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ABSTRACT 

 

African Buffalo Optimization (ABO) is one of the most recent swarms intelligence based 

metaheuristics. ABO algorithm is inspired by the buffalo’s behavior and lifestyle. Unfortunately, 

the standard ABO algorithm is proposed only for continuous optimization problems. In this 

paper, the authors propose two discrete binary ABO algorithms to deal with binary optimization 

problems. In the first version (called SBABO) they use the sigmoid function and probability 

model to generate binary solutions. In the second version (called LBABO) they use some logical 

operator to operate the binary solutions. Computational results on two knapsack problems (KP 

and MKP) instances show the effectiveness of the proposed algorithm and their ability to 

achieve good and promising solutions. 
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1. INTRODUCTION 
 
Solving optimization problem is finding a solution of sufficient quality (i.e. optimal or near 
optimal) from a set of solutions taking into account the constraints imposed and objectives to 
meet. It is to maximize or minimize one or a set of fitness functions respecting constraints of the 
treated problem. This research line that sought the attention of several research teams is 
intrinsically linked to operational research and it uses mathematical and computer tricks. 
 
Various Methods have been proposed to solve optimization problems. They are often classified 
into two classes: exact methods and approximate methods. The prohibitive cost associated with 
exact methods has excited researchers to use approximate methods. The investigation in the area 
of approximate methods gave rise to a subclass of approximate methods called "Metaheuristics". 
They are general and applicable methods on a wide range of optimization problems. 
 
Metaheuristics based on swarm intelligence have built a very active trend over the last decade. 
They are generally inspired by the collective behavior of some species in evolving in groups and 



34 Computer Science & Information Technology (CS & IT) 

 

solving their problems. These species gather in swarm to build a collective force that allows them 
to surpass their very limited individual capacities. 
 
The African Buffalo Optimization (ABO) is one of the most recent swarm intelligence based 
Metaheuristics. It was proposed in 2015, by Julius BeneoluchiOdili et al [1]. ABO is inspired 
from the behavior of African buffaloes in the vast African forests and savannahs [1]. The recent 
applications of ABO Metaheuristic for optimization problems have shown its promising 
effectiveness as it has been proven in [2], [3] and [4].The original ABO algorithm is a continuous 
version, which solves only continuous problems. The aim of this paper is to propose two binary 
versions of ABO algorithm to cope with binary optimization problems. The main difference 
between the original version of ABO algorithm and the proposed binary versions is that, in the 
original ABO algorithm, the solution is composed of a set of real numbers. While in the proposed 
binary versions, the solution is composed of a set of bits. 
 
The remainder of this paper is organized as follows. Section 2 presents an overview of African 
Buffalo Optimization (ABO) Algorithm. The proposed algorithms (SBABO and LBABO) are 
presented in section 3. Experimental results are presented and discussed in section 4, and a 
conclusion and perspectives are provided in the fifth section of this paper. 
 

2. AFRICAN BUFFALO OPTIMIZATION 
 
In order to solve complex problems, ideas gleaned from natural mechanisms have been exploited 
to develop heuristics. Nature inspired optimization algorithms has been extensively investigated 
during the last decade paving the way for new computing paradigms such as neural networks, 
evolutionary computing, swarm optimization, etc. The ultimate goal is to develop systems that 
have the ability to learn incrementally, to be adaptable to their environment and to be tolerant to 
noise. One of the recent developed bioinspired algorithms is the African Buffalo Optimization 
algorithm. 
 
The African Buffalo Optimization is inspired from the cooperative and competitive behavior of 
buffaloes. ABO models the three characteristic behaviors of the African buffaloes that enable 
their search for pastures. First is their extensive memory capacity. This enables the buffaloes to 
keep track of their routes. The second attribute of the buffaloes is their cooperative 
communicative ability whether in good or bad times. The third attribute of the buffaloes is their 
democratic nature borne out of extreme intelligence. In cases where there are opposing calls by 
members of the herd, the buffaloes have a way of doing an ‘election’ where the majority decision 
determines the next line of action [1]. Furthermore, ABO algorithm models the two sounds for 
communication that buffaloes use to exploit and explore the search space: 
 

• The warning sound “waaa” with which they ask the herd to keep moving because the 
present location is unfavorable, lacks pasture or is dangerous. This sound encourages the 
buffaloes to explore the research space. 

