
Natarajan Meghanathan et al. (Eds) : ICCSEA, WiMoA, SCAI, SPPR, InWeS, NECO - 2019

pp. 01-15, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.91801

METHODOLOGY AND ARCHITECTURE FOR

SAFETY MANAGEMENT

Matthieu Carré1,2, Ernesto Exposito1 and Javier Ibañez-Guzmán1,2

1Univ Pau & Pays Adour, E2S UPPA, LIUPPA, EA3000, Anglet, 64600,

France

2Renault S.A.S, 1 av. du Golf, Guyancourt, 78288, France.

ABSTRACT

The design of complex systems, as in the case of autonomous vehicles, requires a

specialized systems engineering methodology and an adapted modelling framework. In

particular, the integration of non-functional requirements, as important as the Safety,

requires from this methodological framework the well-adapted semantic expression of

constraints as well as their traceability during all phases of analysis, design and

implementation. This paper focuses on the study of model-based autonomous system design

and investigates the design flows and initiatives grasping with this complex computational
model. The specialization of the ARCADIA methodology will be illustrated in a real

industrial case.

KEYWORDS

Model Based System Engineering, Safety, Autonomous vehicles, System Engineering

analysis, System Engineering design.

1. INTRODUCTION

Ensuring the trustworthiness of autonomous systems can not only be based on evidence from

some rigorous design methodology and critical system engineering techniques and standards

[1]. The enforcement of AV safety when the system is designed, implemented, and operated
have led us to the identification of four mandatory non-functional properties for safe

autonomy (NFP). Their considerations make the system progress towards safe-by-design

architectures as well as ones that are more robust, easier to design, and easier to verify and
validate. Their considerations also traduce into providing evidence that the abstract system

model fosters the system’s nominal behaviors, guarantees its critical system goals and

manages any deviations from them. Their goals, coordination and composition may only

result of a global model-based analysis with a symbolic and conservative representation both
human and machine-readable. Therefore, the whole design process requires a more or less

exhaustive analysis to identify all kind of harmful events and their possible effects.

Then, the implementation of DIR (Detection, Isolation, Recovery) mechanisms contributes to

detect those symptoms and mitigate them as it keeps or brings the system back to a set of

trustworthy states. Moving them from correctness at design time to run-time autonomic

management may reduce existing gap between critical and best-effort systems engineering on
autonomous systems. They require not only cutting-edge theory but also to find adequate

trade-offs between quality of control and performance. Proposing a variety of DIR-type

2 Computer Science & Information Technology (CS & IT)

adaptive processes within the supervised system involve complex decision methods by

keeping critical goals and plan best-effort goals according to resource availability. Immediate
downsides are the ability to react promptly for timely recovery or the creation possible

conflicts between the different control loops.

Shifting the mitigation and assurance to run-time to cope with uncertainty and context

complexity constitutes a critical change in System Engineering. This turning point involves

new types of theory and architecture to handle these system-level functionalities and new

kinds of architecture coping with the different NFP (e.g. large distributed evolvable
autonomous systems with non-predicable dynamically changing environments).

This proposed computational model for autonomous systems suggested in [1] can provide a
basis for studying model-based autonomous system design. However, such abstract model-

based architecture may appear difficult to grasp in its entirety at the first sight since the

design and run-time operations have become more complex. Nonetheless, this additional

complexity is necessary to appropriately integrate the results from the environment analysis
and symbolic representation that contribute to tracking the possible trade-offs and evidence.

Design flows involving these solutions are not yet mature and rigorous in the automotive

industry, but some initiatives start to provide the different pieces to build up such a solution.

This paper focuses on the study of model-based autonomous system design and investigates

the design flows and initiatives grasping with the previous computational model. This paper
is organized as following. Section 2 details how System Engineering allows coping with the

complexity of designing and integrating the different concerns and quality properties using

views, in particular, safety. We also survey self-adaptive software solutions in the literature

that contribute to performing safe operations from a quality assurance perspective. Section 3
formulates and deriving safety constraints as conditions or risk measures that cover all

relevant hazardous events in regard to the vehicle behaviour. The scope of the work turn

around behavioural safety for a level 4-5 Autonomous Vehicle so that functional safety is not
directly addressed but remains acknowledged for the later technical design of the supervisor.

A abstract model of the vehicle is proposed using the Arcadia methodology involving the

expected operational functionalities from the vehicle, the system, the environment and the
actors (i.e. stakeholders, actors, regulators, recommendations). Section 4 proposes the

analysis and design of the solution independent from any technical solution as logical and

technical requirements to be met in the industrial framework proposed for autonomous

vehicles. Section 5 summarizes our findings, identifies current limitation and proposes a few
perspectives.

2. AV SAFETY AND SYSTEMS ENGINEERING

This section investigates how safety in AV is managed in SE. We pursue the finding and

analysis by exploring research works and solutions in the different domains limited to QoS

regarding one or more properties.

