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ABSTRACT 
 
In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid 
handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed 
landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a 
training set. To estimate the regression models, we need to extract the required coefficients which 
describe the variations for a set of shape class. Hence, a least square method is used to estimate 
such modes. We proceed then, by training these coefficients using the apparatus Expectation 
Maximization algorithm. Recognition is carried out by finding the least error landmarks 
displacement with respect to the model curves. Handwritten isolated Arabic characters are used 
to evaluate our approach. 
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1.   INTRODUCTION 
 
Shape recognition has been the focus of many researchers for the past seven decades [1] and 
attracted many communities in the field of pattern recognition [2], artificial intelligence[3], signal 
processing [4], image analysis [5], and computer vision [6]. The difficulties arise when the shape 
under study exhibits a high degree in variation: as in handwritten characters [7], digits [8], face 
detection [9], and gesture authentication [10]. For a single data, shape variation is limited and 
cannot be captured ultimately due to the fact that single data does not provide sufficient information 
and knowledge about the data; therefore, multiple existence of data provides better understanding 
of shape analysis and manifested by mixture models [11]. Because of the existence of multivariate 
data under study, there is always the need to estimate the parameters which describe the data that is 
encapsulated within a mixture of shapes.  
 
The literature demonstrates many statistical and structural approaches to various algorithms to 
model shape variations using supervised and unsupervised learning [12] algorithms. Precisely, the 
powerful Expectation Maximization Algorithm of Dempster [13] has widely been used for such 
cases. The EM Algorithm revolves around two step procedures. The expectation E step revolves 
around estimating the parameters of a log-likelihood function and passes it to the Maximization M 
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step. In a maximization (M) step, the algorithm computes parameters maximizing the expected 
log-likelihood found on the E step. The process is iterative one until all parameters come to 
unchanged. For instance, Jojic and Frey [14] have used the EM algorithm to fit mixture models to 
the appearances manifolds for faces. Bishop and Winn [15] have used a mixture of principal 
components analyzers to learn and synthesize variations in facial appearance. Vasconcelos and 
Lippman [16] have used the EM Algorithm to learn queries for content-based image retrieval. In 
general, several authors have used the EM algorithm to track multiple moving objects [17]. Revov 
et al. [18] have developed a generative model which can be used for handwritten character 
recognition. Their method employs the EM algorithm to model the distribution of sample points. 
 
Curves are widely used in research by the computer vision society [1] [2] [3] [4] [5]. Curvatures are 
mainly used to distinguish different shapes such as characters [6], digits, faces [2], and topographic 
maps [3]. Curve fitting [18][19] is the process of constructing a 2nd order or higher mathematical 
function that best fits to a series of landmark points. A related topic is a regression analysis which 
stresses on probabilistic conclusion on how uncertainty occurs when fitting a curve to a set of data 
landmarks with marginal errors. Regression curves are applied in data visualization [12][13] to 
capture the values of a function with missing data [14] and to gain relationship between  multiple 
variables.  
 
In this paper, we demonstrate how curves are used to recognize 2D handwritten shapes by applying 
2nd order of polynomial quadratic function to a set of landmark points presented in a shape. We 
then train such curves to capture the optimal characteristics of multiple shapes in the training set.  
Handwritten Arabic characters are used and tested in this investigation.  
 

2.  REGRESSION CURVES 
 
We would like to extract the best fit modes that describe the shapes under study, hence,  multiple 
image shapes are required and explained through training sets of class shape  and  complete sets 
of shape classes denoted by . Let us assume that each training set is represented by the following 
2D training patterns as a long vector 
 

𝑋 = ( 𝑥 , 𝑦 , . . , 𝑥 , 𝑦 , 𝑥 , 𝑦 , . . , 𝑥 , 𝑦 , 𝑥 , 𝑦 , . . , 𝑥 , 𝑦 ) (1) 

 
Our model here is a polynomial of a higher order.In this example, we choose 2nd order of quadratic 
curves. Consider the following generic form for polynomial of order j 

 

