
Dhinaharan Nagamalai et al. (Eds) : ACSIT, SIPM, ICITE, ITCA
pp. 91–102, 2019. © CS & IT-CSCP 2019

SIMPLIFICATION OF COM

COURSE TEACHING USING

Venkatesan Subramanian

1Department of Information Technology, Indian Institute of Information
Technology, Allahabad, India.

ABSTRACT

The students of undergraduate expect simple,
teaching. But, in many universities, instructors simply follow text books and solve the examples
given in it. In such case, students cannot learn anything
defined in the syllabus. This method of teaching will not motivate students
subject in depth unless the industrial and practical applications of the subject explained
students do not show interest, instructor also loses the inter
of students. Hence, it is mandatory to re
undergraduate students. This paper use concept maps to simplify teaching and learning of a
compiler design subject with assignments

KEYWORDS

Compiler Design, Concept Map, Co

1. INTRODUCTION

The IT stalwarts are citing that most of the engineering graduates are not fit for hiring. The major
reason for such issue is, while studying
understand subjects in depth. Students simply read the important topics of the subjects
books and pass the exam. Some do solve questions based on the same te
categorize the students in to four
figure 1.

The first category of students studies the subject just to pass and get the degree. Second category
of students concentrates only on the subjects those
other subjects are the one just to complete the degree.
research will concentrate on subjects, which they feel it is required for research. Fourth category
of students really focuses on all subjects and study thoroughly. Usually, students of first and last

Dhinaharan Nagamalai et al. (Eds) : ACSIT, SIPM, ICITE, ITCA - 2019
CSCP 2019 DOI: 10.5121/csit.2019.90309

IMPLIFICATION OF COMPILER DESIGN

EACHING USING CONCEPT MAPS

Venkatesan Subramanian1 and Kalaivany Natarajan2

Department of Information Technology, Indian Institute of Information
Technology, Allahabad, India.

2Australia

undergraduate expect simple, interactive and understandable method of
teaching. But, in many universities, instructors simply follow text books and solve the examples
given in it. In such case, students cannot learn anything other than the text book conten
defined in the syllabus. This method of teaching will not motivate students to understand the
subject in depth unless the industrial and practical applications of the subject explained
students do not show interest, instructor also loses the interest which leads to poor performance

. Hence, it is mandatory to re-design the teaching method especially for the
This paper use concept maps to simplify teaching and learning of a

compiler design subject with assignments and problems related to research and industry.

Compiler Design, Concept Map, Computer Science, Education

The IT stalwarts are citing that most of the engineering graduates are not fit for hiring. The major
issue is, while studying the undergraduate engineering, students does not

. Students simply read the important topics of the subjects
Some do solve questions based on the same text book

categorize the students in to four based on their expectation from the subject study

Figure 1. Categorization of Students

The first category of students studies the subject just to pass and get the degree. Second category
of students concentrates only on the subjects those helps in industry placement and they consider
other subjects are the one just to complete the degree. Third category of students interested to do
research will concentrate on subjects, which they feel it is required for research. Fourth category

s really focuses on all subjects and study thoroughly. Usually, students of first and last

DOI: 10.5121/csit.2019.90309

ESIGN

APS

Department of Information Technology, Indian Institute of Information

interactive and understandable method of
teaching. But, in many universities, instructors simply follow text books and solve the examples

than the text book contents
to understand the

subject in depth unless the industrial and practical applications of the subject explained. Once
which leads to poor performance

design the teaching method especially for the
This paper use concept maps to simplify teaching and learning of a

and problems related to research and industry.

The IT stalwarts are citing that most of the engineering graduates are not fit for hiring. The major
students does not

. Students simply read the important topics of the subjects’ from text
xt book. We but can

based on their expectation from the subject study as shown in

The first category of students studies the subject just to pass and get the degree. Second category
helps in industry placement and they consider

interested to do
research will concentrate on subjects, which they feel it is required for research. Fourth category

s really focuses on all subjects and study thoroughly. Usually, students of first and last

92 Computer Science & Information Technology (CS & IT)
category will be very less and other two categories will have more students especially the second
category that is placement oriented. All first three categories of students will realize the issue of
not concentrating on all subjects while they do job or research because subjects are linked with
each other and required while solving research or industry problems. However, it is very late to
realize. Hence, students should concentrate on all subjects while they study. It can be achieved
only when students are motivated towards the subject and the instructor change the traditional
text book based teaching method. To understand the students’ objectives towards each subject of
the course, we conducted the survey with the following three questions.

a) What are the subjects you are interested in?
b) What are the subjects you feel required for placement?
c) What are the subjects you feel required for research?