 
• The alert sound “maaa” with which they stay on the present location because it is holds 

promise of good grazing pastures and is safe. This sound encourages the buffaloes to 
exploit the research space 

 
Algorithm1 presents a pseudo algorithm of the ABO method. 
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Algorithm 1: ABO Algorithm 

1. Objective function f(x) = (x1,x2,…xn)
T; 

2. Initialization: randomly place buffaloes to nodes at the solution space; 

3. Update the buffaloes fitness values using (1); 

4. Update the location of buffalo k (bpmax.k and bgmax) using (2); 

5. Is bgmax updating. Yes, go to 6. No, go to 2; 

6. If the stopping criteria is not met, go back to algorithm step 3, else go to step 7; 

7. Output the best solution. 

 
The generation of new solutions is done by using equations 1 and 2. 
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Where: 

• w.k and m.k presents the exploration and exploitation moves respectively of the kth buffalo 

(k=1,2,………..N) ;  

• lp1 and lp2 are learning factors; 

• bgmax is the herd’s best fitness; 

• bpmax.k the individual buffalo’s best. 

3. THE PROPOSED DISCRETE BINARY VERSIONS 
 
Optimization problems can be classed into two main classes: continuous optimization problems 
and discrete optimization problems. In continuous optimization problems, the solution is 
presented by a set of real numbers. However, in discrete optimization problems, the solution is 
presented by a set of integer numbers. Discrete binary optimization problems are a sub-class of 
the discrete optimization problems class, in which a solution is presented by a set of bits. Many 
optimization problems can be modelled as a discrete binary search space such as, flowshop 
scheduling problem [5], job-shop scheduling problem [6], routing problems [7], KP [8] and its 
variants such as the MKP [9], the quadratic KP [10], the quadratic multiple KP [11] and so one. 
 
The original ABO algorithm operates in continuous search space. It gives a set of real numbers as 
a solution of the handled problem. However, a binary optimization problem needs a binary 
solution and the real solutions are not acceptable because they are considered as illegal solutions. 
In the aim to extend the ABO algorithm to discrete binary areas, we propose in this paper tow 
binary versions of ABO that we called SBABO and LBABO. The main objective of the SBABO 
and LBABO algorithms is to deal with the binary optimization problems. 
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3.1 SBABO ALGORITHM 
 
In the SBABO algorithm, we introduce a binarization phase of solutions in the core of the 
original ABO in order to obtain a binary solution for the treated problem. The objective of this 
phase (i.ebinarization) is to transform a solution xi from real area to binary area. To meet this 
need, we propose to constrain the solution xi in the interval [0, 1] using the Sigmoid Function as 
follows: 

)1(

1
)(

ixi
e

xS
−

+

=                                                                  (3) 

Where S(xi) is the flipping chance of bit x′i. It presents the probability of bit x′i takes the value 1. 
To obtain the binary solution x′i, we have to generate a random number from the interval [0,1] for 
each dimension i of the solution x and compare it with the flipping chance S(xi) as mentioned 
below in equation (4). If the random number is lower than the flipping chance of bit x′i, x′i takes 
the value 1. Otherwise, x′i takes the value 0. 
 

 

Consequently, having a solution xi encoded as a set of real numbers, the sigmoid function is used 
to transform the solution xi into a set of probabilities that presents the chance for bit i to be 
flipping. The flipping chance is then used to compute the binary solution x'i. Algorithm 2 presents 
the SBABO algorithm an Algorithm 3 presents the binarization algorithm 

 

Algorithm 2: SBABO Algorithm 

1. Objective function f(x) = (x1,x2,…xn)
T 

2. Initialization: randomly place buffaloes to nodes at the solution space; 

3.Update the buffalo’s fitness values using (1); 

4.Get the binary buffaloes using the Binarization Algorithm; 

5. Update the location of buffalo k (bpmax.k and bgmax) using  (2); 

6. Is bgmax updating. Yes, go to 7. No, go to 2; 

7. If the stopping criteria is not met, go back to algorithm step 3, else go to step 8.  

8. Output the best solution. 
 

Algorithm 3:Binarization Algorithm 
Input: Real solution presentation  xi 
Output: Binary solution presentation  xi′ 
For (i = 1 to (problem size)) { 
       Calculate S(xi) using (3); 
       If (random number r <S(xi)) 
x′i=1; 
       Otherwise 
x′i =0; 
} 
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3.2 LBABO ALGORITHM 

