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ABSTRACT 
 

The design of complex systems, as in the case of autonomous vehicles, requires a 

specialized systems engineering methodology and an adapted modelling framework. In 

particular, the integration of non-functional requirements, as important as the Safety, 

requires from this methodological framework the well-adapted semantic expression of 

constraints as well as their traceability during all phases of analysis, design and 

implementation. This paper focuses on the study of model-based autonomous system design 

and investigates the design flows and initiatives grasping with this complex computational 
model. The specialization of the ARCADIA methodology will be illustrated in a real 

industrial case.  
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1. INTRODUCTION 
 
Ensuring the trustworthiness of autonomous systems can not only be based on evidence from 

some rigorous design methodology and critical system engineering techniques and standards 

[1]. The enforcement of AV safety when the system is designed, implemented, and operated 
have led us to the identification of four mandatory non-functional properties for safe 

autonomy (NFP). Their considerations make the system progress towards safe-by-design 

architectures as well as ones that are more robust, easier to design, and easier to verify and 
validate. Their considerations also traduce into providing evidence that the abstract system 

model fosters the system’s nominal behaviors, guarantees its critical system goals and 

manages any deviations from them. Their goals, coordination and composition may only 

result of a global model-based analysis with a symbolic and conservative representation both 
human and machine-readable. Therefore, the whole design process requires a more or less 

exhaustive analysis to identify all kind of harmful events and their possible effects.  

 
Then, the implementation of DIR (Detection, Isolation, Recovery) mechanisms contributes to 

detect those symptoms and mitigate them as it keeps or brings the system back to a set of 

trustworthy states. Moving them from correctness at design time to run-time autonomic 

management may reduce existing gap between critical and best-effort systems engineering on 
autonomous systems. They require not only cutting-edge theory but also to find adequate 

trade-offs between quality of control and performance. Proposing a variety of DIR-type 
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adaptive processes within the supervised system involve complex decision methods by 

keeping critical goals and plan best-effort goals according to resource availability. Immediate 
downsides are the ability to react promptly for timely recovery or the creation possible 

conflicts between the different control loops.  

 
Shifting the mitigation and assurance to run-time to cope with uncertainty and context 

complexity constitutes a critical change in System Engineering. This turning point involves 

new types of theory and architecture to handle these system-level functionalities and new 

kinds of architecture coping with the different NFP (e.g. large distributed evolvable 
autonomous systems with non-predicable dynamically changing environments).  

 

This proposed computational model for autonomous systems suggested in [1] can provide a 
basis for studying model-based autonomous system design. However, such abstract model-

based architecture may appear difficult to grasp in its entirety at the first sight since the 

design and run-time operations have become more complex. Nonetheless, this additional 

complexity is necessary to appropriately integrate the results from the environment analysis 
and symbolic representation that contribute to tracking the possible trade-offs and evidence. 

Design flows involving these solutions are not yet mature and rigorous in the automotive 

industry, but some initiatives start to provide the different pieces to build up such a solution.  
 

This paper focuses on the study of model-based autonomous system design and investigates 

the design flows and initiatives grasping with the previous computational model. This paper 
is organized as following. Section 2 details how System Engineering allows coping with the 

complexity of designing and integrating the different concerns and quality properties using 

views, in particular, safety. We also survey self-adaptive software solutions in the literature 

that contribute to performing safe operations from a quality assurance perspective. Section 3 
formulates and deriving safety constraints as conditions or risk measures that cover all 

relevant hazardous events in regard to the vehicle behaviour. The scope of the work turn 

around behavioural safety for a level 4-5 Autonomous Vehicle so that functional safety is not 
directly addressed but remains acknowledged for the later technical design of the supervisor. 

A abstract model of the vehicle is proposed using the Arcadia methodology involving the 

expected operational functionalities from the vehicle, the system, the environment and the 
actors (i.e. stakeholders, actors, regulators, recommendations). Section 4 proposes the 

analysis and design of the solution independent from any technical solution as logical and 

technical requirements to be met in the  industrial framework proposed for autonomous 

vehicles. Section 5 summarizes our findings, identifies current limitation and proposes a few 
perspectives.  

