulfilling for the simulation example as well. 
 
The prototype starts using the Simulation Starter module which is responsible for starting, 
stopping, changing execution modes, and dumping statistics about the simulation runs. The 
Policy Manager is responsible for applying the system policy on the modules according to the 
mode of execution. The sensors of the prototype are the Speed Sensor and the Location Sensor. 
Both send their data to Sensor Synthesizers which receive the data and generate the sensor signals 
after checking their correctness based on a standard deviation of expected error factors. 
 
The prototype uses two digital boards (Hospital Alarm Board and Police Alarm Board) and an 
SMS Engine. They are used to send alarms and notifications about accidents that may occur 
during the simulation. They are the actuators that fulfil actions in order to adapt to the changes in 
the context of the experiment. 
 
The Repository Manager is responsible for storing the synthesized sensors’ data in a 3-tuple 
format including the time, location and the speed. It stores also the profile of the users, which is 
managed by the Profile Manager, and the visits made by the smart objects.  
 
The system makes sense of the 3-tuple data format by transforming it into a 3-tuple context 
through the Event Handler. The system then employs the Interpretation Manager to interpret the 
3-tuple context. The Decision Manager uses the interpretation to make a decision which triggers 
actions through the actuators. 
 
The systems simulates the visits of the users through the Smart Object which sends visits to the 
system similar to the attendance models of the employees as it is expected to have more users join 
the system during the day and the trend decreases slowly where the disjoin trend increases by the 
end of the day. The Device Manager is responsible for registering the joins and leaves of the 
smart objects. The Service Manager receives requests from the visitors and fulfils them through 
the different modules of the system like the Repository Manager, actuators, and the sensors. 
 
Every service has an authorization level based on the smart object type, visitor or trusted smart 
object. If the smart object requests a service that has an authorization level not suitable for its 
type, then the Service Manager rejects the request. The Risk Handler is responsible for studying 
the requests from the smart objects to join the system and puts it on the proper status (visiting, 

trusted, prohibited, or rejected). It is also responsible for handling the certificate requests sent 
from the joining smart objects. 
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The Fault Manager is responsible for handling faults that cause part objects to be out of service. 
For the sake of consistency and better tracking in the simulation model, the Fault Handler is 
responsible also for failing the modules. It is important to note that the probability of part object 
failure increases based on its complexity as shown in equation (1) [3]: 
 

 
 

Where r is the number of satisfied requirements by the part object and d is the number of input 
and output dependency relationships for the part object. The equation derives the faults from the 
satisfied requirements, which could be translated as internal part object capabilities and the 
dependency relationships with other part objects. It is then divided by all the weights of the 
modules and multiplied by 100 to get a percentage. The weight is rounded off after that. 
 
The Optimization Manager is responsible for monitoring the failure rates of the modules and the 
lifetime status as health performance indicators for the sensors, actuators, and the part objects  
and takes decisions to recover their performance. The Resource Manager receives a request from 
the Optimization Manager to allocate a resource for a nominated part object, or sensor. If the 
request is to reduce failures, then the Resource Manager will select a resource, which could be a 
hardware or a software, randomly from a set of resources reserved for the part objects only, if not 
already allocated. The part object receives the resource which gives it a limited protection from 
failure through a pre-defined period of time, e.g. 100 ticks. Accordingly, if the Fault Handler 

decides to fail a part object that has a resource allocated for it, the part object will ignore this fail 
message. 
 
If the request is to recover the lifetime of the sensor, then the Resource Manager will select a 
resource randomly from a set of resources reserved for the sensors only, if not already allocated. 
The battery resources increase the lifetime of the hardware instantly by a specified lifetime value 
[15].  
 
The data collected by the Repository Manager and the Logger is analysed by the Analysis 

Manager which shares some of its knowledge with the external entities represented as a module 
called Interested Community. 
 