 
In the LBABO algorithm, we propose to start the search by a binary population (the solutions are 
binary from the beginning) and replace the arithmetic operators used in the solution update 
equations (i.e. 1 and 2) by logical operators as follow: 
 

 
 
Coefficient can be lp1 or lp2. Algorithm 4 presents the LBABO algorithm 
 

Algorithm 4. LBABO Algorithm 

1. Objective function f(x) = (x1,x2,…xn)T; 

2. Initialization: randomly place buffaloes to nodes at the solution space using binary values; 

3. Update the buffalo’s fitness values using (1) and logical operators; 

4. Update the location of buffalo k (bpmax.k and bgmax) using (2) and logical operators; 

5. Is bgmax updating. Yes, go to 6. No, go to 2; 

6. If the stopping criteria is not met, go back to algorithm step 3, else go to step 7.  

7. Output the best solution. 

 

4. EXPERIMENTAL RESULTS 
 
In order to investigate the performance of the proposed algorithms to solve hard binary 
optimization problems, we used some knapsack problem benchmarks of two knapsack problem 
versions: Single knapsack problem (KP) and multidimensional knapsack problem (MKP). 
 
4.1 KP AND MKP PROBLEMS 
 
The KP is a NP-hard problem [12]. Numerous practical applications of the KP can be found in 
many areas involving resource distribution, investment decision making, budget controlling, 
project selection and so one. The KP can be defined as follows: Assuming that we have a 
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knapsack with maximum capacity C and a set of N objects. Each object i has a profit pi and a 
weight wi. The problem consists to select a subset of objects that maximize the knapsack profit 
without exceeding the maximum capacity of the knapsack. The problem can be formulated as 
[12]: 

 
 
Many variants of the KP were proposed in the literature including the MKP. MKP is an important 
issue in the class of KP. It is a NP-hard problem [13]. In the MKP, each item xi has a profit pi like 
in the simple KP. However, instead of having a single knapsack to fill, we have a number M of 
knapsack of capacity Cj (j = 1, …, M). Each xi has a weight wij that depends of the knapsack j 
(example: an object can have a weight 3 in knapsack 1, 5 in knapsack 2, etc.). A selected object 
must be in all knapsacks. The objective in MKP is to find a subset of objects that maximize the 
total profit without exceeding the capacity of all dimensions of the knapsack. MKP can be stated 
as follows [14]: 

 
The MKP can be used to formulate many industrial problems such as the capital budgeting 
problem, allocating processors and databases in a distributed computer system, cutting stock, 
project selection and cargo loading problems [15]. Clearly, there are 2N potential solutions for 
these problems. It is obviously that KP and its variants are combinatorial optimization problems. 
Several techniques have been proposed to deal with KPs [12]. However, it appears to be 
impossible to obtain exact solutions in polynomial time. The main reason is that the required 
computation grows exponentially with the size of the problem. Therefore, it is often desirable to 
find near optimal solutions to these problems. 
 

4.2 EXPERIMENTAL DATA 
 
The proposed SBABO and LBABO algorithms were implemented in MATLAB R2014a. Using a 
laptop computer running Windows 7, Intel(R) Core(TM) i3-3110M CPU@ 2.40 GHz, 2.40GHz, 
4GB RAM. The used parameters in the experiments are: 
 

• Population size: 40. 
• Iterations: 300. 
• lp1=0.7. 
• lp2=0.5. 
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Several experiments were performed to assess the efficiency and performance of our algorithms. 
In the first experiment, we have tested and compared our algorithms with a harmony search 
algorithm (NGHS) on some small KP instances taken from [16]. In the second experiment, we 
have used some big KP instances used in [8] to test and compare the proposed SBABO algorithm 
with the Binary Particle Swarm Optimization algorithm (BPSO) [17] which has a common point 
with the proposed SBABO algorithm. In fact, the two algorithms (SBABO and BPSO) used the 
Sigmoid Function to generate the binary solution. The used instances are six different instances 
with different problem sizes, in which the weights and profits are selected randomly. The 
different problem sizes N are 120, 200, 500, 700, 900 and 1000. In these instances, the knapsack 
capacity is calculated by using equation 9 [8]. The factor 3/4 indicates that about 75% of items 
are in the optimal solution. 

 
In the third experiment, we have evaluated the performance of our algorithms on some MKP 
benchmarks taken from OR-Library. We have tested the proposed algorithms on some MKP 
instances taken from seven benchmarks named mknap1. The obtained results are compared with 
the exact solution (best known). 
 