There are 94 third year undergraduate students participated in the survey. The survey results are
shown in table 1. The Interested column shows the percentage of students having interest towards
the subject. The Placement and Research column shows the percentage of students feel that the
subjects are required respectively to get industry placement and do research.

Table 1. Survey Results of students opinion on subjects (in percentage)

 Interested Placement Research

Introduction to Programming 52 45 2
Data Structure 95 81 17
Algorithms 95 72 36
Database Management System 86 65 10
Automata 11 29 33
Compiler Design 14 14 19
Software Engineering 21 14 1
Operating System 82 44 32
Computer Architecture 26 19 26
Programming Principles 16 12 11
Networks 52 37 9
Artificial Intelligence 20 48 83

We can understand from the survey results that students are not having enough interest on
subjects such as Automata, Software Engineering, Computer Architecture and Compiler Design.
But an experienced technologists and teacher knows the importance of these subjects. Hence, it is
necessary to encourage and motivate students for these subjects by changing the teaching method.
In this paper, we concentrate on Compiler Design course, which is considered by all categories of
students as one of the complex and very less productive. Students keen to study Programming are
not showing interest towards Compiler Design. They feel that Introduction to Programming helps
in understanding programming language and writing programs but Compiler Design is not having
any productive outcome. We need to beat this notion by highlighting important of compiler
design course. Hence, it is essential to re-design the teaching style of Compiler Design course to
motivate the students. It is possible when we have the proper lesson and concept plan in the
beginning.

In this paper, we propose concept maps for Compiler Design course by the innovative ideas [2
and 3]. The concept map is discussed in overall and phase wise in the paper. We have listed core
concepts of compiler in each phase and provided the problems to be discussed in the class room
and assignments for students as homework.

Computer Science & Information Technology (CS & IT) 93

The remaining paper is organized as follows: Section 2 discusses the existing works, Section 3
briefly discusses the overall concept map of Compiler Design course, Section 4 discusses about
the phases of compiler with concept map. Section 5, has the discussion of teaching method.
Finally, Section 6 concludes the paper with the directions of future work.

2. LITERATURE REVIEW

In the past, different approaches were proposed to motivate the students to concentrate on the
compiler design course. Akim Demaille et al [12] introduced set of compiler construction tools
for educational projects. This makes learning and evaluation easy. Li Xu and Fred G. Martin [13]
proposed a Chirp system that provides a realistic and engaging environment to teach compiler
course. However, concepts and its relationship may not reach the students. Tyson R. Henry [14]
proposed a Game Programming Language (GPL) based teaching to motivate students towards the
compiler project. Elizabeth White et al. [15] proposed an approach that enables students of
compiler course to examine and experiment with a real compiler without becoming overwhelmed
by complexity. S. R. Vegdahl [16] proposed visualization tool to teach compiler design to bring
the interest of students on the subject. Marjan Mernik and Viljem Zumer [17] proposed a software
tool called LISA for learning and conceptual understanding of compiler construction in an
efficient, direct, and long lasting way. Henry D. Shapiro and M. Dennis Mickunas [18] replaced
the term project on compiler design with several smaller, independent, programming assignments
for better understanding and to motivate students. Martin Ruckert [19] argues that teaching
compiler with unusual programming language is a good choice. Divya Kundra and Ashish Sureka
[20] [21] discussed about case based teaching and learning of compiler design and proposed case
studies for different concepts to make learning easier and interesting. Somya Sangal et al [22]
proposed a Parsing Algorithms Visualization Tool (PAVT) tool to teach the process of parsing
algorithms. Learners can visualise the intermediate steps of the parsing algorithm through the
tool.