2.1. System Design Complexity in Autonomy

The combination of multiple functions having different and complementary capabilities

enables the emergence of Autonomous Vehicles. Their deployment is limited by the level of

complexity they represent together with the challenges encountered in real environments with

strong safety concerns. Thus a major concern prior to massive deployment is on how to
ensure the safety of autonomous vehicles despite likely internal (e.g. malfunctions) and

external (e.g. aggressive behaviors) disturbance they might undergo.

Computer Science & Information Technology (CS & IT) 3

System Engineering has partially contributed to respond to the complexity of autonomy,

context, system architecture and knowledge. The autonomy involves two challenges in both
System Engineering methods and Knowledge representations.

In the first place, System Engineering offers to manage complexity of the AV functional and
non-functional decomposition. The System Theory is a way to cope with complexity

alongside analytic reduction and statistics. Systematic approach to manage complexity with

appearance of new defined needs: the necessity to provide holistic and systematic engineering

(through methodology, tools, processes and definition). It offers traceability and flexibility of
the architecture (systems, components, features) in the life cycle. In addition, it may provide

top-down, bottom-up and middle-out possibilities to enhance and integrate learning

processes, updates, new regulations facilitating the acquisition and adaptability of the
knowledge mandatory for autonomous systems.

2.2. “Safe-by-Design” Architectures towards run-time Safety Representation

and Assurance

Despite the fact that the automotive industry practices a bottom-up approach to the
engineering of autonomous driving systems focusing on functions and technologies first,

architectures have been including those concerns and architecting towards these properties.

They capture both AV functional decomposition, AV non-functional decomposition (i.e.
safety) and AV contextual decomposition. The compliance to them in standards and research

towards more self-awareness and safety in AV have successively been introduced at different

scale of adaptation to the system.

Hybrid architecture: In the first place, the structure of the framework of Albus on 4D/RCS

[2] introduces a hybrid control architecture being both deliberative (i.e. actions based on

reasoning and planning) and reactive (i.e. fast actions based on direct and simple condition on
feedback). On the one hand, the framework structure ensures reasoning and planning

processes based on goals and priorities of the decision entities within a control hierarchy. On

the other hand, reactive loops that provide a faster and controlled response are introduced at
each level of the control hierarchy, and can locally modify planned actions to adapt to new

events. This approach is close in its concept and structure composition to the autonomic

computing paradigm [3] introduced by IBM, with a hierarchy of autonomic orchestrating
managers in IT infrastructure.

Degraded states and modes: In their work to define robust system architectures, Tas et al. [4]

emphasizes the relation between architectural design and the use of degraded operation
modes, introduced by [5]. The authors refer to the design of a functional and layered system

architecture as one of the main focus of autonomous driving to deal with safety-critical

challenges in systems engineering. Moreover, they suggest that the use of an effective
monitoring system is necessary to give proper feedback to the vehicle about its state and to

allow to take well-adapted decisions. Modes and graceful degradations continue to be

investigated in the literature [6].

Self-awareness on system’s abilities and limitations: In the matter of monitoring, Reschka et

al. [7] reports the needs to provide a permanent online monitoring of vehicle capabilities, as

well an adequate modelling tool to support appropriate and safe decisions. Accordingly, the
framework perceives the current performance of the system during operation, by knowing the

range of actions of the system and its limitations. With respect to ISO26262 standard [8], the

authors propose the use of ability and skill graphs to design the functional architecture of AV.
Those skills reflect the performance feedback of the system and then are used for system self-

4 Computer Science & Information Technology (CS & IT)

perception. Moreover, Colwell et al. [9] also introduce degradation for subsystem

functionalities and ODD restriction to grasp the limit of the safe system operation.

Constructivist and layered evolvable architecture: Regarding the long-term evolution of AV

in systems engineering, Behere et al. [10] overview the key functional components and
orientations needed for autonomous driving, to establish a layered evolvable functional

architecture. They report the necessity of constructivist architectures managed by Artificial

Intelligence to tackle the limitations of current engineering practices for scaling to more

complex systems. These so called constructivist architectures introduce a fundamental shift
from manually designed to self-organising architectures that evolve at run-time. The current

challenge resides in the possibility of run-time reasoning and run-time verification of the

desired properties as safety constraints. The design and implementation of such architectures
will involve paradigms and technologies from non-automotive domains. For example, the use

of reflective intelligent control systems based on a high-level supervisor on the functional

layer that will allow the monitoring and change of its behaviour for better adaptations.

Those approaches have been introduced progressively in the automotive domain in order to

propose solutions for well-adapted decisions; to apprehend the range and limitation of actions

of the system; to evolve the structure to provide better adaptation behaviours; and finally, to
integrate non-functional dimensions. Researchers have started to investigate the application

of such models in run-time environments combining safe-by-design and run-time mitigation

across the system and its functionalities. This software change beyond typical software
evolution approaches which has led to the vision of self-adaptive software.