Finally, statistical tests of Freidman are carried out to test the significance of the difference in the 
accuracy of each method in this experiment. And the performances of the proposed algorithms 
(SBABO and LBABO) are also compared in terms of execution CPU time with the two problems 
(KP and MKP). 
 
4.3. RESULTS AND DISCUSSION 
 
Table 1 shows the experimental results of our algorithms (SBABO and LBABO) and the 
harmony search algorithm (NGHS) on ten KP tests with different sizes. The first column, 
indicates the instance name, the second column indicates the problem size, i.e. number of objects. 
The third and fourth columns indicate the obtained results by the SBABO and LBABO 
algorithms and the last column indicates the obtained results by the NGHS algorithm. 
Observation of the presented results in Table 1 indicates that the proposed discrete binary 
algorithms (i.e: SBABO and LBABO) perform well than NGHS algorithm in F6 test. The 
SBABO perform well than LBABO and NGHS algorithms in F8 test. And the three algorithms 
have the same results in the other instances. 

 
Table 1.Experimental results with small kp instances 

 
Test Size SBABO LBABO NGHS 

F1 10 295 295 295 
F2 20 1024 1024 1024 
F3 4 35 35 35 
F4 4 23 23 23 
F5 15 481.0694 481.0694 481.0694 
F6 10 52 52 50 
F7 7 107 107 107 
F8 23 9767 9767 9767 
F9 5 130 130 130 

F10 20 1025 1025 1025 
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Table 2 shows the experimental results of SBABO, LBABO and BPSO algorithms on big KP 
instances. The first column presents the problem size (i.e., instance). The second, third and fourth 
columns present the obtained results by the BPSO, SBABO and LBABO algorithms respectively. 
With each instance, the first line presents the best solutions and the second one presents the 
solution averages. The presented results show that the SBABO and LBABO algorithms 
outperform the BPSO algorithm, and the LBABO algorithm outperforms the SBABO algorithm. 
The statistical Friedman test in Figure 1 presents a comparison of the BPSO, SBABO and 
LBABO results. The LBABO algorithm ranks first in the Friedman test. The SBABO ranks 
second and BPSO ranks third. This statistical test shows that there is a significant difference 
between LBABO and BPSO algorithms.  
 

Table 2. Experimental results with big kp instances. 

Instance BPSO SBABO LBABO 

 

120 

 

200 

 

500 

4296 
3840.8 
7456 
5703 

13116 
12471.2 

4316 
4088.09 

6778 
6480.56 
14730 

14396.11 

4504 
4357 
7530 

7284.22 
16853 

16174.25 
 

700 

18276 20501 23278 
17097.4 19348.07 22530.4 

 

900 

22857 24767 30196 

21736.6 24270.83 28864.5 
 

1000 

24933 27306 32948 

24050 26607.3 31936.86 
 
Whereas, the difference between LBABO and SBABO results is not statistically significant. 
Consequently, the obtained results confirm that the proposed algorithms outperform the BPSO 
algorithm and prove that the proposed algorithms give good results. 
 
Table 3 shows experimental results of the proposed algorithms over 7 instances of MKP problem. 
The first column indicates the instance index. The second and third column indicates the number 
of object and knapsack dimension, respectively. The fourth, fifth and sixth columns indicate the 
best known, the SBABO and the LBABO solutions, respectively. As we can see, the SBABO 
algorithm is able to find the best solution of the six first instances from the 7 instances. The 
LBABO algorithm is able to find the best solution of the five first instances from the 7 instances. 
The SBABO algorithm outperforms the LBABO algorithm on the two last instances (6 and 7).  
The statistical Friedman test in Figure 2 shows a comparison of the best known, SBABO and 
LBABO results. The SBABO ranks second after best known and LBABO ranks third. This 
statistical test shows that the difference between best known, LBABO and SBABO results is not 
statistically significant. Consequently, the obtained results confirm and prove that the proposed 
algorithms give good and promising results that can be considerably increased by the introduction 
of some specified knapsack heuristic operators using problem specific knowledge. 
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Figure 1. Friedman test compares SBABO, LBABO and BPSO on big KP instances. 
 