𝑓 𝑥 =  𝑎 + 𝑎 𝑥 + 𝑎 (𝑥 ) + 𝑎 (𝑥 ) + ⋯ + 𝑎 (𝑥 ) = 𝑎 + 𝑎 (𝑥 )  (2) 

 
The nonlinear regression above requires the estimation of the coefficients that best fit the sample 
shape landmarks, we approach the least square error between the data y and f(x) in  
 

 
  

where the goal is to minimize the error, we substitute  the form of equation (3) with a general least 
square error  
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𝑒𝑟𝑟 =  (𝑦 − (𝑎 + 𝑎 𝑥 + 𝑎 𝑥 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥 ))  (4) 

 
where T is the number of pattern set, k is the current data landmark point being summed, j is the 
order of polynomial equation. Rewriting equation (4) in a more readable format  
 

 
𝑒𝑟𝑟 =  (𝑦 − ( 𝑎 + 𝑎 𝑥 ))  (5) 

 
Finding the best fitting curve is equivalent to minimize the squared distance between the curve and 
landmark points. The aim here is to find the coefficients, hence, solving the equations by taking the 
partial derivative with respect each coefficient a0, .. ,ak; for k = 1 .. j and set each to zero in 

 

𝜕𝑒𝑟𝑟

𝜕𝑎
=  (𝑦 − (𝑎 + 𝑎 𝑥 )) = 0 (6) 

 

𝜕𝑒𝑟𝑟

𝜕𝑎
=  (𝑦 − (𝑎 + 𝑎 𝑥 ))𝑥 = 0 (7) 

 

𝜕𝑒𝑟𝑟

𝜕𝑎
=  (𝑦 − (𝑎 + 𝑎 𝑥 ))𝑥 = 0 (8) 

 
Rewriting upper equations in the form of a matrix and applying linear algebra matrix 
differentiation, we get 
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 (9) 

 
Choosing Gaussian elimination procedure to rewrite the upper equation in more solvable in  

 
 𝐴𝑥 = 𝐵    (10) 
 

where  
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A = 

⎣
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∑ 𝑥 𝑦

 

 
(11) 

 
solving X to find the coefficients A, B in  

 
 𝑋 =  𝐴  ∗ 𝐵 (12) 
 

The outcome would be the coefficients a0, a1, a2. We follow the similar procedure to find the 
coefficient sets of the remaining landmark points. 

 

3.   LEARNING REGRESSION CURVES 
 

It has been acknowledge that when using learning algorithms to train models of such case, the 
outcome is trained models with superior performance to those of untrained models Bishop [19]. In 
this stage, we are concerned with capturing the optimal curve coefficients which describe the 
patterns variations under testing; hence, training is required , thereby, fitting the Gaussian mixtures 
to curve coefficient models to a set of shape curve patterns. The previous approaches consider  
producing variations in shapes in a linear fashion. To obtain  more complex shape variations, we 
have to proceed by employing non-linear deformation to a set of curve coefficients. Unsupervised 
learning is encapsulated in a framework of the apparatus Expectation Maximization EM 
Algorithm. The idea is borrowed from Cootes [20] who was the pioneer in constructing point 
distribution models; however, the algorithm introduced by Cootes[20] is transformed to learn 
regression curves coefficients αt similar to that approach of AlShaher [21]. Suppose that a set of 
curve coefficients αt for a set of training patterns is t = (1 … T ) where T is the complete set of 
training curves is represented in a long vector of coefficients : 

 
𝛼 = ( 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 , . . . , 𝑎 𝑎 )       (13) 

 
The mean vector of coefficient patterns is represented by  

 
 

𝜇 =  
1

𝑇
𝛼  (14) 

 
The covariance matrix is then constructed by  

  
 

=  
1

𝑇
(𝛼 −  𝜇) (𝛼 −  𝜇)  

(15) 

 
The following approach is based on fitting a Gaussian mixture models to a set of training examples 
of curve coefficients. We further assume that training patterns are independent from one to another; 
thus, they are neither flagged nor labelled to any curve class. Each curve class ω belongs to a set of 
curve classes Ω has its own mean µ and covariance matrix ∑. With these component elements. For 
each curve class, we establish the likelihood function for a set of the curve patterns in 
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 𝑝(𝛼 ) = 𝑝(𝛼