2.3. Ensuring Safe Operations with Self-adaptive Software

Several run-time models that have been experienced and surveyed to cope with uncertainty

have been proposed [11, 12]. They are presented as an appropriate solution to cope with the
concerns of safety in AV emphasised previously. This type of architecture involves

constructivist or evolvable or dynamic behaviours or systems and are referred as self-adaptive

architecture. They act as an orchestration solution that can support acceptable trade-off to

pursue the assurance of some non-functional quality such as safety in evolvable and
reconfigurable system [13].

2.4. Composable and Flexible Systems

2.4.1. Introduction to microservice

Regarding software architecture, modularization and abstraction have been the first stages to

break down the complexity of systems in programs and architectures. However, according to

Dragoni et al. [14], those stages still result into the creation of monoliths, where monolithic
applications are generally built as a single unit with functionalities spread in modules and

components that are not independently executable. The final product and code result in

difficulties for scalability, maintainability and evolvability. In order to cope with these

considerations it suggests the use of micro-services as an architectural style in software
development to create a single application as a suite of small composable services. In order to

confront the previous issues, the components are forced to only implement one functionality

that results in the expression of one capability. Inspired by service oriented computing,
Martin Fowler et al. [15] formalize the terminology of this current movement in software

development as alternative to monolithic style applications. The approach suggests to isolate

all business capabilities of the systems into simple and small specialized services similar to
components but decoupled enough to be independently deployable by an automated

Computer Science & Information Technology (CS & IT) 5

deployment machinery. A micro-service results to be an independent functional process that

express one capability, also defined as cohesive [14], interacts with messages and owns its
domain logic locally.

2.4.2. Microservice in self-adaptive or safety-critical systems

[16] is an application of micro-service architecture for aerial unmanned vehicle. The intended

approach in its ability to discover new services at run-time and provide an automated

deployment machinery requires micro-services to be auto-descriptive by semantically
describing their business capability (behaviour), goal (system), logic, structure (component)

and interface (communication). The advantages of using microservices in designing is their

capacity to fail small. Not only they allow smart adaptation based on observation of such
faults, they also make the fault-tolerance mechanisms easier to bound.

3. MODELLING FOR SAFETY ASSESSMENT WITH MBSE IN AV

3.1. Application Scope

Current work in the domain have proposed relevant approaches for the refinement,

integration and enforcement of AV safety. Considering safety as a dynamic control problem

proposed by STPA/STAMP in [17] has shown promising applications and results in [18, 19],
and a complementary approach in [20, 21] towards the AV standards and the traditional

failure analysis for hazards coverage. However, most conclusions of these works insist on the

difficulty to provide a scalable automation for production-ready analysis processes to the AV
context and a flexible enforcement of these safety constraints in parallel. Consequently, they

only result in a partially-holistic view of the ADS restricting its ability to argue (e.g. on

decisions, observation restrictions). The flexibility and manageability of performing safety

assurance at run-time in AV can’t be solely addressed with the related work of automotive
domains.

Table 1. Mitigation of hazards in safety engineering

Hazard Through

identification Analysis

elimination Design

Control Management

3.1.1. Control structure for safety analysis towards reduce residual risks

The combination with the conventional ISO26262 analysis (FMEA, HARA, Safety case) and
STPA allows to perform safety analysis in order to provide a large scope of detection of

hazard and mitigation of the residual risk. The goal remains the same as it is to create systems

that integrates easily the safety requirements of any types that may have impact on design or

can only be mitigated during system operation.

The primary concern of System Safety is the management of hazards as described in Table 1.

It presents the 3 ways of managing hazards leading to the reduction of the risk to a

manageable and acceptable level.

6 Computer Science & Information Technology (CS & IT)

3.1.2. Composition of the Safety Analysis and Assessment in AV architecture

In our approach, we propose to apply to integrate the awareness of the hazard analysis in the
system model via some machine-understandable knowledge. We also consider the strategies

of the hazard management in the form of control loops. We propose to call these loops the

“safety assessment processes” as they constitute workflows involving different functions like
monitoring, classification, evaluation, planning or mitigation. To determine the rightful

allocation between the different functions, dataflows and each workflow, we propose to

perform a combined safety analysis with STPA/STAMP and ISO.

The combination of both STPA/STAMP and ISO hazard analysis have been performed and

shown an extended coverage of the hazard [22]. However, such application requires to

consider a specific ODD and reveals to be an iterative process with continuous refinement.

Experiments [20] have been applying it to AV and formalized this context-dependant analysis
method using a taxonomy (operational keyword to generate a sentence creating the different

scenarios).

In the first place, we propose to start the hazard analysis at the high-level representation of
our architecture with the behaviour competencies and regulations. Consequently, we start by

identifying some general use cases involving the vehicle competencies (e.g. perceive and

react near a pedestrian crossing). Then, we determine the hazards, the control structure of the
system and identify the unsafe control actions to construct the hazardous scenarios. Finally,

safety constraints can be identified and allocated to the different systems or components or

functions involved. This integration may result in the creation of a new version of the system
architecture (i.e. design constraints). The constraints that suggest some run-time management

through control loops are called “safety assessment processes” (SAP) in our research. They

will be the focus of our work as we want them to be deployed when the context requires it.