Even though game based, case based and tool based teaching makes learning easy and interesting,
concepts and its relationship with some assignments related to current research and industry
requirement should be discussed for motivation and long lasting remembrance. Also students
should prepare the assignments for each concept based on their understanding. The concept map
[2 and 3] based teaching is well tested with different subjects and proved that students can easily
understand the concept. Hence, we propose concept map for teaching compiler design course. A
concept map will simplify the teaching and make students understand the subject. In addition, we
propose that for each concept; problems based on latest research and industry requirements to be
discussed to motivate the students.

3. COMPILER CONCEPT MAP

Compiler is software that reads a program written in one language and translates it into another
(target) or assembly, later to machine language without changing the semantics [1]. Interpreter is
an alternate for compiler however it translates and executes directly instead of converting the
complete code to the target language. Compiler does various operations to translate an input to
output language. These operations are categorized into different phases. Figure 2 shows the
overall concept map of the compiler with concepts and its relations.

It is important for an undergraduate students studying Compiler Design course to understand how
the compiler is designed and program is getting translated. The concept map in figure 2 is
designed with the motive to encourage the students to deeply focus on this subject. The concept
map includes the input from the pre-processor and pre-requisite for this subject such as

94 Computer Science & Information Technology (CS & IT)

instruction set, Context free and context sensitive grammar, regular expression, finite state
machine and push down automata. The proposed concept map gives the complete overview of
compiler design course and relationship among the concepts.

4. PHASES OF COMPILER

Compiler has six phases however there are
into two parts that is machine dependent and independent optimization. In this paper, we have
considered machine independent optimization in the code optimization phase and machine
dependent optimization in code generation phase itself. In the beginning, it is required to explain
to the students that what is the need for six phases instead of 1 or
that if we have all operations in one phase then it will increase the computatio
more phases such as 10 or 15 will have the redundant process. Compiler cannot be efficient if we
have 1 or 10 phases. Each phase of the compiler with its concept map is discussed in the
following.

4.1. Lexical Analysis

Lexical analysis is the first phase of the compiler that takes the pre
and produces tokens as output. The concept map for the lexical analysis phase is shown in figure
3. The important concepts to be discussed in lexical analysis phase are Toke
Finite State Machine, Regular Expression
are interlinked to generate the tokens. To tokenize the input programs, lexical analyser utilizes the
pre-defined regular expression of the prog
machine. Lexical analyser reads the program characters from the buffer one by one to recognize
the tokens. Instructor should also discuss the difference of single and pairs of buffer.

Even though, students studied regular expression and finite state machine in the pre
subject Automata theory, the concepts need to be revised with an example of programming
language patterns. In the classroom, instructor
understanding of each concept.

Computer Science & Information Technology (CS & IT)
instruction set, Context free and context sensitive grammar, regular expression, finite state

push down automata. The proposed concept map gives the complete overview of
and relationship among the concepts.

Figure 2. Basic concept map of Compiler

Compiler has six phases however there are references with seven phases dividing optimization
into two parts that is machine dependent and independent optimization. In this paper, we have
considered machine independent optimization in the code optimization phase and machine

n code generation phase itself. In the beginning, it is required to explain
to the students that what is the need for six phases instead of 1 or 10 phases? The major reason is
that if we have all operations in one phase then it will increase the computational time and

r 15 will have the redundant process. Compiler cannot be efficient if we
. Each phase of the compiler with its concept map is discussed in the

s is the first phase of the compiler that takes the pre-processed program as input
and produces tokens as output. The concept map for the lexical analysis phase is shown in figure
. The important concepts to be discussed in lexical analysis phase are Tokenization, Buffering,

Finite State Machine, Regular Expression and Symbol Table and obviously how these concepts
are interlinked to generate the tokens. To tokenize the input programs, lexical analyser utilizes the

defined regular expression of the programming language and recognizes using the finite state
machine. Lexical analyser reads the program characters from the buffer one by one to recognize
the tokens. Instructor should also discuss the difference of single and pairs of buffer.

