
N. Ramasubramanian et al.(Eds) : SRAIC-2019

pp. 71-90, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.91506

MACHINE LEARNING MODEL TO PREDICT

BIRTH WEIGHT OF NEW BORN USING

TENSORFLOW

S.Karthiga, K.Indira and C.V.Nisha Angeline

 Assistant Professors, Department of Information Technology, Thiagrajar

College of Engineering,Madurai

ABSTRACT

Low Birth Weight is the major problem for the new born. Low birth weight is a term used to

describe babies who are born weighing less than 5 pounds, 8 ounces (2,500 grams). Low-birth

weight babies are more likely than babies with normal weight to have health problems as a

newborn. Almost 40 percent of the new born suffer from underweight. Predicting birth weight

before the birth of the baby is the best way to help the baby get special care as early as possible.

It helps us to arrange for doctors and special facilities before the baby is born. There are several

factors that affect the birth weight. Through past studies, it has been observed that the factors

which affect the child birth range from biological characteristics like the baby's sex, race, age of

mother and father, weight gained by the mother during pregnancy to behavioral characteristics

like smoking and drinking habits of the mother, the education and living conditions of the

parents. This project focuses on developing a web application that predicts baby weight taking
baby’s gender, plurality, gestation weeks and mothers age as inputs. Machine learning is one of

the domains that plays important role in medical industry. Many machine learning models have

been developed to predict diseases at the early stage. In this project wide and deep neural

network model is developed using TensorFlow library in Google cloud environment. Wide and

Deep Neural Network combines wide linear model and deep neural network. It provides both

memorization and generalization. Pre-processing and training is done in the distributed

environment using cloud Dataflow and Cloud ML Engine. The model is then deployed as REST

API.A web application is developed to invoke the API with the user inputs and show the

predicted baby weight to the users. It is scalable and provides high performance.

1. INTRODUCTION

The aim of the project is to predict the baby weight so that the baby can get better care. It is done

using machine learning model and in cloud environment. Machine learning plays a major role in
medical diagnostics. Machine learning in medicine has recently made headlines. Google

hasdeveloped a machine learning algorithm tohelp identifycancerous tumours on mammograms.

Algorithms can provide immediate benefit to disciplines with processes that are reproducible or

standardized. Machine learning can offer an objective opinion to improve efficiency, reliability,
and accuracy. We’ll be able to incorporate bigger sets of data that can be analyzed and compared

in real time to provide all kinds of information to the provider and patient. This project uses Wide

and Deep Neural Network model which provide both generalisation and memorization. Cloud
augments machine learning by enabling process in distributed environment providing benefits of

72 Computer Science & Information Technology (CS & IT)

scalability,high performance, availability, maintainability, repeatability, abstraction and
testability.

Problem Statement

A survey says almost 40 percent of new born suffer from underweight. An underweight baby is

more likely susceptible to many health problems than a baby with normal weight. Special care

and facilities are to be given to them when they born so that their health condition will be
improved. Predicting the weight before the birth of the baby and arranging doctors and facilities if

the weight of the baby is less than 5 pounds and 8 ounces helps the baby get better treatment. The

solution is to create a machine learning model that predicts the baby weight from major factors
like gestation weeks, mother’s age, gender and plurality of baby. The model should be deployed

as REST API so that it can be invoked using a web application to get predicted birth weight. The

process should be carried in cloud environment so that it will be auto scalable and provides high

performance.

Objectives

To collect and analyze the natality dataset from big query.

 To launch a preprocessing pipeline using cloud Dataflow to create training and evaluation

datasets.

 To create Wide and Deep Neural Network Modelusing TensorFlow and train model in AI
Platform.

 To deploy model as REST API.

 To create a web application that invokes API to predict the birth weight.

The scope of the project is to develop a web application that takes mother age, gestation weeks,

plurality and gender of the baby as input and give birth weight as output. The application is
highly helpful to mother and hospital to make facilities to care of the baby before its birth. If a

mother is on the way to the hospital, she calls the nurse. This work is implemented in Deep

netural network because of the following reasons: Deep Learning is the next generation of
machine learning algorithms that use multiple layers to progressively extract higher level features

(or understanding) from raw input. Deep learning algorithms are now used by computer vision

systems, speech recognition systems, natural language processing systems, audio recognition
systems, bioinformatics systems and medical image analysis systems and the special features of

Deep learning is

 No need for feature Engineering

 Best results with unstructured data

 No need for Labeling Data

Computer Science & Information Technology (CS & IT) 73

2. RELATED WORK

2.1. Wide and Deep Learning for Recommendation System

This paper presents Wide & Deep learning jointly trained wide linear models and deep neural
networks to combine the benefits of memorization and generalization for recommender systems.