7. SIMULATION ASSUMPTIONS 

 
There are some important assumptions that had to be designed within the probability model of the 
simulation prototype. They are derived from real data concerning software and hardware 
components. These assumptions are embedded in the simulation prototype as settings which 
could be modified as needed to produce numerous simulation scenarios. In order to make the 
simulation scenario very close to reality, we made some assumptions derived from actual 
statistics. 
 
The sensors are assumed to be running on batteries that deplete gradually according to the rate of 
generated sensor data. They start with an initial capacity of 100%, and decrease gradually by X% 
(e.g. 0.5%) with every activity. On the other hand, part objects and actuators are running on 
permanent power, but they may experience random failures every now and then. 
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We investigated the technical settings of some sensors (battery lifetime, and accuracy for the time 
pulse signal). The ideal settings for the sensors are as follows: 
 

1) Speed Sensor: It is assumed to have a 15 hours battery lifetime in normal conditions 
[16]. We assume the minimum hours for the battery is 7h12m and maximum is 18h42m 
[17] and the probability of failure between 10-7 and <= 10-8 per hour [18]. Our settings 
are derived from two speed sensor products.  

 
2) Location Sensor: The same battery lifetime of the speed sensor is assumed here as well 

for the location sensor [17]. The horizontal position accuracy has a standard deviation of 
0.35 meters [19]. The assumptions are derived from one product.  

 
We assume that the probability of failure for the SMS Engine is 0.05 as per the research on the 
reliability of short messaging [20]. The failure rate of the SMS Engine as an active object is 
independent from the part objects of the system.  
 
We assume that the failure rate for the digital screens installed in the Police department and the 
Hospital is 0.03 due to product defects as stated by Shaw [21]. Given other external factors like 
scheduled maintenance, power supply cut-off, and software failure, then we can safely increase 
the failure probability to 0.05. The digital screen failure rate is quite independent from the failures 
of the part objects. 
 
Part objects are assumed to be running on different servers from the same manufacturer and the 
same manufacturing year. We assume that the best probability of total failure for the part object at 
any minute is 0.05 based on estimates from [22] [23]. On the other hand, another interesting 
research, by YAN [24], shows that the reliability of a pervasive system can be less than 0.5. So,  
we assign 0.5 as the worst probability. The average in this case will be 0.275. The values for the 
control variable (Part Object Failure Optimization Threshold) as shown in Table 1 are based on 
experience with IT support units in the Telecom industry. 
 
Pervasive systems, or IoT systems, are highly vulnerable to security threats [25]. Moreover, 
systems usually go out of service due to planned maintenance or unplanned outages. It is noticed 
that the cost of maintaining a system is in continuous increase since the end of the last century. 
This is basically due to the increased number of developed software applications and their 
increased complexity [26]. Moreover, administrators dump logs from the system for monitoring 
purposes all the time. Accordingly, we assume that the system will be running in normal mode 
most of the time (64-70%) and that there is 30-36% probability that it will be running in one of 
the other abnormal modes (Assertion, Out of Service, or Security Threat). 
 
The Optimization Manager checks the status of the battery if it reaches 40% of its capacity [27] 
on average. We assume that the mean time of repair for the part object is shorter than the mean 
time between failures [28]. We assume that the more complex is the part object, the higher the 
probability of failure, and the less complex is the part object the faster we can get a repair [29] 
[30]. 
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Figure 5. Speed normal probability function 
 

We also assume that the probability of having a normal trip is normally distributed around normal 
driving and that the accidents are rare (bell curve shape) with very low probability as reported by 
some studies around accidents in the USA [31] [32]. We executed different runs to generate 
values by the Gaussian function, and optimized the standard deviation σ in order to get a bell 
curve that fits the probability distribution model for normal driving and accidents. We used 
average = 21 and σ = 7. Anything greater than 3σ and less than -3σ is set to 0, otherwise values 
between average and 3σ are mirrored to be in the range of (0, average) as shown in equation 2. 
 

 
 
The function generates a semi-bell probability shape as shown in Fig. 5 where 0 is an indication 
for an accident and 21 is an indication for a normal driving speed. 
 