dents studied regular expression and finite state machine in the pre
subject Automata theory, the concepts need to be revised with an example of programming
language patterns. In the classroom, instructor may solve the following problems for the

instruction set, Context free and context sensitive grammar, regular expression, finite state
push down automata. The proposed concept map gives the complete overview of

references with seven phases dividing optimization
into two parts that is machine dependent and independent optimization. In this paper, we have
considered machine independent optimization in the code optimization phase and machine

n code generation phase itself. In the beginning, it is required to explain
The major reason is
nal time and having

r 15 will have the redundant process. Compiler cannot be efficient if we
. Each phase of the compiler with its concept map is discussed in the

processed program as input
and produces tokens as output. The concept map for the lexical analysis phase is shown in figure

nization, Buffering,
and obviously how these concepts

are interlinked to generate the tokens. To tokenize the input programs, lexical analyser utilizes the
ramming language and recognizes using the finite state

machine. Lexical analyser reads the program characters from the buffer one by one to recognize

dents studied regular expression and finite state machine in the pre-requisite
subject Automata theory, the concepts need to be revised with an example of programming

may solve the following problems for the better

Computer Science & Information Technology (CS & IT) 95
 Create the regular expression for C Language variables.
 Construct the finite state machine for C variables using the regular expression generated

in the previous problem.
 Take the hello world C program as input and recognize the tokens using single and

double buffering. Assume buffer size as 10 bytes and show the advantage of double
buffering over single or greater than two buffering.

In additional students should be given assignments and problems on each concept to solve.

Figure 3. Concept map of Lexical Analyser

Figure 3. Concept map of Lexical Analyser

4.2. Syntax Analysis

Syntax Analysis takes the input as tokens from the lexical phase and produces the syntax tree,
which will be used by the semantic phase. The concept map of syntax analyzer is shown in figure
4. Task of the syntax analyzer is to check whether the syntax present in the program is part of the
programming language or not. To do this, Syntax Analyzer uses parser with Finite State Machine,
Push down Automata and Context Free and Sensitive Grammar. Parser can be of universal, top
down or bottom up approach and it will be chosen based on the developer requirement. The LL
(Left-to-right, Leftmost derivation) and LR (Left-to-right, Rightmost derivation) parsers work
only on the unambiguous grammar to parse in linear time. For LL parser, the unambiguous,
deterministic and non-left recursive grammar will be taken as input and computes the first and
follow. Using the first and follow, the parsing table will be constructed. In case of the LR parser,
the finite state machine based item set for the unambiguous grammar will be generated and
parsing table will be constructed from it.

The LL and LR parser takes the token from the lexical phase, parsing table and utilizes the push
down automata to check the syntax and in parallel it produces the syntax. Instructor need to
briefly discuss about the universal parsers like Earley's and CYK, which can take any type of
grammar and parse it however the complexity of syntax validation will be more. Instructor need
to solve one problem for each concept to make the student understand it. As a simple case,
following problems can be solved in the class using the arithmetic operation grammar in figure 5.

Tokenization

Lexical Analyzer

Buffering

Tokenizer

Finite State
machine

Symbol Table

Regular
Expression

is a

uses does

uses
uses

uses

96 Computer Science & Information Technology (CS & IT)
 Eliminate Left recursion and compute the first & follow for the grammar.
 Compute the LR Automaton for the grammar.
 Compute LL and LR table using the first & follow and LR Automaton output

respectively.
 Parse the input “a * b + c” through LL, LR and CYK parser using the parsing table

computed in the previous assignment.

Figure 4. Concept map of Syntax Analyser

Figure 5. Sample Grammar for Arithmetic Operation

4.3 Semantic Analysis

Figure 6 shows the concept map of the semantic analyser. It takes the parse tree as input from the
syntax analyzer and checks the semantics of the program such as type matching, parameter
matching, label check, etc. This layer uses the attribute grammar or direct method to verify the
semantics. The concepts in the semantic analyser are the Symbol Table, Attribute Grammars,
Semantic check, Syntax Directed Translation and Definition. Attribute grammars can be
represented using the Syntax Directed Translation (SDT) or Syntax Directed Definition (SDD)
and use Dependency Graph at the time of evaluation to maintain the order. Semantic analyzer
utilizes the symbol table to check the semantics of the program. Many high level programming
languages do not have the attribute grammars for semantic check and it checks the semantics
using the symbol table.