It productionized and evaluated the system on Google Play, a commercial mobile app store with

over one billion active users and over one million apps. Online experiment results show that Wide
& Deep significantly increased app acquisitions compared with wide-only and deep-only models.

A recommender system can be viewed as a search ranking system, where the input query is a set

of user and contextual information, and the output is a ranked list of items. Given a query, the

recommendation task is to find the relevant items in a database and then rank the items based on
certain objectives, such as clicks or purchases. During training, input layer takes in training data

and vocabularies and generate sparse and dense features together with a label. The wide

component consists of the cross-product transformation of user installed apps and impression
apps. For the deep part of the model, A 32 dimensional embedding vector is learned for each

categorical feature. They concatenate all the embeddings together with the dense features,

resulting in a dense vector of approximately 1200 dimensions. The concatenated vector is then

fed into 3 ReLU layers, and finally the logistic output unit. The Wide & Deep models are trained
on over 500 billion examples. Every time a new set of training data arrives, the model needs to be

re-trained. However, retraining from scratch every time is computationally expensive and delays

the time from data arrival to serving an updated model. To tackle this challenge, we implemented
a warm-starting system which initializes a new model with the embeddings and the linear model

weights from the previous model. Before loading the models into the model servers, a dry run of

the model is done to make sure that it does not cause problems in serving live traffic. We
empirically validate the model quality against the previous model as a sanity check.

Fig: 1 Wide and Deep model structure for apps recommendation

74 Computer Science & Information Technology (CS & IT)

2.2. Prediction and Classification of Low Birth Weight Data using Machine

Techniques

The objective of this research was to apply one of the ML techniques on the low birth weight
(LBW) data in Indonesia. This research conducts two ML tasks, including prediction and
classification. The binary logistic regression model wasfirstly employed on the train and the test
data. Then, the random approach was also applied to the data set. The results showed that the
bi-nary logistic regression had a good performance for prediction, but it was a poor approach for
classification. On the other hand, random forest approach has a very good performance for both
prediction and classification of the LBW data set. Binary logistic regression is a type of logistic
regression, which has only two categories of outcomes. It is the simplest type of logistic
regression. The main goal of binary logistic regression is to find the formula of the relationship
between dependent variable Y and predictor X. Random forests are defined as the combination
of tree predictors such that each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in the forest. In this research, the
LBW data were obtained from the result of 2012 IDHS. In the beginning, the raw data consists of
45607 women aged 15-49 years as the respondents. After data cleaning process, the amount
data reduced to 12055 women aged 15-49 years who give birth from 2007 up to 2012. The
dependent variable is Low Birth Weight with two categories. The independent variables are
Place of Residence, Time Zone, Wealth Index, Mother’s and Father’s Education, Age of the
mother, Job of the mother, Number of children.

Fig:2 Strategy to predict fetal growth

rMSE is root Mean Squared Error, MAD is median absolute deviation, MOMI is Magee

Obstetrics Maternal and Infant Database, ODNSR is Obstetrical Determinants of Neonatal

Survival Study Data.

2.3. Prediction of Birth Weight of a Baby

The Dataset used in this research is NC VITAL STATISTICS BIRTHS Dataset.For the year

2008, it had 133422 rows with 125 columns. They trimmed it down by removing the features

Computer Science & Information Technology (CS & IT) 75

which are not relevant. We have also refined the dataset by splitting the categorical variables into
several binary variables. After all the cleansing, the final dataset has 69051 rows and 52 columns.

The dataset was divided into training and test data in a random manner. The training set

comprises of 85% of the data. Whereas, the test dataset comprises of the remaining 15%. It is

observed that Boys are found to weigh slightly more than girls at birth, birth weight of a baby
born to a smoker mother is less than that born to a non-smoker mother. Whereas, the mortality

rate for LBW babies born to a smoker mother is less, babies born to black parents weigh more

than those born to white parents. Also, babies born to black father and white mother are a little
heavier compared to one born to a white father and black mother, birth weight of a baby born to a

drinker mother is less than that born to a non-drinker, the risk of preterm delivery and Low Birth

Weight increases in proportion of the severity of anaemia in an anaemic mother. The machine
learning models used for training were Multivariate Linear Regression, Multivariate Ridge

Regression, K Nearest Neighbours, Decision Trees, Ada-Boost Regressor, and Random Forest

Regressor. The machine learning model selected for the final prediction was Random Forest

Regressor as the Root Mean Square Error was the least among the models.