 

2. AV SAFETY AND SYSTEMS ENGINEERING  
 
This section investigates how safety in AV is managed in SE. We pursue the finding and 

analysis by exploring research works and solutions in the different domains limited to QoS 

regarding one or more properties.  

 

2.1. System Design Complexity in Autonomy  
 
The combination of multiple functions having different and complementary capabilities 

enables the emergence of Autonomous Vehicles. Their deployment is limited by the level of 

complexity they represent together with the challenges encountered in real environments with 

strong safety concerns. Thus a major concern prior to massive deployment is on how to 
ensure the safety of autonomous vehicles despite likely internal (e.g. malfunctions) and 

external (e.g. aggressive behaviors) disturbance they might undergo.  
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System Engineering has partially contributed to respond to the complexity of autonomy, 

context, system architecture and knowledge. The autonomy involves two challenges in both 
System Engineering methods and Knowledge representations.  

 

In the first place, System Engineering offers to manage complexity of the AV functional and 
non-functional decomposition. The System Theory is a way to cope with complexity 

alongside analytic reduction and statistics. Systematic approach to manage complexity with 

appearance of new defined needs: the necessity to provide holistic and systematic engineering 

(through methodology, tools, processes and definition). It offers traceability and flexibility of 
the architecture (systems, components, features) in the life cycle. In addition, it may provide 

top-down, bottom-up and middle-out possibilities to enhance and integrate learning 

processes, updates, new regulations facilitating the acquisition and adaptability of the 
knowledge mandatory for autonomous systems.  

 

2.2. “Safe-by-Design” Architectures towards run-time Safety Representation 

and Assurance  
 

Despite the fact that the automotive industry practices a bottom-up approach to the 
engineering of autonomous driving systems focusing on functions and technologies first, 

architectures have been including those concerns and architecting towards these properties. 

They capture both AV functional decomposition, AV non-functional decomposition (i.e. 
safety) and AV contextual decomposition. The compliance to them in standards and research 

towards more self-awareness and safety in AV have successively been introduced at different 

scale of adaptation to the system.  
 

Hybrid architecture:  In the first place, the structure of the framework of Albus on 4D/RCS 

[2] introduces a hybrid control architecture being both deliberative (i.e. actions based on 

reasoning and planning) and reactive (i.e. fast actions based on direct and simple condition on 
feedback). On the one hand, the framework structure ensures reasoning and planning 

processes based on goals and priorities of the decision entities within a control hierarchy. On 

the other hand, reactive loops that provide a faster and controlled response are introduced at 
each level of the control hierarchy, and can locally modify planned actions to adapt to new 

events. This approach is close in its concept and structure composition to the autonomic 

computing paradigm [3] introduced by IBM, with a hierarchy of autonomic orchestrating 
managers in IT infrastructure.  

 

Degraded states and modes: In their work to define robust system architectures, Tas et al. [4] 

emphasizes the relation between architectural design and the use of degraded operation 
modes, introduced by [5]. The authors refer to the design of a functional and layered system 

architecture as one of the main focus of autonomous driving to deal with safety-critical 

challenges in systems engineering. Moreover, they suggest that the use of an effective 
monitoring system is necessary to give proper feedback to the vehicle about its state and to 

allow to take well-adapted decisions. Modes and graceful degradations continue to be 

investigated in the literature [6].  

 
Self-awareness on system’s abilities and limitations: In the matter of monitoring, Reschka et 

al. [7] reports the needs to provide a permanent online monitoring of vehicle capabilities, as 

well an adequate modelling tool to support appropriate and safe decisions. Accordingly, the 
framework perceives the current performance of the system during operation, by knowing the 

range of actions of the system and its limitations. With respect to ISO26262 standard [8], the 

authors propose the use of ability and skill graphs to design the functional architecture of AV. 
Those skills reflect the performance feedback of the system and then are used for system self-



4                                   Computer Science & Information Technology (CS & IT) 

perception. Moreover, Colwell et al. [9] also introduce degradation for subsystem 

functionalities and ODD restriction to grasp the limit of the safe system operation.  
 