This process is then iteratively performed by applying it these new version but also when the
system architecture is continuously refined and more defined in-depth (bottom-up).

3.2. Background on MBSE

The previous point were dealing with the process of designing and maintaining architecture.

However, what language or formalization can be used to describe software architecture ?

UML (Unified Modelling Language) is one of object-oriented solutions used in software
modelling and design. UML is a language (of object modelling) and therefore proposes a

notation and a semantics associated with this language (i.e. models), but no process

methodology (i.e. an approach proposing a sequence of steps and activities that lead to the

resolution of a problem). Therefore, UML is not a method. UML unifies object methods with
a design process that was strongly influenced by its intended use in object programming.

UML has a whole approach (i.e. covering the entire development cycle: analysis, design and

implementation) that is object-oriented (and not functional): the system is broken down into
collaborating objects (rather than tasks broken down into functions that are easier to

perform). However, its application is not particularly adapted to modelling complex systems,

and suited to system engineering in the first place.

The Architecture View Model designed by Philippe Kruchten, also called 4+1 view model

represents the functional and non-functional requirements of software-intensive systems.

They are represented in the different views that offer and describe the system from the
viewpoints of different stakeholders (e.g. end-users, developers, system engineer, and

standards). The four views of the model consist of the logical, development, process and

physical views. Each one achieve a set of specific concerns regarding the system in addition

to a use case or scenario view that describes the sequences of interactions between objects

Computer Science & Information Technology (CS & IT) 7

and between processes involving the system and guiding the other views. The logical view is

high-level and focuses on abstraction and encapsulation, it models the main elements and
mechanisms of the system. It identifies the elements of the domain, as well as the

relationships and interactions between these elements "notions of classes and relationships".

The component view expresses the physical perspective of the code organization in terms of
modules, components and especially the concepts of the language or implementation

environment. From this perspective, the architect is mainly concerned with the aspects of

code management, compilation order, reuse, integration and other pure development

constraints. To represent this perspective, UML provides adapted concepts such as modules,
components, dependencies, interface. The process view is very important in multitasking

environments; it expresses the perspective on concurrent and parallel activities. The

deployment view expresses the distribution of the system through a network of computers
and processing logic nodes. This view is particularly useful for describing the distribution of

a distributed system.

SysML is the new modeling language defined by the OMG. It can be seen as an extension of
UML for modelling a broad spectrum of complex systems. It is based on UML and replaces

class and object modeling with block modeling for a vocabulary more adapted to System

Engineering. A block includes any software, hardware, data, process, and even people

management concept.

Much more than a simple modeling tool, Capella is a model-based engineering solution that

has been successfully deployed in a wide variety of industrial contexts. Based on graphical

modeling, it provides system, software and hardware architects with rich methodological
advice based on Arcadia, a complete model-based engineering method. The DSML

Arcadia/Capella is based on the UML/SysML and NAF standards, and shares many concepts

with these languages. It is the result of an iterative definition process driven by software
systems and architects working in a wide range of business areas (transport, avionics, space,

radar, etc.). Many industrial companies, such as Airbus, Areva, Thales, Continental and

Renault are currently interested in using Capella and running pilot modelling projects with
this tool. It exists because Arcadia allows you to:

• Ensure collaboration at the engineering level by sharing the same reference

architecture.
• Manage the complexity of systems and architectures.

• Define the best optimal architectures through compromise analysis.

• Manage different levels of engineering and traceability through automated
transition and refinement of information.

The couple Capella/Arcadia associates both the tool and the language: referring to MBSE’s

three well-known pillars, one could say that ARCADIA provides both a modeling language
and a modeling approach, and that Capella knows the language and method perfectly.

With a similar scope around adaptation, EUREMA is an integrated MDE approach as it

rigorously and consistently uses models for engineering feedback loops. The models are used
(1) to represent the adaptable software to achieve self-adaptation as proposed by the idea of

models at run-time (Models@run.time), as well as to design (2) individual adaptation

activities for feedback loops, (3) feedback loops as a whole, and (4) coordination between

these loops. Finally, (5) these models are used throughout the life cycle of the self-adaptive
system, i.e. to specify, execute and evolve feedback loops with their adaptation activities.

This approach introduces a model-driven architecture approach that guide the design and

development of complex and evolving systems while claiming to guarantee the portability,
the interoperability and the reusability of the final system.