3. PROPOSED SYSTEM

The Proposed System is having the following steps to implement Machine learning process.

3.1. Description

In the proposed work, the dataset has to collect from different dataset which includes the major

attributes of mother age, gestation weeks, gender and pluralrity of baby from the user. The

collected dataset to be analyzed

1.Dataset collection from BigQuery.

2.Analyze the dataset features using Pandas and BigQuery.

-Ensure that dataset have enough examples of each data value, and to verify that the parameter
 has predictive value.

3.Preprocessing the dataset

-Create training and evaluation dataset.
-Replace missing values with default values.

-Modify plurality field to string.

-Create extra rows to simulate lack of ultrasound

76 Computer Science & Information Technology (CS & IT)

 Fig:3 Proposed System

4. Train the model

 -Create an input function reading a file using the Dataset API

 -Define feature columns
 -Create serving input function to be able to serve predictions

 -Create metric for hyperparameter tuning

 -Create estimator to train and evaluate
 -Perform hyperparameter tuning.

 -Create python package and submit it to cloud ML engine.

5. Deploy the model as REST API.

 -Use model to predict (online and batch prediction)

Develop web application to collect user input and use the API to predict.

 -Use model to predict (online and batch prediction)

3.2. Tensorflow

TensorFlow makes it easy to create machine learning models. TensorFlow is an open-source

machine learning library for research and production. Estimator is high level API provided by

TensorFlow Estimators can train large models on multiple machines in a production environment.
TensorFlow provides a collection of pre-made Estimators to implement common ML algorithms.

It encapsulates training,evaluation,prediction and export for serving. All Estimators whether pre-

made or custom are classes based on the tf.estimator.Estimator class. Pre-made Estimators enable
us to work at a much higher conceptual level than the base TensorFlow APIs. Pre-made

Estimators create and manage tf.Graph and tf.Session objects. Cloud ML Engine is orthogonal to

all APIs in TensorFlow Library. This project uses TensorFlow Version 1.8.0

Computer Science & Information Technology (CS & IT) 77

Fig: 4 TensorFlow Architecture

3.2.1. Premade Estimators

Tasks in these estimators include creating input function,defining feature columns,initiating

estimator,training,evaluating the model and making predictions from the trained model. The
premade estimator we are going to use is DNNLinearCombinedRegressor. It is a regression

model since birthweight we are going to predict is a continuous value.Pre-made Estimators are an

effective way toquickly create standard models. It also creates checkpoints so that training can be
resumed at any time from previous checkpoint.

3.2.2. Checkpoints

Estimators automatically write Checkpoints and event files to disk.Checkpointsare versions of the

model created during training. Event filescontain information that TensorBoarduses to create

visualizations. The argument named model_dir specifies the directory in which estimators’ stores
information. If model _dir is not specified in an Estimator's constructor, the Estimator writes

checkpoint files to a temporary directory chosen by Python's tempfile.mkdtempfunction. This

function picks a secure, temporary directory appropriate for your operating system. By default, it
writes a checkpoint every 10 minutes,writes a checkpoint when the train method starts (first

iteration) and completes (final iteration) and retains only the 5 most recent checkpoints in the

directory. The default schedule can be altered by tf.estimator.RunConfig. Each subsequent call to

the Estimator's train, evaluate and predict method builds the model's graphby running the
model_fn() and initializes the weights of the new model from the data stored in the most recent

checkpoint.

3.2.3. Feature Columns

Feature columns are very rich, enabling you to transform a diverse range of raw data into formats

that Estimators can use, allowing easy experimentation. We specify the input to the model
through the feature_columns argument. Feature Columns bridge input data with your model.

Feature columns are createdusing tf.feature_column module. This module has nine functions.

They are Numeric column, Bucketized_column, Categorical identity column, Categorical
vocabulary column, Hashed Column, Crossed column,Indicator and embeddingcolumns.The

linear_feature_columns argumentacceptsanyfeature column type. The dnn_feature_columns

78 Computer Science & Information Technology (CS & IT)

argument only accepts dense columns. The function categorical_column_with_vocabulary_list
maps string to an integer based on an explicit vocabulary list. The function bucketized_column

splits column values into different categories based on numerical ranges. The function crossed

column combines features into a single feature, better known as feature crosses, enables the

model to learn separate weights for each combination of features. The function embedding
column never work on features directly, but instead take categorical columns as input. It

represents that data as a lower-dimensional, ordinary vector in which each cell can contain any

number, not just 0 or 1. By permitting a richer palette of numbers for every cell, an embedding
column contains far fewer cells than an indicator column.