Ω

|𝜇 , ∑ )   (16) 

 
Where the term 𝑝(𝛼 |𝜇 , ∑ ) is the probability of drawing curve pattern αt from the curve-class 
ω. Associating the above likelihood function with the Expectation Maximization Algorithm, the 
likelihood function can be a process reformed in two steps. The process revolves around estimating 
the expected log-likelihood function iteratively in 

 

𝓆 𝐶( ) 𝐶( ) =  𝑃(𝛼 , 𝜇
( )

, ∑
( )

)

Ω

 𝑋 ln 𝑝(𝛼 |𝜇
( )

, ∑
( )

)   (17) 

 

Where the quantity and 𝜇
( )  and ∑

( )  are the estimated mean curve vector and variance 

covariance matrix both at iteration (n) of the Algorithm. The quantity 𝑝(𝛼 , 𝜇
( )

, ∑
( )

) is the a 
posteriori probability that the training pattern curve belongs to the curve-class ω at iteration n of the 

Algorithm. The term𝑝(𝛼 |𝜇
( )

, ∑
( )

) is the probability of distribution of curve-pattern αt 
belongs to curve-class ω at iteration ( n + 1 )of the algorithm; thus, the probability density is 
associated with the curve- patterns αt for ( t = 1 … T ) to curve-class ω are estimated by the updated 

construction of the mean-vector 𝜇
( ), and covariance matrix ∑

( ) at iteration n+1 of the 
algorithm. According to the EM algorithm, the expected log-likelihood function is implemented in 
a two iterative processes. In the M or maximization step of the algorithm, our aim is to maximize 

the curve mean-vector 𝜇
( ), and covariance matrix ∑

( ), while, in the E or expectation step, 
the aim is to estimate the distribution of curve-patterns at iteration n along with the mixing 
proportion parameters for curve-class ω.  

 
In the E, or Expectation step of the algorithm, the a posteriori curve-class probability is updated by 
applying the Bayes factorization rule to the curve-class distribution density at iteration n+1. The 
new estimate is computed by  

 

𝑝 ∝ , 𝜇
( )

,
( )

=  
𝑝(𝛼 |𝜇

( )
, ∑

(  )
) 𝜋

( )

∑Ω  𝑝(𝛼 |𝜇
( )

, ∑
(  )

) 𝜋
( )

 (18) 

 

where the revised curve-class ω mixing proportions 𝜋
( ) at iteration ( n + 1 )is computed by 

  

𝜋
( )

=  
1

𝑇
𝑝(𝛼 |𝜇

( )
, ∑

(  )
) 

  (19) 

 
With that at hand, the distributed curve-pattern αt to the class-curve ω is Gaussian distribution and 
is classified according to  

 

 

 



78 Computer Science & Information Technology (CS & IT) 

In the M, or Maximization step, our goal  is to maximize the curve-class ω parameters. The 

updated curve mean-vector 𝜇
( ) estimate is computed using the following 

 
 

𝜇
( )

=  𝑝(𝛼 , 𝜇
( )

, ∑
( )

)𝛼   (21) 

And the new estimate of the curve-class covariance matrix is weighted by  
 
 

∑
( )

=  𝑝 𝛼 , 𝜇
( )

,
( )

 𝑋(𝛼 − 𝜇
( )

) 𝛼 − 𝜇
( )  

(22) 

 
Both E, and M steps are iteratively converged, the outcome of the learning stage is a set of 

curve-class ω parameters such as 𝜇
( )

 𝑎𝑛𝑑 ∑
(  ), hence the complete set of all curve-class Ω are 

computed and ready to be used for recognition.  
 

With the stroke and shape point distribution models to hand, our recognition method proceeds in a 
hierarchical manner.  
 