Constructivist and layered evolvable architecture: Regarding the long-term evolution of AV 

in systems engineering, Behere et al. [10] overview the key functional components and 
orientations needed for autonomous driving, to establish a layered evolvable functional 

architecture. They report the necessity of constructivist architectures managed by Artificial 

Intelligence to tackle the limitations of current engineering practices for scaling to more 

complex systems. These so called constructivist architectures introduce a fundamental shift 
from manually designed to self-organising architectures that evolve at run-time. The current 

challenge resides in the possibility of run-time reasoning and run-time verification of the 

desired properties as safety constraints. The design and implementation of such architectures 
will involve paradigms and technologies from non-automotive domains. For example, the use 

of reflective intelligent control systems based on a high-level supervisor on the functional 

layer that will allow the monitoring and change of its behaviour for better adaptations.  

 
Those approaches have been introduced progressively in the automotive domain in order to 

propose solutions for well-adapted decisions; to apprehend the range and limitation of actions 

of the system; to evolve the structure to provide better adaptation behaviours; and finally, to 
integrate non-functional dimensions. Researchers have started to investigate the application 

of such models in run-time environments combining safe-by-design and run-time mitigation 

across the system and its functionalities. This software change beyond typical software 
evolution approaches which has led to the vision of self-adaptive software.  

 

2.3. Ensuring Safe Operations with Self-adaptive Software  
 

Several run-time models that have been experienced and surveyed to cope with uncertainty 

have been proposed [11, 12]. They are presented as an appropriate solution to cope with the 
concerns of safety in AV emphasised previously. This type of architecture involves 

constructivist or evolvable or dynamic behaviours or systems and are referred as self-adaptive 

architecture. They act as an orchestration solution that can support acceptable trade-off to 

pursue the assurance of some non-functional quality such as safety in evolvable and 
reconfigurable system [13].  

 

2.4. Composable and Flexible Systems  
 

2.4.1. Introduction to microservice  

 
Regarding software architecture, modularization and abstraction have been the first stages to 

break down the complexity of systems in programs and architectures. However, according to 

Dragoni et al. [14], those stages still result into the creation of monoliths, where monolithic 
applications are generally built as a single unit with functionalities spread in modules and 

components that are not independently executable. The final product and code result in 

difficulties for scalability, maintainability and evolvability. In order to cope with these 

considerations it suggests the use of micro-services as an architectural style in software 
development to create a single application as a suite of small composable services. In order to 

confront the previous issues, the components are forced to only implement one functionality 

that results in the expression of one capability. Inspired by service oriented computing, 
Martin Fowler et al. [15] formalize the terminology of this current movement in software 

development as alternative to monolithic style applications. The approach suggests to isolate 

all business capabilities of the systems into simple and small specialized services similar to 
components but decoupled enough to be independently deployable by an automated 
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deployment machinery. A micro-service results to be an independent functional process that 

express one capability, also defined as cohesive [14], interacts with messages and owns its 
domain logic locally.  

 

2.4.2. Microservice in self-adaptive or safety-critical systems  
 

[16] is an application of micro-service architecture for aerial unmanned vehicle. The intended 

approach in its ability to discover new services at run-time and provide an automated 

deployment machinery requires micro-services to be auto-descriptive by semantically 
describing their business capability (behaviour), goal (system), logic, structure (component) 

and interface (communication). The advantages of using microservices in designing is their 

capacity to fail small. Not only they allow smart adaptation based on observation of such 
faults, they also make the fault-tolerance mechanisms easier to bound.  

 

3. MODELLING FOR SAFETY ASSESSMENT WITH MBSE IN AV  
 

3.1. Application Scope  
 

Current work in the domain have proposed relevant approaches for the refinement, 

integration and enforcement of AV safety. Considering safety as a dynamic control problem 

proposed by STPA/STAMP in [17] has shown promising applications and results in [18, 19], 
and a complementary approach in [20, 21] towards the AV standards and the traditional 

failure analysis for hazards coverage. However, most conclusions of these works insist on the 

difficulty to provide a scalable automation for production-ready analysis processes to the AV 
context and a flexible enforcement of these safety constraints in parallel. Consequently, they 

only result in a partially-holistic view of the ADS restricting its ability to argue (e.g. on 

decisions, observation restrictions). The flexibility and manageability of performing safety 

assurance at run-time in AV can’t be solely addressed with the related work of automotive 
domains. 