We assume that the visits of the smart objects are tightly coupled with the visitors’ behaviour to 
the attendance of employees in a workplace. It is assumed that the human visitors’ trend has peak 
visits during the early morning and decreases through the day. Accordingly, the smart objet 
disjoins the system across the day but there is a peak at the end of the day when visitors start to 
leave the school. During this time, visitors can request services in a normal distribution where the 
most aggressive period is at midday (Fig. 6). 
 
The simulation model generates new join requests from smart objects as shown in 
equation/algorithm (3) [3]. We assume an average of 6 visits at a time and σ = 3. It generates a 
large number of visits, not exceeding 7000, if the simulation model will execute for 1500 ticks. 
The same algorithm will generate disjoin requests but at very small rates in the early day time and 
increasing by the end of the day. 
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Figure 6. Smart Objects join/disjoin behavior during the simulation 
 

 
 

The assumptions that we presented are accurate to our best knowledge and based on credible 
references. We evaluated the best and worst values in order to use them in our simulation 
experiments. They are all derived from the same sources as summarized in Table 1, given that the 
average may not represent a calculation from the best and worst values. 
 

8. EXPERIMENTATION SCENARIOS 
 
In order to provide an acceptable prediction model for the reliability and availability of the 
PervCompRA-SE, we implemented different simulation scenarios. We calculated the Mean Time 
between Failures (MTBF) and Mean Time to Repair (MTTR) in order to calculate the reliability 
and the availability scores of the simulation scenario. 
 
There is the perfect scenario which assumes that the bus starts from point A to point B and that 
the system completes processing all the sensor data on time Tp. There are no failures in the 
system and the smart objects’ requests are all satisfied, and batteries do not deplete. The perfect 
scenario will be used for benchmarking purpose. This scenario does not require a Fault Handler 

nor an Optimization Manager. It will be executing always in the Runtime mode. 
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There is the Normal Hybrid Modes scenario which assumes the values in Table 1. There will be 
faults and repairs in that scenario. The scenario introduces more disturbances to the normal flow 
of the execution cycle by introducing changes in its execution modes. It is expected that it will 
take a longer time than scenario 2. There will be 3 runs for each category of values (Best, 
Average, and Worst). It should finish at time (Tp +∆Tnb+∆Tnbh), (Tp+∆Tna+∆Tnah), and (Tp 

+∆Tnw+∆Tnwh), respectively. We will assume a fixed number of resources (Rn = 12) across all 
the runs. 
 

Table 1. Assumed values of Control Variables 
 

 
 

There is the Normal No-Optimization scenario which aims to predict the behavior of the 
technical model without the optimization mechanisms (Optimization Manager, Resource 

Manager). There will be 3 runs for each category of values (Best, Average, and Worse). It is 
expected that the processing time for this scenario will take additional time (∆Tnoop) for every 
group of runs than scenario 3. It is expected also that the MTBF will increase more than what is 
recorded in scenario 3. 
 
There is the Normal resource-optimized scenario which aims to predict the impact of the 
number of resources on the system reliability. The scenario will show the impact of the 
Optimization Manager and the Resource Manager on the number of faults that the system may 
encounter. It is also expected to see some decrease, (-∆Tr = 4), (-∆Tr = 8), and (-∆Tr = 12), in the 
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processing time relevant to the number of resources, than scenario 3 and increased time between 
failures (MTBF + ∆Tf). There will be 3 runs for each category of resources using the Average 
control variables. It is important to note that the last scenario variation is the same as scenario 3 
with Average control variables.  
 