8 Computer Science & Information Technology (CS & IT)

3.3. Modeling with Arcadia/Capella

ARCADIA (ARChitecture Analysis and Design Integrated Approach) is a model-based

engineering method for the architectural design of systems, hardware and software. It was

developed by Thales between 2005 and 2010 through an iterative process involving
operational architects from all Thales businesses (transport, avionics, space, radar, etc.). It

applies a structured approach over successive engineering phases that establishes a clear

separation between requirements (operational needs analysis and system needs analysis) and

solutions (logical and physical architectures), in accordance with the IEEE 1220 standard.
ARCADIA recommends three mandatory interdependent activities at the same level of

importance: Needs analysis and modeling; Construction of architectures and validation; and

Requirements engineering.

Arcadia DSML (Domain-Specific Modeling Language) is based on UML/SysML standards

and NAF and shares many concepts with these languages. But a modeling language was

preferred in order to facilitate ownership by all parties stakeholders. Arcadia is mainly based
on functional analysis, then the allocation of functions to the components. The richness of

Arcadia DSML is comparable to SysML with about ten types of diagrams: data flow

diagrams, scenario diagrams, state and mode diagrams, component distribution diagrams,

component distribution diagrams, component distribution diagrams functional distribution,
etc. There are also diagrams available from ARCADIA at different levels that are detailed in

Figure 3.1.

The Capella tool provides the different set of tools to carry out the system modelling and
automated transition steps from one level to the next providing traceability in the refinement

of the different element of the system model architecture.

It is noticeable that the Arcadia method is presented in a top-down manner by nature.
However, the representation can also be bottom-up if we start from an existing system for

instance. In the next sections, our example will assume the extension of the ADCC

architecture. For this purpose, the Arcadia methodology relates more about levels providing
key representations objectives rather than phases or steps. In addition, all the architectural

levels are not stated as mandatory. Since the methodology aims to guide the analysis and

modelling processes, some levels may be skipped depending the system complexity and

model expectations (e.g. operational analysis, logical architecture, EPSB are optional).

Figure 1. The main engineering levels of Arcadia and transition steps [23]

Computer Science & Information Technology (CS & IT) 9

3.3.1. Operational Analysis

The Operational Analysis represents the highest level of the Arcadia method. It focuses on
answering the question “what the users of the future system need to accomplish?”. At this

level, the future system is not yet represented as a modeling element but the identification of

the needs and objectives of the system start in this step. This level constitutes the first
representation of the system environment by modelling the jobs of future users as activities,

roles to fulfil while precising the operational conditions of the system. A series of activities

and of interactions constitutes a process and contributes toward an operational capability. The
creation of models and scenarios representing the different elements allows to check the

adequacy of the system to these operational needs.

This level of Operational Analysis consists in:

• Capture and formalize the operational needs from the different stakeholders.

• Define what the vehicle (System) need to accomplish and how the other actors

contribute, influence or impact.

• Also identify the different entities in each separate domain (entities, actors, roles,
activities and concepts).

3.3.2. System Analysis

The System Analysis places the system as the central element of the dataflow representations

in interaction with the external actors. It focuses on answering the question “what the system

must accomplish for the users?”. The System Analysis involves the identification of system

capabilities and functions that satisfy the operational needs defined in the previous level. At
this point, the system is still considered as a black-box as no internal structure should be

decided yet. Only function and communication exchanges may be allocated during this

external functional analysis. Consequently, this analysis consists in refining the system
functions with the decomposition of the top-level functions and adding the constraints of non-

functional properties. For these aspects, these diagrams on Capella provide rich mechanisms

for managing complexity: simplified links calculated between high-level functions,

categorization of exchanges, etc. Functional chain can also be displayed as highlighted paths.
They represents a specific path involving a of the system functions and exchanges and are

relevant for assigning constraints (latency, criticality, etc.), as well as organizing tests on a

specific system features.

This level of System Analysis consists in:

• Define what the system have to accomplish for the users

• Identify the boundary of the black-box system, consolidate the
requirements(sourced from the actors)

• Model functional data-flows and dynamic behaviours

3.3.3. Logical Architecture

The Logical Architecture aims to identify the different logical components that form the

component structure inside the system. It focuses on answering the question “how the system

will work to fulfil expectations?”. This level provides tools to represent the relations between
components and their content, independently of any considerations of technology or

implementation.

10 Computer Science & Information Technology (CS & IT)

The previous model described in the System Analysis can be imported via an automated

transition to Logical Architecture model. Thus, it keeps all the previous definition and
description of the top-level function and exchanges. On this basis, the Logical Architecture

carries out the internal functional analysis where all sub-functions subsumed by the

previously identified top-level functions need to be identified and allocated to a specific
logical component while keeping tracks of the integration of the non-functional constraints .

This level of Logical Architecture consists in:

• Provide a white-box vision of the system identifying how the system is fulfilling
the expectations

• Propose a first step for trade off-analysis

3.3.4. Physical Architecture

This level of Physical Architecture possesses the same objective than the Logical Analysis

but defines the final architecture of the system providing information on how the system will

be built. This level reflects the technical choices and defines the different components
(software and hardware).