3.2.4. Datasets for Estimators

The tf.data module contains a collection of classes thatallows us to easily load data, manipulate it,

and pipe it into our model. It enables reading in-memory data from numpy arrays and reading

lines from a csv files. The tf.data.TextLineDataset reads the file one line at a time. The Dataset
would iterate over the data once, in a fixed order, and only produce a single element at a time. It

needs further processing before it can be used for training. Fortunately, the tf.data.Dataset class

provides methods to better prepare the data for training. The tf.data.Dataset.shufflemethoduses a
fixed- size buffer to shuffle the items as they pass through. In this case the buffer_size is greater

than the number of examples in the Dataset, ensuring that the data is completely shuffled. The

tf.data.Dataset.repeatmethod restarts the Dataset when it reaches the end. To limit the number of
epochs, set the count argument. The tf.data.Dataset.batch method collects a number of examples

and stacks them, to create batches. This adds a dimension to their shape. The new dimension is

added as the first dimension.Datasets have many methods for manipulating the data while it is

being piped to a model. The most heavily-used method is tf.data.Dataset.map, which applies a
transformation to each element of the Dataset.The map method takes a map_func argument that

describes how each item in the Dataset should be transformed.

3.3. Wide and Deep Neural Network

Generalized linear models with nonlinear feature transformations are widely used for large-scale
regression and classification problems with sparse inputs. Memorization of feature interactions

through a wide set of cross-product feature transformations are effective and interpretable, while

generalization requires more feature engineering effort. With fewer features engineering, deep
neural networks can generalize better to unseen feature combinations through low-dimensional

dense embeddings learned for the sparse features. However, deep neural networks with

embedding can over-generalize and recommend less relevant items when the user-item

interactions are sparse and high-rank. Wide & Deep learning jointly trained wide linear models
and deep neural networks to combine the benefits of memorization and generalization for

recommender systems. Memorization can be loosely defined as learning the frequent co-

occurrence of items or features and exploiting the correlation available in the historical
data.Generalization, on the other hand, is based on transitivity of correlation and explores new

feature combinations thathave never or rarely occurred in the past. Compared with memorization,

generalization tends to improve the diversity of the system. Embedding-based models, such as
factorization machines or deep neural networks, can generalize to previously unseen query-item

feature pairs by learning a low-dimensional dense embedding vector for each query and item

feature, with less burden of feature engineering. On the other hand, linear models with cross-

product feature transformations can memorize these exception rules" with much fewer

Computer Science & Information Technology (CS & IT) 79

parameters. The wide component and deep component are combined using a weighted sum of
their output log odds as the pre diction, which is then fed to one common logistic loss function for

joint training. Note that there is a distinction between joint training and ensemble. In an ensemble,

individual models are trained separately without knowing each other, and their predictions are

combined only at inference time but not at training time. In contrast, joint training optimizes all
parameters simultaneously by taking both the wide and deep part as well as the weights of their

sum into account at training time.

3.4. Dataset

This Project uses publicdata.samples.natality dataset available in BigQuery.The datasetdescribes
all United States births registered in the 50 States, the District of Columbia, and New York City

from 1969 .It has 137,826,763 rows.The table size is of 21.94 GB.The data location of table is

US. It has 31 attributes. But we are interested in 7 main attributes .They are weight in pounds,
gestation weeks, plurality, baby’s gender, month and year.

Table:1 Schema of Natality table

Field Name Type Description

source_year INTEGER Four-digit year of the birth.

year INTEGER Four-digit year of the

birth.

month INTEGER Month index of the date of

birth

day INTEGER Day of birth, starting from 1.

wday INTEGER Day of the week from 1 to 7

state STRING The two character postal

code for the state.

is_male BOOLEAN TRUE if the child is male,

FALSE if female.

child_race INTEGER The race of the child.

weight_pounds FLOAT Weight of the child, in

pounds.

plurality INTEGER How many children were

born as a result of this

pregnancy.

apgar_1min INTEGER Apgar scores measure the

health of a new born child on

a scale from 0-10.

apgar_5min INTEGER Apgar scores measure the

health of a newborn child on

a scale from 0-10. V

mother_residence_state STRING The two-letter postal code of

the mother's state of

residence when the child was

born

mother_race INTEGER Race of the mother. Same

values as child race.

mother_age INTEGER Reported age of the mother

when giving birth.