Parsing Table

Syntax Analyzer

Universal

Parser

Bottom Up

Finite State
Machine

Top Down

uses

uses

Uses

includes

LL Parser

Grammar

Push Down
Automata

LR Parser

uses

uses

includesincludes

includesincludes

E- > E+T | E-T | T
T - > T*F | T/F | F
F - > Int

Computer Science & Information Technology (CS & IT) 97

Figure 6. Concept map of Semantic Analyser

Instructor can verify the semantics of the snippet given in figure 7 using the C language

constraints and show every step of the process in the class for better understanding

Figure 7. Sample snippet for semantic check

4.4. Intermediate Code Generation (ICG)

Figure 8 shows the concept map of the intermediate code generation phase of the compiler. ICG
takes the input as syntax tree from the semantic analyzer and provides the Intermediate
Representation. Intermediate Representation can be of structural, linear or hybrid. In most of the
programming languages, linear representation is used and in that three address code is mostly
preferred with any storage representations such as quadruple, triple and indirect triple. This phase
may use the syntax directed translation to convert into three address code.

Figure 8. Concept map of Intermediate Code Generation

Figure 8. Concept map of Intermediate Code Generation

Attribute
Grammars

Semantic Analyzer

Semantic Check

S-Attributed

Symbol Table

uses does

includes

L-Attributed

Type Check

uses

includes includes

includes

SDT/SDD

Intermediate Code
Generation

Linear

Intermediate
Representation

HybridStructural

Creates

can be

DAG Control Flow
Graph

Represented in

can becan be

includesincludes

2 & 3 – Address
Code

Stack Machine
Code

Quadruple

Triple

Indirect
Triple

includes includes

func(int a, float b):
int d, e
d = 0
e = a / round(b)
if (e > 5) {

printf(”%d”, d)
}

98 Computer Science & Information Technology (CS & IT)
As an example, instructor can take the bubble sort program and generate the Direct Acyclic
Graph (DAG) and three address code for it.

4.5. Code Optimization

Code Optimization is to make the program run efficiently after compilation. It helps in optimizing
the time and space complexity of the program without changing the semantics. Code optimization
can be done locally, globally or inter-procedural and it can be machine dependent or independent.
Figure 9 shows the concept map of the code optimization phase. The different optimization
concepts are Copy Propagation, Dead code elimination, Code Motion, Global Common Sub
expressions, constant folding, loop optimization, unreachable code elimination, etc. Intermediate
Representations from the previous phase will be grouped as blocks and then optimization will be
applied locally and globally. In the classroom, instructor has to show one example for each
optimization concept to make the concepts clear for students.

Figure 9. Concept map of Code Optimization

Figure 9. Concept map of Code Optimization

4.6. Code Generation

Code Generation is the final phase of the compiler that takes the optimized code and generates the
target code. Target code may be another High level language code or Assembly level language
code. To generate the assembly level, it is important to consider the Instruction Set, Register
Allocation and Instruction Scheduling. The Next use information and Basic block concepts
supports in register allocation for the target code. Figure 10 shows the concept map of the code
generation.

Code
Optimization

Local

Global

Inter-Procedural

Loop Optimization

Global Sub
expression

Code Motion

Code Propagation

Constant Folding

Unreachable Code
Elimination

Dead Code
Elimination

Algebraic
Simplification

includes

includes

includes

can be

can be

can be

Computer Science & Information Technology (CS & IT) 99

Figure 10. Concept map of Code Generation

Instruction set will be based on Reduced Instruction Set Computer (RISC) or Complex Instruction
Set Computer (CISC) or Micro-op (mix of CISC and RISC). Since CISC architecture is used in
popular Intel processors, CISC instruction set can be taken for solving the example in classroom.
However, students should be asked to generate the target code for all architecture.

5. DISCUSSION

In the beginning of the Compiler Design course, instructor need to describe the course through
the overall concept map, which includes the pre-requisites and new concepts students are going to
learn. A concept map with the relationship among concepts can motivate the students to focus on
the course. Every concept in the phase wise concept map should be discussed in the class with
example problems that may be from the text book. In addition, the current research works and the
industry products related to each concept should be briefly discussed to increase the interest of
students. However, there should be assignments to the students on each concept from the recent
research work and industry developments. Table 2 shows the sample assignments and problems
related to each phase. Since students solve the research and industry oriented problems or
assignments, they will be more interested on the course. Some assignments in table 2 especially
research oriented assignments can be solved referring the literature cited.