 

Table 1.  Mitigation of hazards in safety engineering 

 

Hazard  Through  

identification  Analysis 

elimination  Design 

Control Management 

 

3.1.1. Control structure for safety analysis towards reduce residual risks  
 

The combination with the conventional ISO26262 analysis (FMEA, HARA, Safety case) and 
STPA allows to perform safety analysis in order to provide a large scope of detection of 

hazard and mitigation of the residual risk. The goal remains the same as it is to create systems 

that integrates easily the safety requirements of any types that may have impact on design or 

can only be mitigated during system operation.  
 

The primary concern of System Safety is the management of hazards as described in Table 1. 

It presents the 3 ways of managing hazards leading to the reduction of the risk to a 

manageable and acceptable level.  
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3.1.2. Composition of the Safety Analysis and Assessment in AV architecture  
 

In our approach, we propose to apply to integrate the awareness of the hazard analysis in the 
system model via some machine-understandable knowledge. We also consider the strategies 

of the hazard management in the form of control loops. We propose to call these loops the 

“safety assessment processes” as they constitute workflows involving different functions like 
monitoring, classification, evaluation, planning or mitigation. To determine the rightful 

allocation between the different functions, dataflows and each workflow, we propose to 

perform a combined safety analysis with STPA/STAMP and ISO.  
 

The combination of both STPA/STAMP and ISO hazard analysis have been performed and 

shown an extended coverage of the hazard [22]. However, such application requires to 

consider a specific ODD and reveals to be an iterative process with continuous refinement. 

Experiments [20] have been applying it to AV and formalized this context-dependant analysis 
method using a taxonomy (operational keyword to generate a sentence creating the different 

scenarios).  
 

In the first place, we propose to start the hazard analysis at the high-level representation of 
our architecture with the behaviour competencies and regulations. Consequently, we start by 

identifying some general use cases involving the vehicle competencies (e.g. perceive and 

react near a pedestrian crossing). Then, we determine the hazards, the control structure of the 
system and identify the unsafe control actions to construct the hazardous scenarios. Finally, 

safety constraints can be identified and allocated to the different systems or components or 

functions involved. This integration may result in the creation of a new version of the system 
architecture (i.e. design constraints). The constraints that suggest some run-time management 

through control loops are called “safety assessment processes” (SAP) in our research. They 

will be the focus of our work as we want them to be deployed when the context requires it.  

This process is then iteratively performed by applying it these new version but also when the 
system architecture is continuously refined and more defined in-depth (bottom-up).  
 

3.2. Background on MBSE 
 

The previous point were dealing with the process of designing and maintaining architecture. 

However, what language or formalization can be used to describe software architecture ?  

UML (Unified Modelling Language) is one of object-oriented solutions used in software 
modelling and design. UML is a language (of object modelling) and therefore proposes a 

notation and a semantics associated with this language (i.e. models), but no process 

methodology (i.e. an approach proposing a sequence of steps and activities that lead to the 

resolution of a problem). Therefore, UML is not a method. UML unifies object methods with 
a design process that was strongly influenced by its intended use in object programming. 

UML has a whole approach (i.e. covering the entire development cycle: analysis, design and 

implementation) that is object-oriented (and not functional): the system is broken down into 
collaborating objects (rather than tasks broken down into functions that are easier to 

perform). However, its application is not particularly adapted to modelling complex systems, 

and suited to system engineering in the first place.  
 

The Architecture View Model designed by Philippe Kruchten, also called 4+1 view model 

represents the functional and non-functional requirements of software-intensive systems. 