80 Computer Science & Information Technology (CS & IT)

gestation_weeks INTEGER The number of weeks of

the pregnancy.

lmp STRING Date of the last menstrual

period in the format

MMDDYYYY.

mother_married BOOLEAN True if the mother was

married when she gave birth.

mother_birth_state STRING The two-letter postal code of

the mother's birth state.

cigarette_use BOOLEAN True if the mother smoked
cigarettes. Available starting

2003.

cigarettes_per_day INTEGER Number of cigarettes smoked

by the mother per day

alcohol_use BOOLEAN True if the mother used

alcohol. Available starting

1989.

drinks_per_week INTEGER Number of drinks per week

consumed by the mother

weight_gain_pounds INTEGER Number of pounds gained by

the mother during pregnancy.

Note: Features of interest are highlighted.

The data collected after 2000 is used in this project. Month and year fields are concatenated and

the hash is calculated to split the dataset into training and evaluation datasets.
FARM_FINGERPRINT is used to find the hash value. The function computes the fingerprint of

the STRING or BYTES input using the Fingerprint64 function from the open-source FarmHash

library. The output of this function for a particular input will never change. The return type of this

function is INT64.

3.5. Process Description

3.5.1.Exploring the Dataset

To train the model, we must explore the dataset, understand its structure, and examine

relationships within the data. We then isolate and construct relevant features within the data. A

feature is a piece of information that impacts the predictions our model will make. Features can

be fields of data in our source dataset, or they can be formed using one or more of the original
fields. Identifying the relevant features for our model is called featureengineering. It is done to

ensure that dataset have enough examples of each data value, and to verify that the parameter has

predictive value. It is also checked whether you have enough for each input value. Otherwise, the
model prediction against input values that don’t have enough data may not be reliable.BigQuery

python package is imported. Pandas is used to explore the dataset. Dataset is retrieved from

BigQuery and stored in pandas Data frame. Then the data is visualised using plot function
provided by Pandas. Data collected above 2000 is used for training.The number of records and

the average weight for each value of the separate features is found.

Computer Science & Information Technology (CS & IT) 81

From the exploration, it is interpreted the following:

-Male babies are heavier on average than female babies

-Teenaged and older moms tend to have lower-weight babies

-Twins, triplets, etc. are lower weight than single births.

Fig: 5 Exploring is_male feature

Fig:6 Exploring mother_age feature

82 Computer Science & Information Technology (CS & IT)

Fig:7 Exploring plurality feature

Fig:8 Exploring gestation weeks feature

3.5.2. Preprocessing the Dataset

Pre-processing is done to transform data into a format suitable for training. In this step, dataset is
split into training and evaluation datasets. They are created using hash function and modulo

function. The hash of the year-month is used so that twins born on the same day won't end up in

different cuts of the data. The hash is calculated using FARM_FINGERPRINT function. The
quarter of data is used for evaluation and remaining are used for training. Hence the remainder of

dividing the hash by is used to define the two datasets. If the remainder is less than 3, that record

belongs to training set and if it is equal to 3, that record belongs to evaluation set. This technique

ensures that we get a random sampling of the source data in each dataset and reduces the risk of
accidentally skewing the evaluation set. . It is important to guarantee that the evaluation set

represents the general characteristics of the data so that you can evaluate the generalization

performance of the trained model with it.The columns are pulled out of BigQuery and stored in a
CSV file within a Cloud Storage bucket. Cloud Dataflow is used to generate synthetic data to

make the model more robust to partial or unknown input values.

Computer Science & Information Technology (CS & IT) 83

In the dataset, every row in the dataset contains the baby's gender, because this is known after the
baby is born. However, we are building a model to predict the weight before the baby is born. We

know the sex of the baby only if an ultrasound was performed during the pregnancy. If no

ultrasound was performed, the doctor enters the baby's gender as "Unknown”.So we generate

artificial data by writing each historical data point twice, once with the original value for the
is_male column and again after replacing the is_male column value by Unknown.

Also, it is difficult to count the number of babies without an ultrasound, so while doctors can tell
whether there is one baby or multiple babies, they can't differentiate between twins and

triplets.We replace the plurality numbers with string values when writing out the data to simulate

the absence of an ultrasound.All these code are written with Apache Beam SDK.Apache Beam
SDK is programming model for both batch and streaming use cases that implements data

processing jobs that run on any execution engine and executes pipelines on multiple execution

environments. The job is submitted to cloud dataflow using DataflowRunner which takes about

30 minutes to finish. Job details are showed in Cloud Dataflow page in Google cloud console.