In addition to the regular assignments, students should be asked to develop a compiler
considering Classroom Object Oriented Language (COOL) [4] and Decaf [5]. This will help
students to clearly understand the working process of each phase of the compiler. In case
Compiler Design course contains the laboratory component then it should be used as Compiler
design laboratory instead of programming laboratory.

Table 2. Assignments and Problems for each phase of the compiler

Concept General Problem Industry oriented assignment Research
oriented
assignment

Lexical
Analyser

How tokenization can be
done for strings that are
more than the length of
two buffers.

Lexical Analysis supports in log
analysis. Take a sample log file of
an industry and apply lexical
analysis to analyse the log file.

Apply Lexical
analysis to
prevent or
detect SQL
Injection
Attack [8].

Next User

Information

Code Generation

Register
Allocation

Target Code

Instruction
Selection

Basic Block

Instruction
Scheduling

generates

uses uses

uses
uses

uses

100 Computer Science & Information Technology (CS & IT)
Syntax
Analysis

How do we find the
Shift/Shift or Shift/Reduce
conflict in the grammar?

Syntax Analysis supports in log
analysis. Take a sample log file of
an industry and apply syntax
analyser to analyse the log file.

Create the
EMail syntax
verification
parser [7].

Semantic
Analyser

Show SDT based semantic
check is better than simple
symbol table based check
or otherwise.

Take a sample feedback file of an
industry and verify the semantics.

Analyse the
type checking
[6].

Intermediate
Code
Generation

Convert any simple
arithmetic expression
parse tree to three address
code and stack machine
code. Identify the best
with respect to time
complexity.

Analyse the usage of Intermediate
Representation in NetASM [7]

Analyse the
graph-based
higher-order
intermediate
representation
[11]

Code
Optimization

Remove the common sub-
expression in the C code
segment and find the time
complexity.
X+ = (4*j + 5*i)
Y+ = (7 + 4*j)

Take the software or program from
the Github and apply the code
optimization. Analyse the time
difference in execution.

Analyse the
Optgen: A
generator for
local
optimization
[9]

Code
Generation

Take any arithmetic
expression (c = a + b)
three address code and
find how many move
instructions are required to
store the result? Assume
there is only two registers.

Analyse how the Industry could
generate code for the embedded
systems.

Generate the
Snowflake
architecture
instructions
for calculator
C program
[10].

6. CONCLUSION AND FUTURE WORK

The Compiler Design course is chosen in this paper because from the survey results it is evident
that many students are pre-decided that this subject is of less scope in the research and
development. This paper introduced a concept map for the Compiler Design course with
necessary class room problems and assignments based on recent research and industry
development. With the concept map and assignments, students can understand the importance and
relationship of the Compiler Design course with other courses. Instructors teaching Compiler
Design course need to update the students’ assignments based on the latest research and industry
progress. Hence, students will get motivated and focus on this subject. The future work of this
paper is to make the students to design the problems and assignments for each concept related to
industry and research and measure the accuracy of the students’ knowledge on the concept and
show the relevance of each concepts and phases in recent Research and Development.

ACKNOWLEDGEMENTS

We would like to thank the authors of different books, web articles and research papers from
which the assignment problems and class room examples are taken and discussed in this paper.
Also would like to thank the students participated in the survey.

Computer Science & Information Technology (CS & IT) 101

REFERENCES

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman, Compilers: Principles, Techniques

and Tools, Second Edition Book, 2006.

[2] Joseph D. Novak and Alberto J. Ca´nas, The Theory Underlying Concept Maps and How to Construct

Them,http://cmap.ihmc.us/Publications/ResearchPapers/TheoryCmaps/TheoryUnderlyingConceptMa
ps.bck-11-01-06.htm [accessed on 10 January 2019]

[3] Joseph D. Novak, A theory of education. NY: Cornell University, 1977.

[4] CoolAid: The Cool 2016 Reference Manual, URL:

http://pabst.cs.uwm.edu/classes/cs654/handouts/cool-manual.pdf [accessed on 11 January 2019].