This level of Physical Architecture consists in:

• How the system will be developed and built
• Software vs. hardware allocation, specification of interfaces, deployment

configurations, trade-off analysis

3.3.5. EPBS and integration contracts

An additional level EPBS (End Product Breakdown Structure) is available to define the

“conditions that each component must fulfil to satisfy the architecture design constraints and

limitations, established in the previous phases” [23]. This last level answers to the question
“what is expected from the provider of each component” and is usually used with sub-

contracting.

4. INTEGRATING DYNAMIC SAFETY ANALYSIS AND MANAGEMENT IN

ARCADIA/CAPELLA

4.1. Overview of the Composed Methodology

We propose to design a methodology based on the Arcadia to appropriately represents the
safety-related adaptive processes by synchronizing the step of the Arcadia methodology with

the STPA analysis for the set of defined scenarii. For each step of Arcadia, we propose to

associate an STPA analysis for any representation that contains the equivalent of a control

loop.

4.2. Process of Integration for Safety Analysis

In the first place, it is necessary to base our analysis on what the behavioural requirements the

AV system and vehicle needs to accomplish and the source of these requirements. In fact,

multiple actors are the sources of requirements that can highly impact how the vehicle need to
behave, how it is design and implemented. Standards, recommendations, guidelines, state-of-

the-art, car manufacturer, regulators, renting or end customers impose diverse requirements to

Computer Science & Information Technology (CS & IT) 11

the AV system that can be both functional or dysfunctional coping with totally distinct

disciplines (e.g. functions, safety, ethics, social acceptance, security, etc).

4.2.1. Operational analysis

The operational analysis of the Arcadia methodology contribute to capture those operational

needs from the different stakeholders. It defines what the vehicle need to accomplish and how

the other actors contribute, influence or impact. Indeed, we model the whole process of actors

and requirements that identify the different entities in each separate domain with a specific
vocabulary of entities, actors, roles, activities and concepts. The functional part definition of

the system takes as inputs the different behavioural competencies, OEDR, ODD, DDT and

requirements from different shareholders available in the literature.

The actors of the non-functional part also takes place as they require specific operational

capabilities to manage properly conditions or risk measures that cover all relevant hazardous

events in regard to the vehicle behaviour. The following figures contribute to illustrate how
high-level capabilities, entities, actors, interactions, activities and process. It is important to

notice that the creation of diagrams contributes to refine step-by-step the model of the system.

The next figures are views (or windows) to observe the semantic model that have been
incrementally built using the Capella tool and following the Arcadia methodology.

Figure 2 defines the operational entities and the capabilities involving both the functional and
the safety concerns. At this level, we start to represent the “real” needs of the various

shareholders without the architecture, design or technical implementation in mind. We

describe the model with Operational Capabilities (OC), Operational Entities and Operational

Actors (OA) and the relation between them. For autonomous vehicle, shareholders often
decompose the needs between functional and non-functional concerns. We also propose to

distinguish functional and behavioral safety strategies from the functional part of driving to

initiate the technical design of some sort of the core of the supervisor (both in the model and
in the future physical architecture).

Figure 2. Safety Operational Analysis for Autonomous Vehicles

For this purpose, we have identify some functional oriented capabilities within the driving

automation and some non-functional strategies (safety and social dimension). In addition, we

have performed a additional step in the definition by refining each OC into some subsumed
OCs. To illustrate, the DDTs are represented as OC as they can not be translated into

activities and later as functions since they remain high-level definition of general service for

operational objectives. In our case, their description and traceability is performed with some

involved activities and operational processes (e.g. SENSE, PLAN, ACT).

12 Computer Science & Information Technology (CS & IT)

The operational analysis phase defines also the architecture between the operational activities

and the interactions between the different actors to grasp the operational context of the
system. The activities (in yellow) correspond to the different process steps carried out in

order to reach a precise objective for the entities. They might need to use the future system in

order to do so, or the system might use it (e.g. Provide ODD definition). For example, we
allocated to the operational context of the autonomous vehicle as the surrounding

environment it may perceive (external observations) as well as its internal observations

(system states). These observation are then consumed by the driving automation activity of

the functional layer. This diagram also represents activities related to the ODD as it is a major
source of the environment representation and formalisation of needs from the different

stakeholders with expressions (e.g. rules or contracts to require behaviour X in situation Y, or

to prevent X in Y). The construction (structure) and definition (content) of the ODD play a
major role in our definition as well as the understanding of the current situations in which the

system is involved. Finally, additional activities are also represented in interaction with the

previous activities to address the non-functional concerns and strategies to use. To define

with more detail the activities and the respective interactions for each capability (OC),
Capella proposes to create an OAIB view (Operational Analysis Interaction Blank).