Fig: 9 Cloud Dataflow data processing pipeline

3.5.3. Training the Model

The model is trained in cloud environment using AI Platform. The model code is created as

python package and submitted to AI Platform using gcloud tool.The numerical features are
mother_age and gestation_weeks.The categorical features are is_male and gestation_weeks.One

hot encoding is applied to categorical columns.Wide model woks well on categorical

features.Hence numeric features are Bucketized and passed to wide model.On the other hand
deep model works well on numeric features. Wide features are crossed, embedded and passed as

additional input to deep model. An input_fn is created to return batch of examples for training for

each invocation. It identifies files that match the filename pattern and shuffles them before

retrieving examples. After reading a batch of rows from a CSV file, tf.decode_csv converts
column values into a list of TensorFlow constant objects. The DEFAULTS list is used to identify

the value types and complement empty cells. The input_fnfunction returns the dictionary of

features and the corresponding label values.Metrics for hyperparameter tuning is added with the
parameter to be optimized as root mean squared error. Then serving input function is created to

serve predictions using user inputs. Estimator object is initiated with

84 Computer Science & Information Technology (CS & IT)

DNNLinearCombinedRegressor as model specifying model directory,features and hidden units.
Training and evaluation specifications are specified. Training and evaluation of the model is done

by calling tf.estimator.train_and_evaluate function. All these details are specified in model.py

file. The python package contains 3 files-__init__.py to inform that it is a python package,

model.py and trainer.py for handling command line arguments which reads value for parameters
and sets them to the appropriate argument in model.py file. The arguments are bucket

name,output directory,batch size,train examples,evaluation steps,file pattern,nembeds and neural

network size.The training job is submitted to AI Platform using gcloud specifying package path,
command line arguments etc.Once training is started,it can be visualized using tensor board tool.

Fig:10 average loss during training

3.5.4. Deploying Model

The trained model is stored in exporter directory. This directory is given as option for gcloud
command. The gcloud command is used for creating model and then version.The models are

listed in AI Platform under the models tab. After that online and batch predictions are performed.

For online prediction, json object is created with the features and sent with the request to the
API.For batch predictions,an input file is created and outputpredictions are stored in cloud

storage. Authentication is required for accessing the API.For that purpose access token is passed

with the headers. Access token is generated using Google Credentials module.

3.5.5. Creating a Web Application

GoogleAppEngine is used to deploy a web application. The file deploy.sh contains code for
creating and deploying the app. The app is deployed in asia-south1 region. The main.py is a

Python script that runs on App Engine. It provides an API service that returns a prediction for a

baby's weight. To get this predicted value, it uses the prediction API service deployed on the
Managed ML Service.It sends a request to the prediction API service hosted on Cloud ML Engine

converting plurality and gender field to string.It also checks whether all the fields are set.It uses

Google Credentials for authorization.The templates/form.html is an HTML file containing
JavaScript code that renders the input form shown below. It sends a REST API request to the

backend application that runs on App Engine and then displays the result. The application is

autoscalable and provides high performance.It supports several queries in a second.

Computer Science & Information Technology (CS & IT) 85

Fig:11 App Details

Fig:12 Regions available for deploying application

Fig:13 Deployment of application

3.6. Tools, Libraries and Apis Used

Bigquery

BigQuery is Google's serverless, highly scalable, enterprise data warehouse designed to make all

our data analysts productive at an unmatched price-performance. There is no infrastructure to
manage, we can focus on analysing data to find meaningful insights using familiar SQL without

the need for a database administrator.We can analyse all our data by creating a logical data

86 Computer Science & Information Technology (CS & IT)

warehouse over managed, columnar storage, as well as data from object storage and spreadsheets.
It enables us to build and operationalize machine learning solutions with simple SQL. We can

easily and securely share insights as datasets, queries, spreadsheets, and reports. BigQuery allows

organizations to capture and analyze data in real time using its powerful streaming ingestion

capability so that your insights are always current, and it’s free for up to 1 TB of data analyzed
each month and 10 GB of data stored. It enables us to save query, validate query, save view,

schedule query, export table and get summary of query. It shows job history and explore in data

studio.

BigQuery supports a standard SQL dialect which is ANSI: 2011 compliant, reducing the need for

code rewrite and allowing us to take advantage of advanced SQL features. BigQuery provides
free ODBC and JDBC drivers to ensure our current applications can interact with Big Query’s

powerful engine.BigQuery provides rich monitoring, logging, and alerting throughStackdriver

Audit Logs. BigQuery resources can be monitored at a glance, and BigQuery can serve as a

repository for logs from any application or service using Stackdriver Logging.