They are represented in the different views that offer and describe the system from the 
viewpoints of different stakeholders (e.g. end-users, developers, system engineer, and 

standards). The four views of the model consist of the logical, development, process and 

physical views. Each one achieve a set of specific concerns regarding the system in addition 

to a use case or scenario view that describes the sequences of interactions between objects 



Computer Science & Information Technology (CS & IT)                                   7 

and between processes involving the system and guiding the other views. The logical view is 

high-level and focuses on abstraction and encapsulation, it models the main elements and 
mechanisms of the system. It identifies the elements of the domain, as well as the 

relationships and interactions between these elements "notions of classes and relationships". 

The component view expresses the physical perspective of the code organization in terms of 
modules, components and especially the concepts of the language or implementation 

environment. From this perspective, the architect is mainly concerned with the aspects of 

code management, compilation order, reuse, integration and other pure development 

constraints. To represent this perspective, UML provides adapted concepts such as modules, 
components, dependencies, interface. The process view is very important in multitasking 

environments; it expresses the perspective on concurrent and parallel activities. The 

deployment view expresses the distribution of the system through a network of computers 
and processing logic nodes. This view is particularly useful for describing the distribution of 

a distributed system.  
 

SysML is the new modeling language defined by the OMG. It can be seen as an extension of 
UML for modelling a broad spectrum of complex systems. It is based on UML and replaces 

class and object modeling with block modeling for a vocabulary more adapted to System 

Engineering. A block includes any software, hardware, data, process, and even people 

management concept. 
  
Much more than a simple modeling tool, Capella is a model-based engineering solution that 

has been successfully deployed in a wide variety of industrial contexts. Based on graphical 

modeling, it provides system, software and hardware architects with rich methodological 
advice based on Arcadia, a complete model-based engineering method. The DSML 

Arcadia/Capella is based on the UML/SysML and NAF standards, and shares many concepts 

with these languages. It is the result of an iterative definition process driven by software 
systems and architects working in a wide range of business areas (transport, avionics, space, 

radar, etc.). Many industrial companies, such as Airbus, Areva, Thales, Continental and 

Renault are currently interested in using Capella and running pilot modelling projects with 
this tool. It exists because Arcadia allows you to:  

 

• Ensure collaboration at the engineering level by sharing the same reference 

architecture.  
• Manage the complexity of systems and architectures.  

• Define the best optimal architectures through compromise analysis. 

• Manage different levels of engineering and traceability through automated 
transition and refinement of information. 
 

The couple Capella/Arcadia associates both the tool and the language: referring to MBSE’s 

three well-known pillars, one could say that ARCADIA provides both a modeling language 
and a modeling approach, and that Capella knows the language and method perfectly.  
 

With a similar scope around adaptation, EUREMA is an integrated MDE approach as it 

rigorously and consistently uses models for engineering feedback loops. The models are used 
(1) to represent the adaptable software to achieve self-adaptation as proposed by the idea of 

models at run-time (Models@run.time), as well as to design (2) individual adaptation 

activities for feedback loops, (3) feedback loops as a whole, and (4) coordination between 

these loops. Finally, (5) these models are used throughout the life cycle of the self-adaptive 
system, i.e. to specify, execute and evolve feedback loops with their adaptation activities. 

This approach introduces a model-driven architecture approach that guide the design and 

development of complex and evolving systems while claiming to guarantee the portability, 
the interoperability and the reusability of the final system.  
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3.3. Modeling with Arcadia/Capella 
 

ARCADIA (ARChitecture Analysis and Design Integrated Approach) is a model-based 

engineering method for the architectural design of systems, hardware and software. It was 

developed by Thales between 2005 and 2010 through an iterative process involving 
operational architects from all Thales businesses (transport, avionics, space, radar, etc.). It 

applies a structured approach over successive engineering phases that establishes a clear 

separation between requirements (operational needs analysis and system needs analysis) and 

solutions (logical and physical architectures), in accordance with the IEEE 1220 standard. 
ARCADIA recommends three mandatory interdependent activities at the same level of 

importance: Needs analysis and modeling; Construction of architectures and validation; and 

Requirements engineering.  
 