4.2.2. System analysis

The role of this next level is to identify the different functions or system services necessary to

its users and specify them with the possible constraint from the non-functional properties.
First, we have started with a definition of the system as a black-box and creating functions

that realize the operational activities from the previous level. Figure 3 is a synthesis view of

the system functions we have identified as parent functions: to perform the driving

automation, to obtain access to the ADCC resources (Layer 1), to supervise them with
specific loops of adaptation (Layer 2), to perform runtime adaptions to fit the ODD and safety

concerns (Layer 3), to store this information for possible update or learning purposes (KB),

and finally to display some system internal information. At this step, we have already made
some choices regarding the design and how we wanted to structure and organize the control

loops.

Figure 3. Safety High-Level System Analysis for Autonomous Vehicles

Figure 4 provides further details about the design choices for the architecture with the
introduction of MAPE-K loops with an external knowledge base and service orientation.

Computer Science & Information Technology (CS & IT) 13

Figure 4. Safety Low-Level System Analysis for Autonomous Vehicles

Based on this operational and system analysis, the design phases can be started, based on the
available technologies from the cyber-physical systems represented by autonomous vehicles.

For the design, several questions need to be answered:

• How the transition between the functional view to the logical and physical

architecture can be achieved? We need to determine what types of architectural

solutions can support the safety management loops and mitigation within the
system. In addition, we also need to address the management of the constraints

resulting from the AV context analysis. Determining the different operational

contexts needs to be open for iterative and thorough safety analysis. Finally, we
need to guarantee the constraints as defined distributed autonomic processes.

• How to assess the safety that remain behavioural? Hence, we want to ensure the

safety and similar system attributes than in the design by managing the
complexity of the systems for observability, traceability and flexibility. It may

not be possible to solve by only tweaking profile or configuration: it is required

to provide guarantees at any system or sub-system levels of adaptation.

CONCLUSIONS, LIMITATIONS AND PERSPECTIVES.

In this article, we have explored the way to study and build L4-L5 AV using MBSE with the

key functionalities and safety considerations as design and run-time mitigation. We focus on
the key functionalities for providing autonomy. Technological and technical solutions should

not be pushed over them to provide manageable system complexity with sufficient level of

safety coverage (quality and quantity) and NFP. It also enables the possibilities to perform
trade-off between the various alternatives, combinations, variants and implementations of the

various architecture. To conclude, the proposed computational model for autonomous

systems can provide a basis for studying model-based autonomous system design.
Nonetheless, we are far from ensuring that the conditions are in place to develop rigorous

design flows. Indeed, the detailed structural and behavioural specification of the system needs

to be provided in order to extend our current solution to include validation of the design

based on functional and non-functional requirements. Future work will focus in developing
extensions of our modelling approach, mainly based on new viewpoints aimed at integrating

and validating non-functional properties, such as performance and safety.

14 Computer Science & Information Technology (CS & IT)

ACKNOWLEDGEMENTS

This work has been financed by Renault and by FUI 23 under the French TORNADO research project

focused on the interactions between autonomous vehicles and infrastructures for mobility services in

low-density areas. Further details of the project are available at https://www.tornado-mobility.com.

REFERENCES

[1] Joseph Sifakis. Autonomous systems – an architectural characterization. In Models, Languages,

and Tools for Concurrent and Distributed Programming, pages 388–410. Springer International

Publishing, 2019. doi: 10.1007/ 978-3-030-21485-2_21.

[2] Gizem, Aksahya & Ayese, Ozcan (2009) Coomunications & Networks, Network Books, ABC

Publishers.

[3] James S Albus, Hui-Min Huang, Elena R Messina, Karl Murphy, Maris Juberts, Alberto Lacaze,

Stephen B Balakirsky, Michael O Shneier, Tsai Hong Hong, Harry A Scott, et al. 4d/rcs version

2.0: A reference model architecture for unmanned vehicle systems. NIST Interagency/Internal
Report (NISTIR)-6910, 2002.

[4] J Kephart, D Chess, Craig Boutilier, Rajarshi Das, and William E Walsh. An architectural

blueprint for autonomic computing. IBM White paper, June 2006. doi: 10.1.1.150.1011. URL

https://pdfs.semanticscholar.org/0e99/ 837d9b1e70bb35d516e32ecfc345cd30e795.pdf.

[5] Ö. S ̧. Tas ̧, F. Kuhnt, J. M. Zöllner, and C. Stiller. Functional system architectures towards fully

automated driving. In 2016 IEEE Intelligent Vehicles Symposium (IV), pages 304–309, June

2016. doi: 10.1109/IVS.2016.7535402.

[6] J. Lygeros, D. N. Godbole, and M. E. Broucke. Design of an extended architecture for degraded
modes of operation of ivhs. In American Control Conference, Proceedings of the 1995, volume 5,

pages 3592–3596 vol.5, Jun 1995. doi: 10.1109/ACC.1995.533806.

[7] Yrvann Emzivat, Javier Ibanez-Guzman, Herve Illy, Philippe Martinet, and Olivier H. Roux. A

formal approach for the design of a dependable perception system for autonomous vehicles. In

2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE, nov

2018. doi: 10.1109/itsc.2018.8569903.