Public Dataset

A public dataset is any dataset that is stored in BigQuery and made available to the general public

through the Google Cloud Public Dataset Program. The public datasets are datasets that BigQuery

hosts for you to access and integrate into our applications. Google pays for the storage of these
datasets and provides public access to the data via a project. Public datasets are available for you

to analyze using either legacy SQL or standard SQL queries. You can access BigQuery public

data sets by using the BigQuery web UI in the GCP Console, the classic BigQuery web UI, the

command-line tool, or by making calls to the BigQuery REST API using a variety of client
libraries such as Java, .NET, or Python.

In addition to the public datasets, BigQuery provides a limited number of sample tables that you
can query. These tables are contained in the bigquery-public-data :samples dataset. It includes the

following tables gsod,github_nested,githubtimeline,natality,Shakespeare,trigrams,Wikipedia.This

project uses natality dataset for training the model.

Cloud Datalab

Cloud Datalab is a powerful interactive tool created to explore, analyze, transform and visualize
data and build machine learning models on Google Cloud Platform. It runs on Google Compute

Engine and connects to multiple cloud services easily so we can focus on our data science tasks.

Cloud Datalab is built on Jupyter (formerly IPython), which boasts a thriving ecosystem of
modules and a robust knowledge base. Cloud Datalab enables analysis of our data on Google

BigQuery, Cloud Machine Learning Engine, Google Compute Engine, and Google Cloud Storage

using Python, SQL, and JavaScript (for BigQuery user-defined functions). Whether we are

analyzing megabytes or terabytes, Cloud Datalab has you covered. Query terabytes of data in
BigQuery, run local analysis on sampled data and run training jobs on terabytes of data in Cloud

Machine Learning Engine seamlessly.This project uses Cloud Datalab in asia-south1-a region to

create notebooks and execute code.

Computer Science & Information Technology (CS & IT) 87

Pandas

Pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data

structures and data analysis tools for the Python programming language. This project uses pandas

to explore dataset.It supports three datastructures- Dataframe,series, and panel. A Data frame is a
two-dimensional data structure.It supports columns of different types and can perform arithmetic

operations on rows and columns.It helps data visualisation using matplotlib libraries plot()

method .

Google Cloud Storage

Google Cloud Storage is a RESTful online file storage web service for storing and accessing data

on Google Cloud Platform infrastructure. The service combines the performance and scalability

of Google's cloud with advanced security and sharing capabilities. It is an Infrastructure as a

Service, comparable to Amazon S3 online storage service. Contrary to Google Drive and
according to different service specifications, Google Cloud Storage appears to be more suitable

for enterprises. Google Storage (GS) stores objects that are organized into buckets identified

within each bucket by a unique, user-assigned key. All requests are authorized using an access
control list associated with each bucket and object. Bucket names and keys are chosen so that

objects are addressable using HTTP URLs. Google Storage offers four storage classes, identical

in throughput, latency and durability. The four classes, Multi-Regional Storage, Regional Storage,
Near line Storage, and Cold line Storage, differ in their pricing, minimum storage durations, and

availability. This project stores pre-processed dataset, trained model, hyperparameter tuning

details, application in a Multi-regional bucket.

Compute Engine Api

It creates and runs virtual machines on Google Cloud Platform. Compute Engine’s tooling and
workflow support enable scaling from single instances to global, load-balanced cloud computing.

Compute Engine's VMs boot quickly, come with persistent disk storage, and deliver consistent

performance. Our virtual servers are available in many configurations including predefined sizes

or the option to create Custom Machine Types optimized for your specific needs. Flexible pricing
and automatic sustained use discounts make Compute Engine the leader in price/performance. It

is a billable component. It must be enabled to use Datalab. It enables us to resize our clusters,

create machine images, virtualize our network, use Pre-emptible for batch workloads and create
Custom Machine Types to optimize for our specific needs.

Cloud Dataflow

Cloud Dataflow is a fully-managed service for transforming and enriching data in stream (real

time) and batch (historical) modes with equal reliability and expressiveness -- no more complex

workarounds or compromises needed. And with its serverless approach to resource provisioning
and management, you have access to virtually limitless capacity to solve your biggest data

processing challenges, while paying only for what you use. Cloud Dataflow supports fast,

simplified pipeline development via expressive SQL, Java, and Python APIs in the Apache Beam
SDK, which provides a rich set of windowing and session analysis primitives as well as an

ecosystem of source and sink connectors. Plus, Beam’s unique, unified development model lets

you reuse more code across streaming and batch pipelines. GCP’s serverless approach removes

88 Computer Science & Information Technology (CS & IT)

operational overhead with performance, scaling, availability, security and compliance handled
automatically so users can focus on programming instead of managing server clusters. Integration

with Stackdriver, GCP’s unified logging and monitoring solution, lets you monitor and

troubleshoot your pipelines as they are running. Rich visualization, logging, and advanced

alerting help you identify and respond to potential issues. This project uses Dataflow runner to
pre-process dataset in cloud Dataflow which stores the processed dataset in bucket.