Arcadia DSML (Domain-Specific Modeling Language) is based on UML/SysML standards 

and NAF and shares many concepts with these languages. But a modeling language was 

preferred in order to facilitate ownership by all parties stakeholders. Arcadia is mainly based 
on functional analysis, then the allocation of functions to the components. The richness of 

Arcadia DSML is comparable to SysML with about ten types of diagrams: data flow 

diagrams, scenario diagrams, state and mode diagrams, component distribution diagrams, 

component distribution diagrams, component distribution diagrams functional distribution, 
etc. There are also diagrams available from ARCADIA at different levels that are detailed in 

Figure 3.1.  
 

The Capella tool provides the different set of tools to carry out the system modelling and 
automated transition steps from one level to the next providing traceability in the refinement 

of the different element of the system model architecture.  
 

It is noticeable that the Arcadia method is presented in a top-down manner by nature. 
However, the representation can also be bottom-up if we start from an existing system for 

instance. In the next sections, our example will assume the extension of the ADCC 

architecture. For this purpose, the Arcadia methodology relates more about levels providing 
key representations objectives rather than phases or steps. In addition, all the architectural 

levels are not stated as mandatory. Since the methodology aims to guide the analysis and 

modelling processes, some levels may be skipped depending the system complexity and 

model expectations (e.g. operational analysis, logical architecture, EPSB are optional). 
 

 
 

Figure 1.  The main engineering levels of Arcadia and transition steps [23] 
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3.3.1. Operational Analysis  
 

The Operational Analysis represents the highest level of the Arcadia method. It focuses on 
answering the question “what the users of the future system need to accomplish?”. At this 

level, the future system is not yet represented as a modeling element but the identification of 

the needs and objectives of the system start in this step. This level constitutes the first 
representation of the system environment by modelling the jobs of future users as activities, 

roles to fulfil while precising the operational conditions of the system. A series of activities 

and of interactions constitutes a process and contributes toward an operational capability. The 
creation of models and scenarios representing the different elements allows to check the 

adequacy of the system to these operational needs.  
 

This level of Operational Analysis consists in:  
 

• Capture and formalize the operational needs from the different stakeholders.  

• Define what the vehicle (System) need to accomplish and how the other actors 

contribute, influence or impact.  

• Also identify the different entities in each separate domain (entities, actors, roles, 
activities and concepts).  

 

3.3.2. System Analysis  
 

The System Analysis places the system as the central element of the dataflow representations 

in interaction with the external actors. It focuses on answering the question “what the system 

must accomplish for the users?”. The System Analysis involves the identification of system 

capabilities and functions that satisfy the operational needs defined in the previous level. At 
this point, the system is still considered as a black-box as no internal structure should be 

decided yet. Only function and communication exchanges may be allocated during this 

external functional analysis. Consequently, this analysis consists in refining the system 
functions with the decomposition of the top-level functions and adding the constraints of non-

functional properties. For these aspects, these diagrams on Capella provide rich mechanisms 

for managing complexity: simplified links calculated between high-level functions, 

categorization of exchanges, etc. Functional chain can also be displayed as highlighted paths. 
They represents a specific path involving a of the system functions and exchanges and are 

relevant for assigning constraints (latency, criticality, etc.), as well as organizing tests on a 

specific system features.  
 

This level of System Analysis consists in:  
 

• Define what the system have to accomplish for the users  

• Identify the boundary of the black-box system, consolidate the 
requirements(sourced from the actors)  

• Model functional data-flows and dynamic behaviours 
 

3.3.3. Logical Architecture  
 

The Logical Architecture aims to identify the different logical components that form the 

component structure inside the system. It focuses on answering the question “how the system 

will work to fulfil expectations?”. This level provides tools to represent the relations between 
components and their content, independently of any considerations of technology or 

implementation.  
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The previous model described in the System Analysis can be imported via an automated 

transition to Logical Architecture model. Thus, it keeps all the previous definition and 
description of the top-level function and exchanges. On this basis, the Logical Architecture 

carries out the internal functional analysis where all sub-functions subsumed by the 

previously identified top-level functions need to be identified and allocated to a specific 
logical component while keeping tracks of the integration of the non-functional constraints .  
 