Table 3.Experimental results of MKP with mknap1 instances 
 

N° N M Best Known SBABO LBABO 

1 6 10 3800 3800 3800 
2 10 10 8706,1 8706,1 8706,1 
3 15 10 4015 4015 4015 
4 20 10 6120 6120 6120 
5 28 10 12400 12400 12400 
6 39 5 10618 10618 10554 
7 50 5 16537 16442 16371 

 

 
Figure 2. Friedman test compares SBABO, LBABO and best known on MKP instances. 
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Table 4 and 5 show a comparison of average computation time with KP and MKP instances, 
estimated by seconds, using a population of 40 solutions, 300 iterations with 5 executions of the 
programs. The obtained results are schematized in Figures 3 and 4. In terms of computing time, 
the obtained results do not show a big difference in execution time. In fact, in some instances 
SBABO is faster and in others LBABO is faster. In general, the two algorithms converge in the 
same interval time. This comes back to the fact that the two algorithms have the same body, only 
the phase of binarization of the solution that differs. 
 

Table 4.Comparative CPU time with KP instances. 

Test Size SBABO LBABO 

F1 10 2.50 2.75 

F2 20 2.16 2.49 

F3 4 1.67 1.48 

F4 4 1.85 1.63 

F5 15 2.03 2.73 

F6 10 1.59 1.94 

F7 7 2.08 2.30 

F8 23 2.01 3.54 

F9 5 2.02 2.14 

F10 20 2.21 2.96 

 

 

Figure 3.CPU time with KP instances 
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Table 5.Comparative CPU time with MKP instances 
 

N° n M SBABO LBABO 

1 6 10 3.09 2.99 
2 10 10 3.38 2.72 
3 15 10 3.49 3.30 
4 20 10 3.55 4.28 
5 28 10 3.75 5.11 
6 39 5 4.97 5.45 
7 50 5 5.95 5.83 

 

 

Figure 4.CPU time with MKP instances. 

The ABO algorithm is a new swarm optimization algorithm. Considering its young age, there are 
few applications in optimization problems based on ABO algorithm. The main purpose of this 
paper is to validate that the ABO method is also effective for binary combinatorial optimization 
problems. That is why we proposed two discrete binary versions of ABO algorithm (called 
SBABO and LBABO) which led to two efficient ABO algorithm versions to deal with binary 
optimization problems. 
 
During the different experiments, we noticed that SBABO algorithm explored the search space 
better than LBABO (see Figure 5). This comes down to the use of the Sigmoid Function and 
probability model to generate binary solutions. As shown in Figure 5, LBABO converges faster 
than SBABO which explains its results with MKP instances. It is notable that the performance of 
the algorithm is insensitive to their parameters such as lp1 and lp2. These two parameters 
influence the good balance between exploration and exploitation of the search space. The 
diversity of the proposed algorithms is assured by the use of the elitism selection which 
guarantees that the best solutions are kept in each generation. The proposed algorithms can be 
implemented easily for other binary optimization problems. 
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Figure 5. Evolution of best solution with KP and MKP using SBABO and LBABO 
 

5. CONCLUSION AND PERSPECTIVES 
 
In this paper, two discrete binary versions of African Buffalo Optimization algorithm are 
proposed. This contribution has two-fold aims: the first aim is to propose a binary version of 
ABO algorithm to deal with binary optimization problems. The second aim is to prove the 
effectiveness of the ABO algorithm in solving NP-hard combinatorial optimization problems. In 
the first version called SBABO we used the sigmoid function and probability model to generate 
binary solutions. In the second version called LBABO we used some logical operator to operate 
the binary solution. The proposed algorithms are used to solving two NP-hard binary 
combinatorial optimization problems: KP and MKP problems. The obtained results are compared 
with the harmony search algorithm (NGHS), the best known solution and the Binary Particle 
Swarm Optimization algorithm (BPSO) which has a common point with the proposed SBABO 
algorithm (the two algorithms used the sigmoid function). The experimental studies prove the 
feasibility and the effectiveness of the proposed algorithms. They proved that the proposed 
algorithms give good and promising results. However, there are several issues to improve the 
proposed algorithms. Firstly, in order to improve the performance of the proposed algorithms, we 
recommend integrating of a local search method in the algorithms core. In addition, hybridization 
with other operations inspired by other popular algorithms such as Genetic algorithm, Particle 
Swarm Optimization or Cuckoo Search will also be potentially fruitful. The proposed algorithms 
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can be also applied to solve many other binary optimization problems and real industrial 
problems. 
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