4.   RECOGNITION 
 

In this stage, we focus on utilizing the parameters extracted from the learning phase to obtain in 
shape  recognition. Here, we assume that the testing shapes 

 
 

𝑓(𝑡) =  (𝑥 , 𝑦 ), 𝑤ℎ𝑒𝑟𝑒 (𝑖 = 1 . . 𝑛), ( 𝑡 = 1 . . 𝑋)  (23) 

 
Hence, each testing pattern is represented by  

 
 𝜒 = ( 𝑥 , 𝑦 , 𝑥 , 𝑦 , … 𝑥 , 𝑦  ) for (t = 1 .. X ) 

(24) 

 
Such testing patterns are classified according to computing the new point position of the testing 
data χ after projecting the sequence of curve-coefficients by 

 
 

𝑓(𝑥, 𝑦) =  (𝜒 − ( 𝛼 𝜒 + 𝛼 𝜒 + 𝛼 ))  (25) 

 
So the sample shape χt is registered to class ω which has the highest probability using Bayes rule 
over the total curve-classes Ω in  

 

 

 
arg min

𝑓(𝑥, 𝑦)

∑ 𝑓(𝑥, 𝑦)Ω  (26) 
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5.  EXPERIMENTS 
 
We have evaluated our approach with sets of Arabic handwritten characters. Here, we have used 23 
shape-classes for different writers, each with 80 training patterns. In total, we have examined  the 
approach with 1840 handwritten Arabic character shape patterns for training and 4600 patterns for 
recognition phase. Figures 1illustrates some training patterns used in this paper. Figure 2 
demonstrates single shapes and their landmarks representation.  

 

 

 

 
Figure 1: Training sets sample 

 

       

Figure 2: Training patterns and extracted landmarks 
 

    

Figure 3: Sample visual of regression Curve-classes 
 

Figure 3indicates regression sample curve-classes as a result of the training stage. Figure 4 
demonstrates the curve-classes Ω convergence rate graph as a function per iteration no. in the 
training phase. The graphs shows how associated distributed probabilities for the set of 
curve-classes Ω converged into a few iterations.  

 
To take this investigation further, we demonstrate how well the approach behaves in the presence 
of noise. In figure 5, we show how recognition rate is achieved when point position displacement 
error is applied. Test shape coordinates are being moved away from their original position. The 
figure proves that the recognition rate fails to register shapes to their correct classes in a few 
iterations and it decreases completely when coordinates are moved away, yet, increasing variance 
significantly.  
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Figure 4: Convergence Rate as a function per 
iteration no. 

 

Figure 5: Recognition rate as a function per iteration 
no with point position error. 

 
Table 1 shows recognition rates per curve-classes ω. Table 1 demonstrates recognition rates per 
curve-class. In total, we have achieved 94% recognition rate with this approach. 

 
Table 1: Recognition Rates for sample shapes 

 

Sample 
Shape 

Test 
Size 

Corre
ct 

False 
Recogni

tion 
Rate 

Sample 
Shape 

Test 
Size 

Corre
ct 

False 
Recog
nition 
Rate 

 
200 191 9 95.5% 

 
200 176 24 88% 

 
200 193 7 96.5% 

 
200 175 25 87.5% 

 
200 183 17 91.5% 

 
200 172 28 86% 

 
200 187 13 93.5% 

 
200 181 19 90.5% 

 
200 196 4 98% 

 
200 190 10 95% 

 
200 180 20 90% 

 
200 182 18 91% 

 
200 178 22 89% 

 
200 193 7 96.5% 

 

6.  CONCLUSION 
 
In this paper, we have proved how Regression Curves can be utilized to model the variation of 
Handwritten Arabic characters. A 2nd order of Polynomials curves are injected along the skeleton 
of the proposed shape under study, where the appropriate set of curve-coefficients which describe 
the shape were extracted. We, then have used the Apparatus of the Expectation Maximization 
Algorithm to train the set of extracted set of curve-coefficients within a probabilistic framework to 
capture the optimal shape variations coefficients. The set of best fitted parameters are then 
projected to recognize handwritten shapes using Bayes rule of factorization. The proposed 
approach has been evaluated on sets of Handwritten Arabic Shapes for multiple different writers by 
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which we have achieved a recognition rate of nearly 94% on corrected registered shape classes. 
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