This level of Logical Architecture consists in: 
  

• Provide a white-box vision of the system identifying how the system is fulfilling 
the expectations  

• Propose a first step for trade off-analysis  
 

3.3.4. Physical Architecture  
 

This level of Physical Architecture possesses the same objective than the Logical Analysis 

but defines the final architecture of the system providing information on how the system will 

be built. This level reflects the technical choices and defines the different components 
(software and hardware).  
 

This level of Physical Architecture consists in:  
 

• How the system will be developed and built  
• Software vs. hardware allocation, specification of interfaces, deployment 

configurations, trade-off analysis  
 

3.3.5. EPBS and integration contracts  
 

An additional level EPBS (End Product Breakdown Structure) is available to define the 

“conditions that each component must fulfil to satisfy the architecture design constraints and 

limitations, established in the previous phases” [23]. This last level answers to the question 
“what is expected from the provider of each component” and is usually used with sub-

contracting.  
 

4. INTEGRATING DYNAMIC SAFETY ANALYSIS AND MANAGEMENT IN 

ARCADIA/CAPELLA  
 

4.1. Overview of the Composed Methodology  
 

We propose to design a methodology based on the Arcadia to appropriately represents the 
safety-related adaptive processes by synchronizing the step of the Arcadia methodology with 

the STPA analysis for the set of defined scenarii. For each step of Arcadia, we propose to 

associate an STPA analysis for any representation that contains the equivalent of a control 

loop.  
 

4.2. Process of Integration for Safety Analysis  
 

In the first place, it is necessary to base our analysis on what the behavioural requirements the 

AV system and vehicle needs to accomplish and the source of these requirements. In fact, 

multiple actors are the sources of requirements that can highly impact how the vehicle need to 
behave, how it is design and implemented. Standards, recommendations, guidelines, state-of-

the-art, car manufacturer, regulators, renting or end customers impose diverse requirements to 
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the AV system that can be both functional or dysfunctional coping with totally distinct 

disciplines (e.g. functions, safety, ethics, social acceptance, security, etc).  
 

4.2.1. Operational analysis 

 
The operational analysis of the Arcadia methodology contribute to capture those operational 

needs from the different stakeholders. It defines what the vehicle need to accomplish and how 

the other actors contribute, influence or impact. Indeed, we model the whole process of actors 

and requirements that identify the different entities in each separate domain with a specific 
vocabulary of entities, actors, roles, activities and concepts. The functional part definition of 

the system takes as inputs the different behavioural competencies, OEDR, ODD, DDT and 

requirements from different shareholders available in the literature.  
 

The actors of the non-functional part also takes place as they require specific operational 

capabilities to manage properly conditions or risk measures that cover all relevant hazardous 

events in regard to the vehicle behaviour. The following figures contribute to illustrate how 
high-level capabilities, entities, actors, interactions, activities and process. It is important to 

notice that the creation of diagrams contributes to refine step-by-step the model of the system. 

The next figures are views (or windows) to observe the semantic model that have been 
incrementally built using the Capella tool and following the Arcadia methodology.  

 

Figure 2 defines the operational entities and the capabilities involving both the functional and 
the safety concerns. At this level, we start to represent the “real” needs of the various 

shareholders without the architecture, design or technical implementation in mind. We 

describe the model with Operational Capabilities (OC), Operational Entities and Operational 

Actors (OA) and the relation between them. For autonomous vehicle, shareholders often 
decompose the needs between functional and non-functional concerns. We also propose to 

distinguish functional and behavioral safety strategies from the functional part of driving to 

initiate the technical design of some sort of the core of the supervisor (both in the model and 
in the future physical architecture). 
 