[8] Andreas Reschka, Jürgen Rüdiger Böhmer, Tobias Nothdurft, Peter Hecker, Bernd Lichte, and

Markus Maurer. A surveillance and safety system based on performance criteria and functional

degradation for an autonomous vehicle. In 2012 15th International IEEE Conference on

Intelligent Transportation Systems, pages 237–242. IEEE, 2012.

[9] ISO 26262 road vehicles – functional safety, 2018. URL http:

//www.iso.org/iso/home/store/catalogue_tc/catalogue_ detail.htm?csnumber=43464.

[10] Colwell, B. Phan, S. Saleem, R. Salay, and K. Czarnecki. An automated vehicle safety concept

based on runtime restriction of the operational design domain. In 2018 IEEE Intelligent Vehicles

Symposium (IV), pages 1910–1917, June 2018. doi: 10.1109/IVS.2018.8500530.

[11] Sagar Behere and Martin Törngren. Systems Engineering and Architecting for Intelligent

Autonomous Systems, chapter 13, pages 313–351. Springer International Publishing, Cham,

2017. ISBN 978-3-319-31895-0. doi: 10.1007/978-3-319-31895-0_13. URL
https://doi.org/10.1007/ 978-3-319-31895-0_13.

Computer Science & Information Technology (CS & IT) 15

[12] Holger Giese, Nelly Bencomo, Liliana Pasquale, Andres J. Ramirez, Paola Inverardi, Sebastian

Wätzoldt, and Siobhán Clarke. Living with Uncertainty in the Age of Runtime Models, pages

47–100. Springer International Publishing, Cham, 2014. ISBN 978-3-319-08915-7. doi:

10.1007/978-3-319-08915-7_3. URL https://doi.org/10.1007/978-3-319-08915-7_3.

[13] Milos Ojdanic. Systematic literature review of safety-related challenges for autonomous systems

in safety-critical applications. Master’s thesis, MÃlardalen University, School of Innovation

Design and Engineering, VÃsterÃs, Sweden, 2019.

[14] Sagar Behere and Martin Törngren. Systems Engineering and Architecting for Intelligent

Autonomous Systems, chapter 13, pages 313–351. Springer International Publishing, Cham,

2017. ISBN 978-3-319-31895-0. doi: 10.1007/978-3-319-31895-0_13. URL

https://doi.org/10.1007/ 978-3-319-31895-0_13.

[15] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel Mazzara, Fabrizio

Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: yesterday, today, and tomorrow.

CoRR, abs/1606.04036, 2016. URL http://arxiv. org/abs/1606.04036.

[16] Martin Fowler and James Lewis. Microservices: a definition of this new architectural term.

ThoughtWorks. http://martinfowler.com/articles/microservices.html [last accessed on July 06,
2016], 2014. URL http://martinfowler.com/ articles/microservices.html.

[17] D. Rodrigues, R. de Melo Pires, E. A. Marconato, C. Areias, J. C. Cunha, K. R. L. J. Castelo

Branco, and M. Vieira. Service-oriented architectures for a flexible and safe use of unmanned

aerial vehicles. IEEE Intelligent Transportation Systems Magazine, 9(1):97–109, Spring 2017.

ISSN 1939-1390. doi: 10.1109/MITS.2016. 2611038.

[18] Nancy G. Leveson and John P. Thomas. STPA Handbook. MIT Partnership for a Systems

Approach to Safety (PSAS, March 2018. URL

http://psas.scripts.mit.edu/home/get_file.php?name= STPA_handbook.pdf.

[19] Gerrit Bagschik, Torben Stolte, and Markus Maurer. Safety analysis based on systems theory

applied to an unmanned protective vehicle. Procedia Engineering, 179:61 – 71, 2017. ISSN 1877-

7058. doi: http://dx.doi.org/10.1016/j.proeng.2017. 03.096. URL

http://www.sciencedirect.com/science/article/ pii/S1877705817312122. 4th European {STAMP}

Workshop 2016, {ESW} 2016, 13-15 September 2016, Zurich, Switzerland.

[20] Shawn A. Cook, Hsing-Hua Fan, Krzysztof Pennar, and Padma Sundaram. Building behavioral

competency into stpa process models for automated driving systems. March 2018.

GiedreSabaliauskaite,LinShenLiew,andJinCui.Integratingautonomousvehicle

safety and security analysis using stpa method and the six-step model. Interna-

tional Journal on Advances in Security, 11:160–169, July 2018

[21] Mark A. Vernacchia. Gm presentation for introducing stamp/stpa

tools into standards. March 2018.

[22] Asim Abdulkhaleq, Stefan Wagner, Daniel Lammering, Hagen Boehmert, and Pierre Blueher.

Using STPA in compliance with ISO 26262 for developing a safe architecture for fully

automated vehicles.

[23] Pascal (Consultant) Roques. Systems Architecture Modeling with the Arca- dia Method. ISTE

Press Ltd - Elsevier Inc, 2017. ISBN 9781785481680.