[5] Julie Zelenski, Jerry Cain and Keith Schwarz, Decaf Specification,
 URL:http://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/030%20Decaf%20Specific

ation.pdf [accessed on 11 January 2019].

[6] Francisco Ortin, Daniel Zapico, and Juan Manuel Cueva, Design Patterns for Teaching Type

Checking in a Compiler Construction Course, IEEE Transactions on Education, Vol. 50, No. 3,
pp.273-283, 2007.

[7] Muhammad Shahbaz , Nick Feamster, The case for an intermediate representation for programmable

data planes, Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, 2015.

[8] L. Ntagwabira, S. L. Kang, Use of query tokenization to detect and prevent sql injection attacks, 3rd

IEEE International Conference on Computer Science and Information Technology (ICCSIT) 2010,
Vol. 2, pp. 438-440, 2010.

[9] S. Buchwald. Optgen: A generator for local optimizations, Proceedings of the 24th International

Conference on Compiler Construction (CC), pp. 171-189, Apr. 2015.

[10] Andre Xian Ming Chang, Aliasger Zaidy and Eugenio Culurciello, Efficient compiler code generation

for Deep Learning Snowflake coprocessor, 1st Workshop on Energy Efficient Machine Learning and
Cognitive Computing for Embedded Applications, pp. 24-28, 2018.

[11] R. Leißa, M. Köster, and S. Hack, A graph-based higher-order intermediate representation,

Proceedings of the 13th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, pp.202-212, 2015.

 [12] Akim Demaille, Roland Levillain and Benoît Perrot, A set of tools to teach compiler construction, in

Proceedings of the 13th Annual Conference on Innovation and Technology in Computer Science
Education, (ITiCSE '08), pp. 68-72, 2008.

[13] Li Xu and Fred G. Martin, Chirp on crickets: Teaching compilers using an embedded robot controller,

Proceedings of the 37th SIGCSE technical symposium on Computer science education, Vol. 38, no. 1,
pp. 82-86, 2006.

[14] Tyson R. Henry, Teaching compiler construction using a domain specific language, Proceedings of

the 36th SIGCSE technical symposium on Computer science education, Vol. 37, no. 1, pp. 7-11, 2005.

[15] Elizabeth White, Ranjan Sen, and Nina Stewart, “Hide and show: Using real compiler code for

teaching, Proceedings of the 36th SIGCSE technical symposium on Computer science education, Vol.
37, no. 1, pp. 12-16, 2005.

[16] S. R. Vegdahl, “Using visualization tools to teach compiler design,” in Proceedings of the Fourteenth

Annual Consortium on Small Colleges South eastern Conference (CCSC ’00), pp. 72-83, 2000.

102 Computer Science & Information Technology (CS & IT)
[17] Marjan Mernik and Viljem Zumer, An educational tool for teaching compiler construction, IEEE

Transactions on Education, Vol. 46, no. 1, pp. 61-68, 2003.

[18] Henry D. Shapiro and M. Dennis Mickunas, “A new approach to teaching a first course in compiler

construction,” Proceedings of the ACM SIGCSE-SIGCUE technical symposium on Computer science
and education, pp.158-166, 1976.

[19] Martin Ruckert, “Teaching compiler construction and language design: Making the case for unusual

compiler projects with postscript as the target language, Proceedings of the 38th SIGCSE technical
symposium on Computer science education, Vol. 39, no. 1, pp. 435-439, 2007.

[20] Divya Kundra and Ashish Sureka, Application of Case-Based Teaching and Learning in Compiler

Design Course, arXiv:1611.00271v1 [cs.PL] 1 Nov 2016.

[21] D. Kundra and A. Sureka, “An experience report on teaching compiler design concepts using case-

based and project-based learning ap-proaches,” in International Conference on Technology for
Education (T4E 2016), 2016.

[22] Somya Sangal, Shreya Kataria, Twishi Tyagi, Nidhi Gupta, Yukti Kirtani, Shivli Agrawal and Pinaki

Chakraborty, PAVT: a tool to visualize and teach parsing algorithms, Education and Information
Technologies, An official Journal of the IFIP Technical Committee on Education, Vol. 23, No.6,
pp.2737-2764 pp.2018.