 
 

Figure 2.  Safety Operational Analysis for Autonomous Vehicles 

 

For this purpose, we have identify some functional oriented capabilities within the driving 

automation and some non-functional strategies (safety and social dimension). In addition, we 

have performed a additional step in the definition by refining each OC into some subsumed 
OCs. To illustrate, the DDTs are represented as OC as they can not be translated into 

activities and later as functions since they remain high-level definition of general service for 

operational objectives. In our case, their description and traceability is performed with some 

involved activities and operational processes (e.g. SENSE, PLAN, ACT).  
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The operational analysis phase defines also the architecture between the operational activities 

and the interactions between the different actors to grasp the operational context of the 
system. The activities (in yellow) correspond to the different process steps carried out in 

order to reach a precise objective for the entities. They might need to use the future system in 

order to do so, or the system might use it (e.g. Provide ODD definition). For example, we 
allocated to the operational context of the autonomous vehicle as the surrounding 

environment it may perceive (external observations) as well as its internal observations 

(system states). These observation are then consumed by the driving automation activity of 

the functional layer. This diagram also represents activities related to the ODD as it is a major 
source of the environment representation and formalisation of needs from the different 

stakeholders with expressions (e.g. rules or contracts to require behaviour X in situation Y, or 

to prevent X in Y). The construction (structure) and definition (content) of the ODD play a 
major role in our definition as well as the understanding of the current situations in which the 

system is involved. Finally, additional activities are also represented in interaction with the 

previous activities to address the non-functional concerns and strategies to use. To define 

with more detail the activities and the respective interactions for each capability (OC), 
Capella proposes to create an OAIB view (Operational Analysis Interaction Blank).  

 

4.2.2. System analysis 
 

The role of this next level is to identify the different functions or system services necessary to 

its users and specify them with the possible constraint from the non-functional properties. 
First, we have started with a definition of the system as a black-box and creating functions 

that realize the operational activities from the previous level. Figure 3 is a synthesis view of 

the system functions we have identified as parent functions: to perform the driving 

automation, to obtain access to the ADCC resources (Layer 1), to supervise them with 
specific loops of adaptation (Layer 2), to perform runtime adaptions to fit the ODD and safety 

concerns (Layer 3), to store this information for possible update or learning purposes (KB), 

and finally to display some system internal information. At this step, we have already made 
some choices regarding the design and how we wanted to structure and organize the control 

loops. 

 

 
 

Figure 3.  Safety High-Level System Analysis for Autonomous Vehicles 

 

Figure 4 provides further details about the design choices for the architecture with the 
introduction of MAPE-K loops with an external knowledge base and service orientation.  
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Figure 4. Safety Low-Level System Analysis for Autonomous Vehicles 

 

Based on this operational and system analysis, the design phases can be started, based on the 
available technologies from the cyber-physical systems represented by autonomous vehicles.  

 

For the design, several questions need to be answered:  

 
• How the transition between the functional view to the logical and physical 

architecture can be achieved? We need to determine what types of architectural 

solutions can support the safety management loops and mitigation within the 
system. In addition, we also need to address the management of the constraints 

resulting from the AV context analysis. Determining the different operational 

contexts needs to be open for iterative and thorough safety analysis. Finally, we 
need to guarantee the constraints as defined distributed autonomic processes. 

  

• How to assess the safety that remain behavioural? Hence, we want to ensure the 

safety and similar system attributes than in the design by managing the 
complexity of the systems for observability, traceability and flexibility. It may 

not be possible to solve by only tweaking profile or configuration: it is required 

to provide guarantees at any system or sub-system levels of adaptation.   
 

CONCLUSIONS, LIMITATIONS AND PERSPECTIVES.  
 

In this article, we have explored the way to study and build L4-L5 AV using MBSE with the 

key functionalities and safety considerations as design and run-time mitigation. We focus on 
the key functionalities for providing autonomy. Technological and technical solutions should 

not be pushed over them to provide manageable system complexity with sufficient level of 

safety coverage (quality and quantity) and NFP. It also enables the possibilities to perform 
trade-off between the various alternatives, combinations, variants and implementations of the 

various architecture. To conclude, the proposed computational model for autonomous 

systems can provide a basis for studying model-based autonomous system design. 
Nonetheless, we are far from ensuring that the conditions are in place to develop rigorous 

design flows. Indeed, the detailed structural and behavioural specification of the system needs 

to be provided in order to extend our current solution to include validation of the design 

based on functional and non-functional requirements. Future work will focus in developing 
extensions of our modelling approach, mainly based on new viewpoints aimed at integrating 

and validating non-functional properties, such as performance and safety. 
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