Fig: 14 Data transformation with cloud Dataflow

Cloud Ml Engine

Cloud Machine Learning Engine is a managed service that lets developers and data scientists

build and run superior machine learning models in production. Cloud ML Engine offers training
and prediction services, which can be used together or individually. We can scale up model

training by using the Cloud ML Engine training service in a serverless environment within GCP.

Cloud ML Engine supports popular ML frameworks or lets you run our application within a
Docker image. It also provides built-in tools to help us understand our models and effectively

explain them to business users. Cloud ML Engine automatically sets up an environment for

XGBoost and TensorFlow to run on multiple machines, so you can get the speed you need by

adding multiple GPUs to our training job or splitting it across multiple VMs. It helps us achieve
better results faster by automatically tuning deep learning hyperparameters with HyperTune.

HyperTune saves many hours of tedious and error-prone work.Once we have a trained model,

Cloud ML Engine offers two types of predictions to apply what the computer learned to new
examples.

Online Prediction deploys ML models with serverless, fully managed hosting that responds in
real time with high availability. Our global prediction platform automatically scales to adjust to

any throughput. It provides a secure web endpoint to integrate ML into your applications. Batch

Prediction offers cost-effective inference with unparalleled throughput for asynchronous

applications. It scales to perform inference on TBs of production data.

Cloud ML Engine has deep integration with our managed notebook service and our data services

for machine learning: Cloud Dataflow for feature processing, BigQuery for dashboard support
and analysis, and Cloud Storage for data storage. It is used for training and deploying model.

Computer Science & Information Technology (CS & IT) 89

Fig:15 Index page

The users are redirected to the authorization server where the user provide their Google account

credentials and authorized.

Fig: 14 Main Page

User needs to set all the fields otherwise it asks the user to set all items.

Fig: 15 Baby weight predictor

90 Computer Science & Information Technology (CS & IT)

4. CONCLUSION AND FUTURE WORK

This application predicts the birthweight within a minute. It helps in making prior arrangement of
doctors and facilities before baby birth. It is available all time since it is deployed in the cloud.

This application is helpful mainly for hospitals, pregnant ladies. It is highly scalable and provides

high performance and maintainability. This application currently depends on the four major

factors mother’s age, gestation weeks, plurality and gender of baby. In future, features will
extended including several other factors like smoking mother, mother’s race, country, etc. so that

the algorithm will be improved to get the best results. Also, this web application will be extended

as mobile application to improve portability and flexibility. It will be improved in such a way that
it provides suggestions to prevent low birthweight and helps mother take special care during

pregnancy.

REFERENCES

[1] Alfensi Faruk, Endro Setyo Cahyono, Ning Eliyati,IkaArifieni,(2018),“Prediction and

Classification of LowBirth Weight DataUsing Machine LearningTechniques” Indonesian Journal of

Science &Technology 3(1)18-28.

[2] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,

Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong,

Vihan Jain, Xiaobing Liu, Hemal Shah,“Wide & Deep Learning for Recommender Systems” -
arXiv: 1606.07792v1 [cs.LG]

[3] Stefan Kuhle, Bryan Maguire, Hongqun Zhang, David Hamilton, Alexander C. Allen, K.S.Joseph,

Victoria M. Allen,,“Comparision of logistic regression with machine learning methods for the

prediction of fetal growth abnormalities:a retrospective study ”, BMC Pregnancy and Childbirth,

18(1):333. doi: 10.1186/s12884-018-1971-2.

[4] Dahlui, M., Azahar, N., Oche, O. C., and Aziz, N. A. “Risk factors for low birth weight in nigeria:

evidence from the 2013 Nigeria demographic and health survey. Global Health Action”,2016, 9,

28822.

[5] Firdaus, C., Wahyudin, W., & Nugroho, E. P. (2017).“Monitoring System with Two Central

Facilities Protocol.” Indonesian Journal of Science and Technology, 2(1), 8-25.

[6] https://codelabs.developers.google.com

[7] https://cloud.google.com/solutions/machinelearning/data-preprocessing-for-ml-with-tf-transform-pt2

[8] https://www3.cs.stonybrook.edu/~skiena/591/final_projects/baby_weight/

[9] https://cloud.google.com/mlengine/docs/tensorflow/hyperparameter-tuning-overview