Finally, there is the Extreme scenario which aims to predict the behavior of the technical model 
under extreme conditions. We will use the extreme values, which exceed the boundaries of the 
best and worst, to run two categories of runs (Extreme Best and Extreme Worst). A fixed number 
of resources as in scenario 3 (Rex = 12) is assumed here. The best and worst values in Table 1 are 
considered as the standard lower and upper boundaries. We built a simple capability model to 
stretch the best and worst boundaries as follows [33]: 
 

1. We calculate the average from the lower and upper bounds.  

2. Calculate the standard deviation (σ).  

3. We calculate the minimum value, whether it is best or worst, as (min=average-3* σ).  

4. We calculate the maximum value, whether it is best or worst, as (max=average+3* σ).  

5. If the value exceeds the logical or physical limits, then it is set to the maximum possible 
value.  

 

9. ANALYSING THE RESULTS 
 
A reliable system is a system that can perform its assigned functionality with a high probability 
during a specified period of time and within specific design constraints [13]. A reliability 
measurement is a function in MTBF and gives a score between 0 and 1 [28] as shown in equation 
(4) [3]. On the other hand, software availability is the probability of the uptime of the system. It is 
a function of MTBF and MTTR [28] as shown in equation (5) [3]. For example, if we measure 
the availability of a website during a year and it is 0.99, then it means that the system downtime 
was (3.65 days) calculated as ((1-availability) x 365). MTBF measures the average time between 
successive failures without considering the time taken to repair the system in order to reflect its 
ability to fulfil its duties. If a system’s reliability is 0.99, it means that the system is expected to 
run successfully from time 0 to time t with probability 99%. 
 

 
The experiments show some facts about the technical baseline architecture:  
 

1) The experiments predict the reliability of the architecture in the worst case as 96.86% and 
the availability as 90.89%. 

 
2) In the extreme worst cases both reliability and availability measurements decrease 

noticeably as reliability becomes 92.62% and availability deteriorates to 31.83%.  
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3) On average the system availability is 95.77% and reliability is 98.08% if we exclude the 
Perfect and extreme cases.  

 
4) In the best cases, the system availability is 99.79% and reliability is 99.9%.  

 
The results show that that there are variations in processing time among all the scenarios. We 
predict an average of 2% additional processing time as overhead from the last sensor input 
calculated against the perfect scenario (Fig. 7). The results show that the resource optimization 
technique that we adopted is working reasonably. The experiments show an average of 3.09% 
immunity from failures across all the scenarios. As the resources allocated increase, the immunity 
of failure provided to the system increases as well. In general, the scenarios show that the 
processing time increases as the working conditions get worse. 
 

 
Figure 7. The processing time overhead for the simulation scenarios compared to the perfect scenario 

 

10. CONCLUSION 

 
The simulation case study presented in this paper was used to evaluate a baseline architecture as 
part of an overall evaluation of a reference architecture. There was a hypothetical example (bus 
story) to track the behaviour of the architecture. We assigned roles and responsibilities for the 
modules of the baseline architecture through a specification exercise in addition to adding other 
modules to introduce more controls to the simulation prototype. The prototype adopted some 
probability models through assumptions inferred from collected statistics about software and 
hardware components. The simulation prototype is then executed in different scenarios. The 
results were then analysed and the reliability and availability of a system adopting this baseline 
architecture are shown to be over 90%. 
 
There are modules that we did not expose to failures and repairs during our simulation exercise 
(Repository Manager, Logger, Fault Handler, and Synthesizers). These are common modules for 
all the other modules in the system. They do not need a simulation exercise to understand that a 
single failure in the Repository Manager will hinder the overall stability of the whole system. It is 
very clear also that the Logger can impact the overall performance if it is not responsive. 
Moreover, the Fault Handler is designed to respond to failures, and it is essential to make it more 
reliable and available than other modules. Finally, the Synthesizer is either a part of the sensors 
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and actuators hardware or it is at a low-level software layer that the sensors and actuators must 
interact with. If this layer fails, then the data may be corrupted. 
 
Although the analysis shows positive results about the reliability and the availability of the 
architectural model, the prediction is an initial estimation which will definitely change in a real 
environment. This should be a continuous improvement process by fetching real numbers about 
the systems’ performance during runtime in order to give more accurate predictions about the 
probability of the system failure. 
 
It is quite beneficial for the architects to have an accessible simulation package for the reference 
architecture model containing configurable settings for all the control variables. The simulation 
package should help the architect represent the different use cases as he/she builds a real-life 
scenario using the PervCompRA-SE. 
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